
Semantic Web in Enterprise

An Agile Startup Perspective

Jeen Broekstra

InsightNG Solutions Limited

http://www.insightng.com

jeen.broekstra@insightng.com

Abstract. Since the Agile Manifesto was first published, uptake in en-

terprise of agile methods such as Scrum has been significant. In this

keynote speech, the speaker explored how, for data-intensive projects

that aim to be agile, a Semantic Web technology stack can have several

important benefits over other approaches.

1 Agile Development

Agile development methods such as Scrum and eXtreme Programming (XP) have
over the course of the last several years seen extensive adoption, particularly in
startups and organisations adhering to Lean principles. While these methods
di↵er somewhat in details, they share a set of base priorities:

– Individuals and interactions

over processes and tools
– Working software

over comprehensive documentation
– Customer collaboration

over contract negotiation
– Responding to change

over following a plan

In essence, a successfully managed agile startup is low on bureaucracy and
overhead and high in flexibility and adaptability, which gives it key competitive
advantages when compared to a traditionally run corporation.

2 Semantic Web in Startups

The speaker’s own tech startup, InsightNG, develops a platform for informa-
tion gathering, mapping and contextualisation, providing insight and answers
supporting knowledge workers in complex decision-making and problem-solving
situations. In order to support the user, data and vocabularies from several
Linked Data sources are reused. The use of such Semantic Web resources pro-
vides InsightNG with several benefits, which the speaker believes can be applied
to other startups also:

– quick integration of heterogeneous data sources
– flexible modeling of relevant information
– powerful querying capabilities

All of these benefits are of great use in a rapidly developing situation with
changing requirements, such as is common in the development of a new software
product. The data sources used today may di↵er significantly from the data
sources needed yesterday or tomorrow. By employing Semantic Web ontologies
to structure data, schema changes can be made cheaply and easily, avoiding the
time consuming Extract-Transform-Load type processes commonly associated
with changing schemas in traditional RDBMS systems. Additionally, the low
cost associated with schema changes mean that data integration challenges can
be met on a pay-as-you-go basis, being driven by direct business needs, rather
than be planned far ahead.

The use of Semantic Web ontologies as knowledge models reduces the need
for documentation, since the model becomes the documentation. This benefit is
particularly useful to small organisations lacking resources for ambitious docu-
mentation projects. It is also helpful in teams with di↵ering language skill sets,
as is common in geographically distributed teams.

In terms of pitching Semantic Web technologies to investors, the reuse of real-
world Linked Data resources enables an agile company to easily provide venture
capitalists with more realistic demos of their product running on top of real
data. This enables the startup to already from the outset focus on showing how
their product or service provides customer value, which is essential in obtaining
funding.

All of these benefits illustrate why startups wishing to be agile could them-
selves gain from using Semantic Web technologies. It is however also worth keep-
ing in mind that those startups would not be the only beneficiaries of Semantic
Web technology use, but that the increased use and adoption of these technolo-
gies could benefit the quality of the Web as a whole. Without business backing
and solid customer value being generated, we are unlikely to see a true Web-scale
adoption of these helpful technologies. By getting startups on board, the first
few steps towards a more Open and Semantic Web are being taken.

3 Take Home Message

In summary, academics and practitioners attending this keynote should remem-
ber that:

– Agile methods and Semantic Web technology are natural partners in crime
– Pitching Semantic Web technology should focus on its flexibility and its fit

with agile principles
– Openness will follow

Semantic Web and Best Practice in Watson

Chris Welty

IBM Research

1 About the Speaker

Dr Chris Welty is a Research Scientist at the IBM T.J. Watson Research Center
in New York. His principal area of research is Knowledge Representation, specif-
ically ontologies and the semantic web, and he spends most of his time applying
this technology to Natural Language Question Answering as a member of the
DeepQA/Watson team. He is best known as a co-developer of the OntoClean
methodology with Nicola Guarino, and as the co-chair of the W3C RIF working
group.

2 Speech Abstract

IBM’s revolutionary Watson system has successfully beaten human Jeopardy
champions, and is now being extended and used in other domains, such as
healthcare question answering, and financial data analysis. It is a common mis-
conception that Watson is a through-and-through formally semantic system,
which translates questions into formal language queries, and returns answers
by executing those queries over a large knowledge base. In actual fact, Watson
uses a variety of technologies to produce candidate answers to each question,
and semantic technologies are primarily used in the subsequent candidate an-
swer ranking components. In particular, linked data sources are used to provide
typing evidence for candidate answers, but also several other answer ranking
components rely more or less on semantics and linked data.

In this speech Dr Welty discusses these semantic components and the data
upon which they operate, giving examples of expected and unexpected be-
haviours, and how these a↵ect the resulting answers returned by the system.
He also touches upon the methods and practices employed in developing and
testing Watson, giving useful suggestions for practitioners building real world
large-scale cognitive systems.

Boosting RDF Adoption in Ruby with Goo

Manuel Salvadores, Paul R. Alexander, Ray W. Fergerson,
Natalya F. Noy, and Mark A. Musen

Stanford Center for Biomedical Informatics Research
Stanford University, US

{manuelso,palexander,ray.fergerson,noy,musen}@stanford.edu

Abstract. For the last year, the BioPortal team has been working on
a new iteration that will incorporate major modifications to the existing
services and architecture. As part of this work, we transitioned BioPortal
to an architecture where RDF is the main data model and where triple
stores are the main database systems. We have a component (called
“Goo”) that interacts with RDF data using SPARQL, and provides a
clean API to perform CRUD operations on RDF stores. Using RDF and
SPARQL for a real-world large-scale application creates challenges in
terms of both scalability and technology adoption. In BioPortal, Goo
helped us overcome that barrier using the technology that developers
were familiar with, an ORM-alike API.

Keywords: SPARQL, RDF, ORM, Ontologies

1 Why Goo? Why a Framework?

BioPortal, developed in our laboratory, provides access to semantic artifacts
such as ontologies [9]. Our team has developed a new iteration of the BioPortal
REST API and related infrastructure. The most significant architectural change
is the replacement of the backend systems with an RDF triplestore. This single
RDF triplestore replaces a variety of custom database schemas that were used
to represent ontologies originated in di↵erent languages.

The BioPortal REST API provides search across all ontologies in its collec-
tion, a repository of automatically and manually generated mappings between
classes in di↵erent ontologies, ontology reviews, new term requests, and discus-
sions generated by the ontology users in the community [9]. Most importantly,
our API provides uniform access to the terminologies regardless of the language
used to develop them. Naturally, we did not expect the majority of developers
on our team and others who access the REST API to understand which specific
SPARQL query to use to access this complex information. Rather, it became
much more e�cient to abstract the SPARQL queries into an API that operates
at the resource level. Goo (which stands for “Graph Oriented Objects”) is the
library that we developed for this purpose. In many ways, Goo contains char-
acteristics of traditional Object-Relational Mapping libraries (ORMs). ORMs
are widely used to handle persistency in relational databases and to provide

2 Lecture Notes in Computer Science

an abstraction over the physical structure of the data and the raw, underly-
ing SQL queries. They also help to map data between relational models and
object-oriented programming languages. Popular ORMs include Hibernate, Ac-
tiveRecord and SQLAlchemy for Java, Ruby and Python respectively. Goo is
therefore an ORM specifically designed to work with SPARQL backends. The
Goo library frees developers from thinking about the intricacies of SPARQL,
while still exposing the power of RDF’s ability to interconnect data.

The driving requirements for our design are the following:

Abstraction: Though BioPortal uses Semantic Web technologies, not all of the
BioPortal development team has been exposed to RDF and SPARQL. This
situation is probably common in many other development teams. At the
same time, most professional developers have dealt extensively with ORMs–
like Hibernate and ActiveRecord–and most developers feel very comfortable
working with them.

Scalability: Our data-access layer must be aware of the query patterns for
which the triplestore performance excels and must try to rely on those pat-
terns as much as possible.

Flexibility: The schemaless nature of triplestores supports heterogeneity very
well. Our store contains 2,541 di↵erent predicates, but the application needs
to provide special handling for only a small portion of those [7]. Our frame-
work needs to be flexible enough to let the developer choose what data
attributes get included in the retrieval.

A number of libraries for di↵erent platforms o↵er ORM-like capabilities for
RDF and SPARQL. Jenabean uses Jena’s flexible RDF/OWL API to persist
Java Beans [8]. But Jenabeans approach is driven by the Java object model
rather than an OWL or RDF schema. A number of tools use OWL schemas to
generate Java classes [1, 2]. These tools enable Model Driven Architecture devel-
opment, but do not provide support for triple stores. For Python, RDFAlchemy
provides an object-type API to access RDF data from triplestores. It supports
both SPARQL backends and Python RDFLib memory models [5]. ActiveRDF
is a library for accessing RDF data from Ruby programs. It can be used as data
layer in Ruby-on-Rails, similar to ActiveRecord, and it provides an API to build
SPARQL queries programmatically [6]. The SPIRA project, also for Ruby, pro-
vides a useful API for using information in RDF repositories that can be exposed
via the RDF.rb Ruby library [4, 3]. Because we use Ruby in the new BioPortal
platform, we considered SPIRA as our ORM. However, SPIRA’s query strategy
was not built to handle very large collections of artifacts and the query API did
not allow for the complex query construction that BioPortal needs.

2 Goo’s API in a Nutshell

This section briefly introduces the Goo API. In this section, and the rest of the
paper, we describe the API using a subset of BioPortal models that are complex
enough to help us outline Goo’s capabilities.

Boosting RDF Adoption in Ruby with Goo 3

class Person < Goo::Base::Resource
 model :person, namespace: :foaf, name_with: :name
 attribute :name, enforce: [:unique]
 attribute :birth_date, enforce: [:date_time], property: :birthday
 attribute :accounts, inverse: [on: :user_account, property: :person]
end

 p = Person.new
 p.name = "John Smith"
 p.birth_date = DateTime.parse("1980-01-01")
 if p.valid?
 p.save
 else
 puts p.errors
 end
 end

INSERT DATA { GRAPH <http://xmlns.com/foaf/0.1/Person> {
 <http://xmlns.com/foaf/0.1/person/John+Smith>
 a foaf:Person ;
 foaf:birthday "1980-01-01T00:00:00Z"^^xsd:dateTime ;
 foaf:name "John Smith" .
}

Model definition

Object persistence

SPARQL UPDATE QUERY

 1

 2

 3

The Ruby developer does not need to
understand/use the underlying RDF data
model.

Under the hood Goo interacts
with the SPARQL endpoint with
standard SPARQL 1.1 queries.

Class definition that maps the
model to an RDF vocabulary.

Fig. 1. The top of this figure is an example of a Goo model definition. The settings in
this model establish object validations and how this model is represented in RDF.
For more details on each of these settings see the project documentation page at
http://ncbo.github.io/goo/. The second part of this figure is a script that shows how
we achieve persistence like similar ORM-alike libraries.

The following set of models is mentioned in the remainder of the paper: User
(describes a user profile), Role (describes di↵erent roles of users in the applica-
tion, such as an administrator), Note (describes comments on ontologies provided
by users), Ontology (describes the object that represents an ontology entry in our
repository) and OWLClass. We do not provide a fully detailed schema for these
objects; each example is self-contained and the relations between objects should
be clear to the reader. The full documentation for the Goo API is available at
http://ncbo.github.io/goo/.

Goo models are regular Ruby classes. To enable RDF support each model
needs to extend the Goo::Base::Resource class. Figure 1 gives a brief descrip-
tion of how models get defined. In the same figure it is shown how Ruby devel-
opers can save and validate the object without having to deal with RDF and/or
SPARQL.

Once objects are defined, Goo provides a framework for creating, saving,
updating and deleting object instances. Goo assures uniqueness of RDF IDs in
collections and tracks modified attributes in persisted objects. The DSL allows
us to provide both validation rules and define how objects are interlinked.

Ruby is a typeless language and thus developers can assign arbitrary value
types to variables and attributes (i.e: the language does not enforce the assign-
ment of Date values to a property that should only accept Date objects). We
rely on Goo to perform these operations automatically and transparently, noti-
fying when a validation fails. Goo incorporates multiple built-in validations for

4 Lecture Notes in Computer Science

data types like email, URI, integer, float, date, etc. Moreover, the framework can
be extended by using Ruby lambdas which can be needed to perform custom
validations. For example, a custom ISBN format validation can be included in
the set of validations for a model with the following attribute definition:

attribute :isbn, enforce: [lambda { |self| isbn_valid?(self.isbn) }]

2.1 Querying: From Graphs of Triples to Graphs of Objects

Goo’s most important feature is its flexible query API. The API allows retrieving
individual objects, their attributes, collections, and so on.

Retrieving individual objects One can retrieve single resource instances using
Resource.find. This call is useful when querying by unique attributes or when
the URI that identifies a resource is known.

Retrieving object attributes By default, none of the query API calls attach any
attribute values to the instance object that they return. If we try to access an
attribute that has not been included (i.e., retrieved from the triplestore), Goo
throws an AttributeNotLoaded exception. Our design always defaults to strate-
gies that imply minimum data movements. This strategy improves e�ciency by
retrieving only the attributes that the application cares about. Data attributes
are loaded into objects by using the include command (Figure 2).

Incremental Object Retrieval We have encountered situations in which one might
not know exactly what attributes need to be loaded in an object. Goo allows
incremental, in-place retrieval of attributes. An array of already loaded objects
can be populated with more attributes. This operation is in-place because Goo
will not create a new array of objects but will populate the objects that are
passed into the query via the models call.

Users.where.models(users).include(notes: [:content])

Pagination Our REST API outputs large collections of data and in some cases
we have to implement pagination over the responses. Pagination in SPARQL,
with LIMIT and OFFSET, works at the triple level but it is not trivial for non
SPARQL experts to develop the queries that retrieve a paginated collection
of items. Goo provides capabilities that abstract the intricacies of triple level
pagination and leverages this capability to the Ruby objects. Every query in
Goo can be paginated, the underlying SPARQL query uses SPARQL LIMIT and
OFFSET to assure low data transfers and minimun object instantiation. A Goo
API paginated call is shown in Figure 2.4.

Boosting RDF Adoption in Ruby with Goo 5

john = User.find("john")
notes = Note.where(owner: john)
 .include(:content)

notes = Note.where(owner: [:username “john”])
.include(:content)

john = User.find("john")
 .include(notes: [:content])
notes = john.notes

First get John and use that user
object to match the Note graph.

Query directly the Note graph to
retrieve every note that has an
owner attribute that points to a user
with username John

Access the Note graph through User.
Find John and include his notes with
their content.

 1

 2

 3

notes.each do |note|
 puts note.content
end

Just a plain Ruby loop over
John’s notes printing the
content.

notes = Note.where(owner: [:username “john”])
 .include(notes: [:content])
 .page(1,100)

 4 Same as (2) but using pagination

Fig. 2. Four di↵erent ways to retrieve John’s notes. 1: First retrieve the user and then
the notes. 2: Match the graph with a slightly more complex pattern. 3: Extract the
notes by including them in a User instance. 4: same as (2) but uses pagination.

Creating complex queries The API also allows for more complex query defini-
tions. One can combine calls with or and join, and with these we internally
construct SPARQL UNION blocks that can be combined with SPARQL joins.
Range queries can be also defined using the Filter object and the filter

method. All of these operations can be combined to build complex queries.

filter_on_created =

(Goo::Filter.new(:created) > DateTime.parse(’2011-01-01’))

.and(Goo::Filter.new(:created) < DateTime.parse(’2011-12-31’))

Users.where(notes: [ontology: [acronym: "SNOMEDCT"]])

.or(notes: [ontology: [acronym: "NCIT"]])

.join(notes: [:visibility [code: "public"]])

.filter(filter_on_created)

.include(:username, :affiliation)

The Ruby code above represents a Goo query that retrieves the list of users,
with their :username and :affiliation, that submitted notes to the ontologies
"SNOMEDCT" or "NCIT" and these notes have visibility code "public". In addi-
tion, a filter is created to filter users to just the ones that were created in the
system between a range of dates. This query has an extra complexity, the notes
attribute in User is defined as an inverse attribute. Goo is able to reverse the
SPARQL query patterns to match the graph with the correct pattern direction-
ality. The filtering implementation also allows for retrieval of nonexistent graph
patterns. To retrieve the list of users that never submitted a note we simply use
the unbound call in Filter.1

1 See usage of Filter.unbound at http://ncbo.github.io/goo/

6 Lecture Notes in Computer Science

3 Goo’s Query Strategy

Di↵erent query strategies can lead to starkly di↵erent performance in SPARQL.
A triplestore might have an e�cient query implementation, but if our applica-
tion, for example, moves data around a lot, our queries will not perform well.
Indeed, one often hears complaints about the performance of SPARQL engines
whereas the real issue is the client who is not using SPARQL e�ciently. Our
key rationale with implementing query strategies in Goo is to provide a layer
that ensures e�cient access and query decomposition for SPARQL without the
developer having to worry about it.

Goo’s strategy navigates the graph of included patterns recursively. The first
query focusses on constraining the graph and retrieving attributes that are ad-
jacent to the resource type. To retrieve data attributes located more than one
hop away, Goo runs additional queries—as many of these queries are types of
resources that are involved in the retrieval request. As a result, when a developer
uses Goo to request attributes of dependent resources, Goo will decompose the
request into multiple queries.

Goo traverses the graph patterns recursively using a Depth First Search
(DFS); it focuses on individual resource types in each step. Figure 3 (right side)
shows how we chain these queries together with SPARQL FILTERs that join
sequences of OR operations. These filters help each subsequent query to retrieve
only attributes for the dependent models and not the entire collection.2

Consider the following example. In BioPortal, a user can attach notes to
ontologies. A note description links to a user (author of the note) and the on-
tology that the note refers to. Our testing dataset contains 400 ontologies, 10K
notes, 900 users and 10 roles. We have intentionally skewed our testing dataset
so that the top 10% ontologies account for 55% of the notes—the distribution
that reflects the actual state of a↵airs in BioPortal. Figure 3 highlights the per-
formance gain when retrieving notes for each ontology in BioPortal using Goo.
In the Naive approach performance degrades when we start projecting, into tab-
ular form, n-ary relations that are hidden in the graph. We have seen that it
is often the case that hand-written SPARQL queries retrieve too much data at
once, and this can cause combinatorial data explosions due to the hidden n-ary
relations.

As it can be seen in Figure 3, we can demonstrate the di↵erence in the per-
formance of di↵erent query strategies even on this small dataset. Goo’s strategy
will recursively navigate di↵erent types of objects in the retrieval, avoiding com-
binatorial explosions.

4 Discussion

Traditional software development and database development has a long history
of reliable frameworks to access backend systems. The majority of Semantic Web

2 For this experiment we used 4store 1.1.5 in a cluster setup with 8 backend nodes.

Boosting RDF Adoption in Ruby with Goo 7

notes = Note.where(ontology: [:acronym “$ACR”])
 .include(:content)
 .include(owner: [:username, :email, roles: [:code])
 .include(ontology [:name])

SELECT ?note ?user ?content
FROM :Note
WHERE { ?note a :Note .
 ?note :owner ?user .
 ?note :content ?content .
 ?note :ontology ?ontology .
 ?ontology :acronym “$ACR” . }

SELECT ?user ?email ?username
FROM :User
WHERE { ?user a :User .
 ?user :name ?name .
 ?user :email ?email .
 FILTER (?user = <> || ?user = <> ...)
 }

Goo

SELECT ?role ?content
FROM :Role
WHERE { ?role a :Role .
 ?role :code ?code .
 FILTER (?role = <> || ?role = <> ...)
 }

SELECT ?note ?user ?content
FROM : Ontology
WHERE { ?ont a :Ontology .
 ?ont :name ?name .
 FILTER (?ont = <> || ?ont = <> ...)
 }

 4
 3

 2
 1

SELECT *
FROM :User FROM :Note FROM :Role
WHERE { ?id a :User .
 ?id :username ?username .
 ?id :email ?email .
 ?note :owner ?id .
 ?note :content ?content .
 ?note :ontology ?ontology .
 ?ontology :acronym "$ONT_ACRONYM" .
 ?ontology :name ?name .
 ?id :roles ?roles . ?roles :code ?description }

Naive

Fig. 3. Left-hand side shows a SPARQL query template that returns all notes and user
information for a ontology in BioPortal. Right hand side shows the same data retrieval
in Goo.

development today often includes writing SPARQL queries. In many cases, soft-
ware developers are unaware of what queries the SPARQL server is optimized
for and what queries they should use. Furthermore, many software-development
teams do not yet have SPARQL experts, which makes relying on triplestores as
components in large software systems problematic. Indeed, even in our team we
have experienced this problem as we were redesigning the BioPortal backend to
use a triplestore and not all of our developers were proficient in writing e�cient
SPARQL queries. The development of Goo enabled our team members to over-
come that barrier using the technology that they were familiar with (Ruby). Goo
is a completely general ORM for SPARQL and therefore other developers can
use it in their projects defining their models that Goo will validate and relying
on the SPARQL query optimization in Goo to access their triplestores.

In this paper we show one example of how using naive SPARQL can lead to
unexpected bad performance (see Figure 3). Our preliminary study shows that
the combination of n-ary relations in hand-written queries result in query time
distributions that may not perform well. Figure 3 shows that a simple partioning
strategy can help to alleviate this issue.

We are proponents of semantic technologies, and thus we were drawn to the
idea of using ontologies to define our schemas, including the domains and the

8 Lecture Notes in Computer Science

allowed values for attributes. However, we see two major advantages to a DSL
like Goo. First, one of our goals was to make schema definitions easy to use for
developers who are not familiar with ontologies or OWL, and using ontologies
counteracts that goal. Second, ontologies traditionally entail new information
and are not designed to validate constraints.

Goo enables software developers without significant experience with semantic
technologies, to use SPARQL and RDF naturally and e�ciently. The BioPortal
developers have found it easy to start working with the Goo API; as a result,
the transition to RDF and triple store technology within BioPortal was much
faster and smoother than it would have been otherwise. Basic query definitions
in Goo are intuitive because the combination of hashes and arrays to construct
Goo query patterns resembles JSON structures and developers are very famil-
iar with them. Knowing that following a few simple restrictions, such as only
querying for attributes that are needed, freed them from having to worry about
the performance of the data storage layer and allowed them just to focus on the
business logic, which sped development time significantly.

Acknowledgments This work was supported by the National Center for Biomed-
ical Ontology, under grant U54 HG004028 from the National Institutes of Health.

References

1. OWL2Java: A Java Code Generator for OWL. http://www.incunabulum.de/

projects/it/owl2java

2. Kalyanpur, A., Jimenez, D.: Automatic Mapping of OWL Ontologies into Java. In:
Proceedings of Software Engineering and Knowledge Engineering (2004)

3. Arto Bendiken, Gregg Kellogg, B.L., Borkum, M.: RDF.rb: Linked Data for Ruby.
http://rdf.rubyforge.org/

4. Ben Lavender, A.B., Humfrey, N.J.: Spira: A Linked Data ORM for Ruby. https:
//github.com/datagraph/spira

5. Graham Higgins, P.C.: RDF Alchemy, http://www.openvest.com/trac/wiki/

RDFAlchemy

6. Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: Activerdf: Object-oriented
Semantic Web Programming. In: Proceedings of the 16th International Conference
on World Wide Web. pp. 817–824. WWW ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1242572.1242682

7. Salvadores, M., Horridge, M., Alexander, P.R., Fergerson, R.W., Musen, M.A., Noy,
N.F.: Using SPARQL to Query BioPortal Ontologies and Metadata. In: Interna-
tional Semantic Web Conference (2). pp. 180–195 (2012)

8. Vollel, M.: Jenabean: A library for persisting java beans to RDF. http://code.
google.com/p/jenabean/

9. Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R., Nyulas, C.I., Tudorache,
T., Musen, M.A.: BioPortal: Enhanced functionality via new web services from the
national center for biomedical ontology to access and use ontologies in software
applications. Nucleic Acids Research (NAR) 39(Web Server issue), W541–5 (2011)

Harmonizing services for LOD vocabularies:
a case study

Ghislain Auguste Atemezing1, Bernard Vatant2,
Raphaël Troncy1 and Pierre-Yves Vanderbussche3

1 EURECOM, Sophia Antipolis, France,
<firstName.lastName@eurecom.fr>

2 Mondeca, Paris, France, <bernard.vatant@mondeca.com>
3 Fujitsu, Galway, Ireland, <py.vanderbussche@fujitsu.com>

Abstract. Vocabularies are more and more (re)-used in the Linked
Data ecosystem. However, managing the prefixes associated to their Uni-
form Resource Identifiers (URIs) is still cumbersome and namespaces are
sometimes referring to di↵erent pair <prefix, URI>. In this paper, we
propose to align two well-known services with the aim of managing and
harmonizing vocabularies’ namespaces. We use prefix.cc that provides a
look up service for namespaces in general and Linked Open Vocabularies
(LOV) that extracts vocabularies metadata. Our method enables to iden-
tify three di↵erent scenarios: (i) conflicts between prefix.cc and LOV; (ii)
prefixes in LOV not present in prefix.cc and (iii) URIs in prefix.cc that
are actually LOV-able vocabularies. We describe how we solve each of
these issues, with actions ranging from updating the di↵erent services to
contacting the editors of the vocabularies to fix clashes among prefixes.
Finally, we present the new LOV API that enables to check whether
those namespaces in prefix.cc can actually be vocabularies to be inserted
in the LOV ecosystem or not.

Keywords: Vocabulary discovery, Linked Open Vocabularies, prefix.cc,
namespaces reconciliation, vocabulary management

1 Introduction

RDF vocabularies bring their meaning to linked data by defining classes and
properties, and their formal semantics. Relying on W3C standards RDFS or
OWL, those vocabularies are a fundamental layer in the architecture of the
Semantic Web. Without the explicit semantics declared in vocabularies, linked
data, even using RDF, would be just linked pieces of information where links
have no meaning. Interoperability between data and datasets rely heavily on
shared vocabularies, but given the distributed nature of the Web, vocabularies
are published by independent parties and there is no centralized coordination
of this publication, nor should it be. Various independent services have been
developed in order to discover vocabularies and provide information about them,
and the community of data publishers and vocabulary managers have all interest

in complementarity and coordination between such services. In this paper, we
focus on a specific aspect of vocabularies: their identification by namespaces and
associated prefixes.

In the original XML syntax of RDF, prefixes are simply local shortcuts as-
sociated with XML namespaces using xmlns declarations. The usage of prefixes
has been further extended to other syntaxes of RDF such as N3 and Turtle.
Although a prefix to namespace association is syntactically limited to the local
context of the file in which it is declared, common prefixes such as rdf:, rdfs:,
owl:, skos:, foaf: and many more have become de facto standards. For exam-
ple, RDFa has 1.1 has a default profile made of 11 well-used vocabularies based
on their general usage on the Semantic Web according to the crawl of Yahoo!
and Sindice as of March 20131. Similarly, the YASGUI SPARQL editor has a
list of built-in prefix-namespace associations to ease the construction of SPARQL
queries. However, this list of “standard” prefixes is open-ended. Interfaces such
as SPARQL endpoints (e.g. Virtuoso) use a list of built-in prefixes declaration
for more and more namespaces but the choice of entries in this list is all but
transparent. Hence, the reason of a given namespace being or not in this list
could be interpreted in many ways, a potential source of technical and social
conflicts. Therefore, the notion has been slowly spreading, at least implicitly,
that common prefixes could and indeed should have a global use, implying some
kind of governance and good practices. More and more vocabularies explicitly
recommend the prefix that should be used for their namespace, generally using a
common if not written good practice to avoid frontal clashes by recommending a
prefix not already used. But there is no global policy except implicit rules of fair
use to avoid potential conflicts resulting from polysemy (di↵erent namespaces
using or recommending the same prefix) or synonymy (di↵erent prefixes used for
the same namespace).

A vocabulary publisher needs to have access to some services capable of mon-
itoring the existing prefixes usage in order to stick to those rules. In this paper,
we focus on two services providing such information on prefixes usage namely
prefix.cc2 and LOV (Linked Open Vocabularies) [5]. Both services provide as-
sociations between prefixes and namespaces but following a di↵erent logic. The
prefix.cc service allows anybody to suggest a prefix to namespace association.
It supports polysemy and synonymy, and has a very loose control on its crowd-
sourced information. What it provides is more a measure of popularity of prefixes
and namespaces than a way to put order in them. LOV has a much more strict
policy forbidding polysemy and synonymy, enforced by a dedicated back-o�ce
database infrastructure, ensuring that each vocabulary in the LOV database is
uniquely identified by a prefix, this unique identification allowing the usage of
prefixes in various LOV publication URIs. This requirement leads sometimes to
a situation where LOV uses prefixes di↵erent from the ones recommended by
the vocabulary publishers.

1
http://www.w3.org/2010/02/rdfa/profile/data/

2 Service: http://prefix.cc/; Code: https://github.com/cygri/prefix.cc

The initial motivation of the work presented in this paper was to provide
some kind of harmonization between those two services, from simple obvious
tasks such as checking that prefix.cc provides all prefixes present in LOV and
add them as necessary, to more complex ones such as detection and possible
resolution of conflicts. We describe an approach for discovering new vocabular-
ies in the wild by reconciling vocabularies in prefix.cc using SPARQL federated
queries. This work was made semi-manually and involved collaboration between
the two services managers to exchange data and take actions on each side. The
remainder of this paper is structured as follows. In Section 2, we provide an
overview of related work and services that support vocabulary management in-
cluding the current approaches implemented by the LOV and prefix.cc services.
In Section 3, we present how we have aligned those two services, detected con-
flicts and resolved them. In Section 4, we describe a method enabling to find
new LOV-able vocabularies from the prefix.cc service. Finally, we discuss some
lessons learned and outline future work in Section 5.

2 Related Work

Many di↵erent type of repositories exist to support users and developers to find
controlled terms and entire vocabularies or ontologies on the web of data. We
first describe the LOV initiative (Section 2.1) and we propose then our own
classification based on the content, the domain, the purpose and the way such
catalogs are populated or index created (Section 2.2).

2.1 Linked Open Vocabulary (LOV)

The Linked Open Vocabularies (LOV) initiative aims to bring more insights
about published vocabularies in order to foster their reuse. Compared to other
projects, LOV benefits from a community:

– to assess the quality (including documentation, metadata) and the reuse
potential of a vocabulary before it is indexed. LOV contains currently 350+
reusable and well-documented vocabularies;

– to augment vocabularies with explicit information not originally defined in
the RDF vocabulary. For example, only 55% of vocabularies have explicit
metadata of at least one creator, contributor or editor. In LOV, we aug-
mented this information leading to more than 85% of vocabularies with this
information;

– to automatically extract the implicit relations between vocabularies using
the Vocabulary Of Friend3 (VOAF) ontology. These relations can be used
as a new metric for ranking terms based on their popularity at the schema
level;

– to consider vocabulary semantic in the result ranking: a literal value matched
for the rdfs:label property has a higher score than for the dcterms:comment
property.

3
http://lov.okfn.org/vocab/voaf/

The way vocabularies are considered in LOV is similar to the way datasets
are considered in the LOD cloud [2]. Hence, while the Vocabulary of Interlinked
Datasets (VoiD) is used to describe relationships between datasets and their vo-
cabularies [1], VOAF is used to describe the mutual relationships between vocab-
ularies. VOAF itself reuses over popular vocabularies such as Dublin Core Terms
(dcterms), Vocabulary Of Interlinked Datasets (VoiD), Vocabulary for ANNotat-
ing vocabulary (vann) and the BIBliographic Ontology (bibo). The vocabulary
also introduces new classes such as voaf:Vocabulary and voaf:VocabularySpace.

The LOV-Bot is the tool that automatically keeps up-to-date the relation-
ships and the metadata about the vocabularies indexed in LOV, using the fol-
lowing steps:

– LOV-Bot daily checks for vocabularies update (any di↵erence in the vocab-
ulary formal description fetched using content negotiation);

– LOV-Bot uses SPARQL constructs to detect relationships and metadata and
creates explicit metadata descriptions in the LOV dataset;

– LOV-Bot annotations are then listed in a back-o�ce administration dash-
board in order to be reviewed. This manual part enables LOV curators to
interact with vocabularies authors and the wider community to raise issues
and make remarks or suggestions.

The LOV dataset is synchronized with the information presented in the web site.
The latter allows a human user to browse LOV information. The Linked Open
Vocabularies initiative does not only monitor the current state of the ecosystem.
It also aims at storing and giving access to vocabularies history. To achieve this
goal, the LOV database contains every di↵erent version of a vocabulary over the
time since its first issue. For each version, a user can access the file and a log of
modifications since the previous version.

2.2 Ontology Repositories

While we refer the reader to [3] for a systematic survey of ontology libraries, we
give our own classification of ontology repositories (Table 1). In particular, we
distinguish six categories of catalogs:

– Catalogs of generic vocabularies/schemas similar to the LOV catalog, but
without any relations among the vocabularies. Example of catalogs falling
in this category are vocab.org4, ontologi.es5, JoinUp Semantic Assets or the
Open Metadata Registry.

– Catalogs of ontologies for a specific domain such as biomedicine with the
BioPortal6, geospatial ontologies with SOCoP+OOR7, Marine Metadata In-
teroperability and the SWEET ontologies8.

4
http://vocab.org/

5
http://ontologi.es/

6
http://bioportal.bioontology.org/

7
http://socop.oor.net/

8
http://sweet.jpl.nasa.gov/2.1/

– Catalogs of ontologies from a project such as the famous DAML repository
of ontologies9.

– Catalogs of ontology Design Patterns (ODP) focused on reusable patterns
in ontology engineering.

– Catalogs of editors’ ontologies used to test some features of a tool and to
keep track of the ontologies built by a tool, such as Web Protégé or TONES.

– Catalogs of ontologies maintained by a single organization which often uses
a platform such as Neologism10 for publishing vocabularies.

– Vocabularies crawled by Semantic Web search engines containing snapshots
at the time of the crawsuch as Watson11, Sindice12, Falcon-s13 or Swoogle.

Catalog Number of Search Feature Category Vocabulary
name vocabularies maintenance

vocab.org 19 No Catalog of N/A
generic vocabularies

ontologi.es 39 No -//- N/A
Joinup Semantic 112 Yes -//- Yes
Assets
Open Metadata 308 Yes –//– Yes
Registry
BioPortal 355 Yes Catalog of Yes

Domain vocabularies
SOCoP + OOR 40 Yes –//– Yes
Marine Metadata 55 Yes –//– Yes
Interoperability
SWEEET 2.2 200 No –//– N/A
DAML 282 No –//– No
ODPs 101 No Catalog of ODPs Yes
vocab.derie.ie 68 No Catalog of Yes

Organizations
data.lirmm.fr 15 No –//- Yes
ontologies
TONES 219 No Catalog of N/A

editors’ vocabularies
Web Protégé 69 No –//– Yes

Table 1. Catalogs of vocabularies with respectively the number of the ontologies, the
presence of a search feature, the catalog category and whether it is maintained or not

9
http://daml.org/ontologies/

10
http://neologism.deri.ie

11
http://watson.kmi.open.ac.uk/

12
http://www.sindice.com

13
http://ws.nju.edu.cn/falcons/

We observe that the existing catalogs of vocabularies in the literature have
some limitations compared with LOV. In terms of coverage, the number of vo-
cabularies indexed by LOV is constantly growing and it is the only catalog, to
the best of our knowledge, that provide all types of search criteria (metadata
search, within/across ontologies search), both an API and a SPARQL endpoint
access and that can be as well classified as an “Application platform” apart from
being at the same time an ontology directory and an ontology registry. Accord-
ing to the categories of ontology libraries defined in [3], LOV falls under the
category of “curated ontology directory” and an “application platform” because
the ontologies are curated manually with statistics automatically generated, and
because it exposes its data via an API. Furthermore, LOV provides an answer to
some of the issues mentioned in the survey reported in [3], such as “where has an
ontology been used before?” or “is this ontology compatible with mine?”. In par-
ticular, LOV provides vocabulary usage statistics of the LOD Cloud datasets and
it exposes vocabularies dependency using the Vocabulary-of-A-Friend (VOAF)
ontology.

vocab.cc14 is a service which is similar to prefix.cc since it enables to look
up and search for Linked Data vocabularies while providing more specific infor-
mation about the usage of a particular class or property in the Billion Triple
Challenge Dataset (BTCD). It also provides the ranking of those properties or
classes. The authors mentioned that “common prefixes are resolved with data
from prefix.cc”. Although they don’t give further details, this service is some-
how related to prefix.cc. Triple-Checker15 is a web service based on prefix.cc
which aims at finding typos and common errors in RDF data. It parses a given
URI/URL and the output is divided in two sections: the namespaces and the
term section. The former matches against prefix.cc to determine whether they
are “common prefixes” and the latter provides the term definition.

3 Aligning LOV with Prefix.cc

In this section, we present how we perform the alignment between the two ser-
vices LOV and prefix.cc. Figure 1 shows the evolution of the number of prefixes
registered in these two services between April 2009 and July 2013. Our main
goals are to align Qnames (prefix) to a unique URI in LOV and to make sure
that all the vocabularies in LOV are actually inserted in prefix.cc.

We propose to perform SPARQL queries over all the files of prefix.cc at
http://prefix.cc/popular/all.file.vann in the FROM clause and compare
them to the content of the LOV SPARQL endpoint16 via a SERVICE17 call.
The SERVICE keyword defined in the SPARQL 1.1 Query Language instructs
a federated query processor to invoke a portion of a SPARQL query against
a remote SPARQL endpoint [4]. Results are returned to the federated query

14
http://vocab.cc

15
https://github.com/cgutteridge/TripleChecker

16
http://lov.okfn.org/endpoint/lov

17
http://www.w3.org/2009/sparql/docs/fed/service

A
p
r-
0
9

J
u
l-
0
9

O
ct
-0
9

J
a
n
-1
0

A
p
r-
1
0

J
u
l-
1
0

O
ct
-1
0

J
a
n
-1
1

A
p
r-
1
1

J
u
l-
1
1

O
ct
-1
1

J
a
n
-1
2

A
p
r-
1
2

J
u
l-
1
2

O
ct
-1
2

J
a
n
-1
3

A
p
r-
1
3

J
u
l-
1
3

0
100
200
300
400
500
600
700
800
900

1,000
1,100
1,200
1,300

month

n
u
m
b
e
r
o
f
p
r
e
fi
x
-
n
a
m
e
s
p
a
c
e

prefix.cc

LOV

Fig. 1. Evolution of the number of prefix-namespace pairs registered in prefix.cc and
LOV

processor and are combined with results from the rest of the query. To be more
generic and standards-compliant, the queries could be run with the Jena ARQ
command-line tool to produce a CSV or a JSON serialization that could be
easily consumed either by the prefix.cc backend via phpMyAdmin or by the
LOV backend.

3.1 First Task: prefixes in LOV not present in Prefix.cc

First, we compute < LOV > INTERSECTS < PREFIX.CC > and <
LOV > MINUS {< LOV > INTERSECTS < PREFIX.CC >}. The fol-
lowing SPARQL query finds namespace URIs in LOV that do not exist in pre-
fix.cc along with their LOV prefix.

PREFIX vann: <http://purl.org/vocab/vann/>

SELECT ?prefix ?lovURI

FROM <http://prefix.cc/popular/all.file.vann> {

SERVICE <http://lov.okfn.org/endpoint/lov> {

SELECT ?prefix ?lovURI {

[] vann:preferredNamespacePrefix ?prefix;

vann:preferredNamespaceUri ?lovURI;

}

}

FILTER (NOT EXISTS { [] vann:preferredNamespaceUri ?lovURI })

OPTIONAL {

[] vann:preferredNamespacePrefix ?prefix;

vann:preferredNamespaceUri ?pccURI;

}

}

ORDER BY ?prefix

The first results18 shown the following: card(LOV)
T
card(PREFIX.cc) = 18819

and card(LOV)�card(PREFIX.cc) = 13320 prefixes in LOV not yet registered
in prefix.cc. At this point, a first batch of 80 prefixes/namespaces from LOV were
safely imported in prefix.cc since there were no conflicts. For the remaining con-
flicting ones, they needed more in-depth analysis.

3.2 Second Task: Dealing with Conflicts between Prefix.cc and LOV

In the process of alignment, there were two types of conflicts and we provide
appropriate actions and/or solutions accordingly:

– Clashes: cases where we have in both services the same prefix but di↵erent
URIs;

– Disagreements on preferred namespace: cases where for the same URI, we
found di↵erent prefixes.

Clashes. We performed a SPARQL query as above to identify clashes in vocab-
ularies (30). In Table 2, we identify seven di↵erent types of issues to deal with,
such as (i) real conflicts, (ii) URIs are 404, (iii) URIs are obsolete versions and
(iv) two URIs redirecting to the same resource.

Disagreements on namespace URIs. The general idea is that if vocabulary
editors have not included explicitly a vann:preferredNamespacePrefix in their
description, the curators of LOV are free to change it and put whatever seems
appropriate. At the same time, in prefix.cc, having multiple prefixes for the same
namespace IRI in not a problem. However, we computed those prefixes in LOV
that have di↵erent prefixes in prefix.cc. The following query retrieves the URIs
falling in those disagreements:

18 This query was performed in two weeks between March, 2nd and March, 20th 2013
and at this time, card(LOV) = 321 vocabularies while card(Prefix.cc) = 925

19
http://www.eurecom.fr/~atemezin/iswc2013/experiments/firstAlignments/

intersection-prefixLOV-02-03.csv
20

http://www.eurecom.fr/~atemezin/iswc2013/experiments/firstAlignments/

inLovNotINPrefixcc-02-03.csv

Type of issue # Vocabularies Percentage

pccURI and lovURI redirect to same resource 8 26.67%
lovURI already in prefix.cc as secondary 7 23.3%
Real conflicts 6 20%
pccURI is 404 4 13.3%
pccURI is an obsolete version 3 10%
lovURI is 404 1 3.3%
lovURI is an obsolete version 1 3.3%

Table 2. Type of issues encountered for vocabulary clashes

PREFIX vann: <http://purl.org/vocab/vann/>

SELECT ?prefix ?lovURI ?prefixcc

FROM <http://prefix.cc/popular/all.file.vann> {

SERVICE <http://lov.okfn.org/endpoint/lov> {

SELECT ?prefix ?lovURI {

[] vann:preferredNamespacePrefix ?prefix;

vann:preferredNamespaceUri ?lovURI;

}

}

FILTER (?pccURI = ?lovURI && ?prefix != ?prefixcc)

OPTIONAL {

[] vann:preferredNamespacePrefix ?prefixcc;

vann:preferredNamespaceUri ?pccURI;

}

}

ORDER BY ?prefix

From the results of this query (61 cases), we have three actions to perform:

– add the lovPrefix (prefix in LOV) in prefix.cc (e.g: adding
geod:http://vocab.lenka.no/geo-deling#) to the existing ngeoi in pc-
cPrefix.)

– add more alternative URIs to the existing prefix in prefix.cc (e.g: adding
prov:http://purl.org/net/provenance/ns#) to the existing hartigprov,
prv in pccPrefix)

– change a prefix in LOV21 (e.g: lovPrefix dc for http://purl.org/dc/terms
not in the list {dcterm, dcq, dct, dcterms} has been replaced by dce in LOV).

– No changes when the lovPrefix is contained in the set of prefixes of prefix.cc.

3.3 Social Aspects

Several vocabularies are maintained by a community of users. As part of the
alignment process, we contacted the authors, creators or maintainers (if they

21
http://www.eurecom.fr/~atemezin/iswc2013/material/action-sameUriDifferentPrefixes.pdf

exist) of vocabularies to involve them as well in the process of changing prefixes,
and agree with them to fix some issues regarding their vocabularies. From the
homepages of the vocabulary authors and editors collected in LOV, we connect
to their social platform accounts such as LinkedIn, Google+ or Twitter. Table 3
summarizes some cases of real conflicts where the LOV curators have to find and
contact the editors of the vocabularies for negotiation.

prefix lovURI Remark

sp http://data.lirmm.fr/ontologies/sp# contact editor at LIRMM (sp) osp)
scot http://scot-project.net/scot/ns# contact editors at lovURI
media http://purl.org/media# contact editors for negotiation
pro http://purl.org/spar/pro/ contact editors for negotiation
swp http://www.w3.org/2004/03/trix/swp-1/ contact editors, fix on LOV side
wo http://purl.org/ontology/wo/core# contact editors
idemo http://rdf.insee.fr/def/demo# to resolve with INSEE

Table 3. LOV and prefix.cc conflicts resolution leading to contact vocabularies editors
for negotiation. We provide the prefix, the URI in LOV and the action undertaken.

4 Finding Vocabularies in Prefix.cc

We want to find out in prefix.cc, which of the couples (prefix, URI) could be
potentially a vocabulary to be further assess to be included in the LOV catalog.
To address this question, we first compute all the di↵erences on prefix.cc NOT
in LOV, i.e. PREFIX.CC MINUS (LOV < INTERSECT > PREFIX.CC),
performing using a SPARQL query. This results in 742 URIs to be checked22.

4.1 LOV Check API

We have implemented an API23 that allows a user to run the LOV-Bot over a
distant vocabulary. It takes as parameter the vocabulary URI to process and
the time out (integer) specified to stop the process. The result of this action is a
set of 26 property-values from which we are interested in using only 8 of them,
namely:

– uri (string) – uri of the vocabulary.
– namespace (string) – namespace of the vocabulary.
– prefix (string) – prefix of the vocabulary
– inLOV (boolean) – indicates if the vocabulary is already in the Linked Open

Vocabularies ecosystem.

22
http://www.eurecom.fr/~atemezin/iswc2013/experiments/input/notInLOV.json

23
http://lov.okfn.org/dataset/lov/apidoc/

– nbClasses (int) – Number of classes defined in the vocabulary namespace.
– nbProperties (int) – Number of properties defined in the vocabulary names-

pace.
– dateIssued (string) – Vocabulary date of issue.
– title (Taxonomy) – List of titles with language information if available.

The code below gives the response of our algorithm for the vocabulary iden-
tified at http://ns.aksw.org/Evolution/.

[caption={Sample output of a response of the Check API}]

{

"dateIssued": "None",

"inLOV": false,

"namespace": "http://www.agfa.com/w3c/2009/clinicalProcedure#",

"nbClasses": 47,

"nbProperties": 29,

"pccURI": "http://www.agfa.com/w3c/2009/clinicalProcedure",

"prefix": "clinproc",

"title": [

{

"dataType": null,

"language": "en",

"value": "Clinical Procedure"

}

],

"uri": "http://www.agfa.com/w3c/2009/clinicalProcedure"

},

4.2 Experiments

We wrote a script calling the LOV Check API on the URIs in prefix.cc for
determining the candidates vocabularies to be inserted in LOV using the algo-
rithm in Listing 1. We ran four times the experiments (possibly due to some
network instabilities) in order to determine from which results what should be
assessed. Table 4 gives an overview of the number of URIs with respectively
the attribute “inLOV=false”(TP), “inLOV=true”(FP) and the errors occurred
(Null returned, http/proxy or time out reached by the API).

Regarding the experiments, Experiment4 gives stable results with less net-
work errors. Therefore, we stick on this experiment to report our findings and
analysis. We found that 227 (43.48%) are vocabularies in the sense of LOV since
they have at least one property or one class. 297 vocabularies (56.51%) might
have some problems (or are even not vocabularies at all) as they have neither
classes nor properties. Regarding the presence of prefixes, we found 140 (61.67%)
of them. The 227 vocabularies could all be inserted in the LOV catalog since
they fulfill the current requirements of what is a “ LOV-able vocabulary”. In
this list, we found vocabularies such as rdf, rdfs, owl that are used to build
other vocabularies but are not yet integrated in the LOV catalog.

TP(inLOV=false) FP(inLOV=true) Errors

Experiment1 525 44 173
Experiment2 403 26 313
Experiment3 351 28 363
Experiment4 522 44 176

Table 4. Experiments looking for stable results of finding vocabularies in prefix.cc.

Algorithm 1 finding vocabularies NOT in LOV from prefix.cc algorithm
1: Open notInLOV.jsonfile containing the prefix.cc URIs not in LOV
2: initialize item as List
3: Initialize result as collection of item
4: for each pccURI 2 notInLOV file do

5: uri value of pccURI
6: uriv construct-valid uri
7: call LOV-Check API with parameter uriv
8: try/catch HTTPError, URLError, IOError, ValueError
9: while no error raised do

10: initialize item to an empty List
11: append pccURI, prefix, inLOV, namespace, title, dateIssued, nbClasses, nbProperties

in item List
12: append item to result
13: end while

14: end for

15: print output� result

From the list of URIs that were not LOV-able vocabularies, we wanted to
do more analysis by checking the RDF files using the Triple-Checker tool. Our
aim is to be sure if we did not leave out some candidate vocabularies or if there
are other type of errors such as parsing errors. Table 5 provides results classified
into 4 categories:

– General errors such as loading files or proxy errors: 78.30%
– Candidate LOV-able vocabularies: 12.20%
– Clearly not vocabularies (nbClasses = nbProperties = 0), typically in-

stances, datasets, html pages: 6.45%
– Others (mainly parsing errors): 3.05%

5 Conclusion

In this paper, we have analyzed numerous vocabularies referenced in LOV and
in prefix.cc and we have presented a way to manage the prefixes of those vocabu-
laries. We have shown that in the process of mapping namespaces with prefixes,
some conflicts have to be resolved, often by contacting the editors themselves.

Total URIs 295 100%

Loading/404 errors 182 61.69%
Vocabularies 36 12.20%
Proxy errors 27 9.15%
50x, 40x errors 22 7.45%
Parsing errors 9 3.05%
Web Pages containers 9 3.05%
No triples found 8 2.71%
RDF data 2 0.67%

Table 5. Analysis of the URIs with no classes and no properties while using the LOV-
Bot API

One future work is to develop a new strategy for the LOV-Bot API to take
into account vocabularies published in other formats such as n3 and turtle.
This would require to first test the validity of those formats and to adapt the
way namespaces are obtained in order to not check only the presence of the
vann:preferredNamespace property but to rely on similarity algorithm in or-
der to guess the closest namespace given a URI vocabulary and some statistics
of the number of classes and properties.

The work presented in this paper can be extended in several directions. Stick-
ing to the two services we have studied and already contributed to harmonize,
the possible next steps would be to automate as far as possible the tasks that
have been made semi-automatically so far: i) developing a unique interface for
submitting namespaces and prefixes to both services; ii) bridging the LOV back-
o�ce and the prefix-cc database using both services API in order to publish a
list of common recommended prefixes. The latter goes beyond the limited frame-
work of the two original services since such a list could be consolidated and
endorsed by the main actors in vocabulary publication and management, and
recommended for use in linked data applications. This could be picked up by
the upcoming W3C Vocabulary Management Working Group as part of the new
Data Activity24.

This (apparently) simple issue of prefixes and namespaces is providing a
good illustration of why some kind of governance is needed in the distributed
ecosystem of vocabularies and linked data, pointing to both technical and social
aspects, and proposing concrete examples of conflict resolution. There is no, and
certainly there should never be any, central attribution authority for prefixes,
and the needed regulation has to be made a posteriori, including good practices
of cooperation and negotiation between vocabulary publishers. Development and
harmonization of services such as LOV and prefix.cc is then to be considered as

24
http://www.w3.org/2013/05/odbp-charter.html

part of the current and more general e↵ort already started by the DCMI25 and
W3C26 for a sustainable governance of vocabularies.

Acknowledgments

This work is partially supported by the project Datalift funded by the French
Research Agency (ANR) under grant number ANR-10-CORD-009. The Linked
Open Vocabularies initiative is hosted by the Open Knowledge Foundation. The
authors are very grateful for the support and help of Richard Cyganiak, author
and maintainer of the prefix.cc service.

References

1. K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing linked datasets.
In 2nd Workshop on Linked Data on the Web (LDOW), Madrid, Spain, 2009.

2. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Interna-
tional Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

3. M. DÁquin and N. Noy. Where to publish and find ontologies? a survey of ontology
libraries. Web Semantics: Science, Services and Agents on the World Wide Web,
11(0):96–111, 2012.

4. E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 Federated Query. W3C
Recommendation, 2013. http://www.w3.org/TR/sparql11-federated-query/.

5. B. Vatant and P.-Y. Vandenbussche. Catalogue de Vocabulaires. Datalift, D2.2,
2013. http://datalift.org/en/node/18.

25 Long-term Preservation and Governance of RDF Vocabularies: http://dcevents.

dublincore.org/IntConf/index/pages/view/vocPres
26 W3C Vocabulary Services: http://www.w3.org/2013/04/vocabs/

Towards Linked Data based Enterprise Information

Integration

Philipp Frischmuth1, Sören Auer1, Sebastian Tramp1, Jörg Unbehauen1, Kai
Holzweißig2 and Carl-Martin Marquardt2

1 Universität Leipzig, Institut für Informatik, AKSW,
{lastname}@informatik.uni-leipzig.de

2 Enterprise Services Portal, CMS & Search, Daimler AG, Plant 096-0191, 70546 Stuttgart,
Germany

{firstname.lastname}@daimler.com

Abstract. Data integration in large enterprises is a crucial but at the same time
costly, long lasting and challenging problem. In the last decade, the prevalent data
integration approaches were primarily based on XML, Web Services and Service
Oriented Architectures (SOA). We argue that classic SOA architectures may be
well-suited for transaction processing, however more efficient technologies can
be employed for enterprise data integration. In particular, the use of the Linked
Data paradigm appears to be a very promising approach. In this article we explore
challenges large enterprises are still facing with regard to data integration. We
discuss Linked Data approaches in these areas and present some examples of
successful applications of the Linked Data principles in that context.

1 Introduction

Data integration in large enterprises is a crucial but at the same time costly, long lasting
and challenging problem. While business-critical information is often already gathered
in integrated information systems such as enterprise resource planning (ERP), customer
relationship management (CRM) and supply chain management (SCM) systems, the in-
tegration of these systems itself as well as the integration with the abundance of other
information sources is still a major challenge. In the last decade, the prevalent data inte-
gration approaches were primarily based on the Extensible Markup Language (XML),
Web Services and Service Oriented Architectures (SOA) [6]. However, we become in-
creasingly aware that these technologies are not sufficient to ultimately solve the data
integration challenge in large enterprises. We argue that classic SOA architectures are
well-suited for transaction processing, but more efficient technologies are available that
can be deployed for solving the data integration challenge. With the use of the Linked
Data paradigm for integrating enterprise information, data intranets can complement
the intranets and SOA landscapes currently found in large enterprises.

In this paper, we explore the challenges large enterprises are still facing with regard
to data integration. These include, but are not limited to, the development, management
and interlinking of enterprise taxonomies, domain databases, wikis and other enterprise
information sources. We discuss Linked Data approaches in these areas and present
some examples of successful applications of the Linked Data principles in that context.

2 Data Integration Challenges in the Enterprise

We identified crucial areas where data integration challenges arise in large enterprises.
In the following section we investigate those challenges, each by considering the current
situation first. We then examine the benefits of employing Linked Data technologies in
order to tackle the respective challenge. Finally, we describe the challenges that need to
be addressed to make the transition from the current state of the art to the Linked Data
approach feasible.

2.1 Enterprise Taxonomies

Nowadays, almost every large enterprise uses taxonomies to provide a shared linguistic
model. It is widely agreed that taxonomies are usable, however, there are multiple chal-
lenges that must be addressed in order for taxonomies to work correctly [5]. A problem
that arises is that different metadata creators use different terminologies and therefore
the same object may receive different metadata descriptions by different people [4].
Another challenge is that large taxonomies require certain time for the users to get their
bearings so that they can start to use the taxonomies correctly and avoid creating du-
plicities and other errors. In [15], the author discusses whether taxonomies are really
necessary and stresses the importance of establishing relations to documents via URLs,
which indicates already a clear shift towards the Linked Data vision.

If we take a look at commercial implementations, there is Microsoft SharePoint’s3

Term Store (also referred to as Managed Metadata), which enables enterprises using
SharePoint to tag objects stored in SharePoint with terms from a taxonomy. However,
there are some strong limitations to this approach. There is very restricted multilingual
support – separate SharePoint language packs need to be installed for each language
to be used in the taxonomy. Also, the implementation is proprietary, thus hindering the
integration with taxonomies or data outside of SharePoint.

Linked Data Approach We propose to represent enterprise taxonomies in RDF em-
ploying the standardized and widely used SKOS [12] vocabulary as well as publishing
term definitions via the Linked Data principles. This approach entails the following
main benefits: (1) Since terms are attached to URIs, which can be dereferenced us-
ing HTTP, term definitions can be obtained without the need for additional software
(a browser is sufficient). (2) For the same reason, term creation and management can
be realized in a distributed scenario, where, for example, certain departments are re-
sponsible for different parts of the taxonomy. Terms can then be interlinked and re-used
regardless of department boundaries. (3) By employing the SKOS vocabulary, terms
can have a hierarchical order and thus the problem of different metadata granularity can
be easily solved. (4) Also, since data is represented using RDF, which works with arbi-
trary vocabularies and properties, overlapping, coinciding or conflicting term definitions
(e.g. by different departments) can be interlinked by explicitly stating the relationship
between terms via links. (5) Terms can be assigned multiple labels, which are repre-
sented as RDF literals. As such they can be furnished with a language tag resulting in

3 http://sharepoint.microsoft.com/

http://sharepoint.microsoft.com/

multilingual taxonomies with very little additional effort. (6) Ultimately the result of
employing the Linked Data approach for enterprise taxonomies is, that terms can be
easily re-used in other scenarios as the originally intended ones. For example, a de-
tailed term definition (with alternative labels in multiple languages) can be very useful
for search applications, where terms are associated with documents which then become
reachable via a variety of keywords.

However, the initial costs for building a basic taxonomy may still be quite high.
The problem of finding initial terms (and their definitions) can be solved by integrating
a service like DBpedia Spotlight [11]. With this service texts can be annotated with
resources from DBpedia [1], which already contain a detailed description in multiple
languages in many cases. For enterprise-specific terms, where a description is not avail-
able via DBpedia, a keyword extraction service like FOX4 can be used instead. Thus an
initial set of term URIs can be gathered, which can then be annotated manually with for
example a data wiki like OntoWiki (see subsection 2.2).

Fig. 1. The left side shows OntoWiki, which displays a term definition and resources
linking to it. The right side shows a search application, which employs the term meta-
data for finding and suggesting relevant content.

Figure 1 shows two screenshots, which demonstrate some of the advantages de-
scribed in this section. The left side shows OntoWiki, which displays the definition of
the term T-Modell along with some additional information. The location bar on the top
of the screen displays the URI used for this very concept, which other resources can link
to. It is also possible to directly de-reference this identifier and obtain the description
for this resource in a machine-readable format. A dedicated list shows other resources
that link to this concept, in this case certain car models. This circumstance is used in a
search application, which is shown on the right side of Figure 1. When a user types the
keyword combi, the knowledge base is used to obtain the fact, that this search term is a
synonym for the concept T-Modell. Once this is done, all linked car models are retrieved

4 http://aksw.org/Projects/FOX

http://aksw.org/Projects/FOX

and shown to the user. The depicted scenario is a good example of an application of a
taxonomy outside the scope of the originally intended use. One main reason for the ef-
ficient realization of this application is that data from multiple sources (term store and
car configuration metadata) was made available via the Linked Data principles.

Challenges Currently terminology in large enterprises is managed in a centralized
manner mostly by a dedicated and independently acting department, which is in charge
to standardize all corporate terms. As a result they create a variety of dictionary files
for different scopes that are not interconnected. An employee that wants to look up a
certain term, needs to know which dictionary to use in that very context, as well as
where to retrieve the currently approved version of it. The main challenge in the area of
enterprise taxonomies is defragmentation of term definitions without centralization of
taxonomy management.

Defragmentation. The proposed Linked Data approach can be implemented by keep-
ing the centralized structure and assign the corporate language management (CLM) de-
partment the task to create a knowledge base that contains the complete terminology
of the company. This solves the fragmentation problem occurring with the dictionary
approach, but it also keeps the barrier for participation high, since a single department
still is in charge for maintaining the knowledge base.

Decentralization. On the other hand an entire decentralized solution can be imple-
mented, by assigning each department in the enterprise it’s own taxonomy namespace.
Adding new terms or refactoring existing terms becomes very easy with this approach,
due to the reduced communication overhead with other departments. Nevertheless the
problem of fragmentation arises again.

2.2 Wikis

Wikis have become increasingly common through the last years reaching from small
personal wikis to the largest Internet encyclopedia Wikipedia. Since large companies
have special requirements, such as fine-grained access-control, enterprise scalability,
security integration and the like, a special type of wikis – enterprise wikis – emerged.
A survey [10] about the use of corporate wikis pointed out, that corporate users expect
three benefits from using wikis, namely improved reputation, relaxation of work and
helping in the advancement of processes. Widely utilized wikis in the enterprise context
are Confluence5 and Jive6. Popular open-source wikis include FOS wiki7 and TWiki8.
These tools differ in their provided functionality, but they are all mainly centered around
textual content, although some wikis provide limited support for managing structured
information (e.g. FOS wiki via data forms). Consequently, the knowledge contained in
those wikis can in most cases only be extracted by human reading of the documents and
not by other applications used within the company.

5 http://www.atlassian.com/software/confluence/overview
6 http://www.jivesoftware.com/social-business/platform
7 http://foswiki.org/
8 http://twiki.org/

http://www.atlassian.com/software/confluence/overview
http://www.jivesoftware.com/social-business/platform
http://foswiki.org/
http://twiki.org/

Linked Data Approach In addition to traditional wikis, there is also another category
of wikis which are called semantic wikis. Those can again be divided into two cate-
gories: semantic text wikis and semantic data wikis. Wikis of this kind are not yet com-
monly used in enterprises, but crucial for enterprise data integration since they make
(at least some of) the information contained in a wiki machine-accessible. Text-based
semantic wikis are conventional wikis (where text is still the main content type), which
allow users to add some semantic annotations to the texts (e.g. typed links). The seman-
tically enriched content can then be used within the wiki itself (e.g. for dynamically
created wiki pages) or can be queried, when the structured data is stored in a sepa-
rate data store. An example is Semantic MediaWiki [9] and its enterprise counterpart
SMW+. It extends the well-known MediaWiki engine (which powers Wikipedia) with
syntax for typecasting links and data, classifying articles and creating dynamic pages.
The knowledge in a wiki (KiWi) [14] project also developed a semantic wiki, which
provides an adaptable platform for building semantic and social tools.

We propose the usage of semantic data wikis such as OntoWiki [2,8] in enterprises
for the following main reasons: (1) Data wikis focus on structured information, which
is kept as such and thus can be easily re-used by other applications consuming the data.
(2) Since OntoWiki is solely based on RDF, all information is automatically published
via the Linked Data principles, making it trivial for other parties to consume the data.
(3) Information fragments can be interlinked with other resources within an enterprise
(e.g. taxonomies, XML schemas, databases, Web services), which leads to a better reuse
of information and thus to better maintained data. (4) Since textual information can also
be represented in RDF (via literals), text wikis can be emulated and thus (additional)
human-friendly information can be added. Such annotations and the structured infor-
mation can then be used to create customized views on the data.

Challenges A challenge is to train users of wikis to actually create semantically en-
riched information. For example, the value of a fact can be either represented as a plain
literal, or as a relation to another information resource (eventually already attached with
some metadata). The more users are urged to reuse information wherever appropriate,
the more all participants can benefit from the data. It should be part of the design of the
wiki application (especially the user interface), to make it easy for users to build quality
knowledge bases (e.g. through auto-suggestion of URIs within authoring widgets).

Since data in RDF is represented in the form of simple statements, information that
naturally is intended to be stored in conjunction (e.g. geographic coordinates) is not
visible as such per se. The same applies for information which users are accustomed to
edit in a certain order (e.g. address data). A non-rational editing workflow, where the
end-users are confronted with a random list of property values may result in invalid or
incomplete information. The challenge here is to develop a choreography of authoring
widgets in order to provide users with a more logical editing workflow.

Another defiance to tackle is to make the deployed wiki systems available to as
many stakeholders as possible (i.e. cross department boundaries) to allow for an im-
proved information re-use. Once Linked Data resources and potentially attached infor-
mation are re-used (e.g. by importing such data), it becomes crucial to keep them in
sync with the original source. Therefore mechanisms for syndication (i.e. propagation

of changes) and synchronization need to be developed, both for intra- and extranet se-
mantic wiki resources.

2.3 Web Portal and Intranet Search

Current state-of-the-art intranet data management system with proper full text search
and a comfortable user interface include Microsoft’s FAST Search9, SAP’s Netweaver
Enterprise Search10 or Autonomy’s IDOL Universal Search11. These search engines
are based on full-text search and offer taxonomy support, custom ranking and context
awareness. Even though the search engines are quite sophisticated, there is still a lot
of room for improvement that can be tackled by publishing the data as Linked Data
and allowing it to be queried as such [5]. In [7], the author identifies several challenges
in enterprise search, one of them being internal multi-source search, which is when a
user has a precisely formulated question but only a keyword search is available. The
author uses an example where a manager in an oil company wants to identify all wells
previously drilled by the company in the Black Gold field where the problem known
as “stuck pipe” was experienced. The manager searches for “Black Gold stuck pipe”,
but he must go through all the found documents, identifying the wells and so on. If
the company data was stored or internally published as Linked Data using an ontology
describing the oil drilling domain, the result could be gained using a single SPARQL
query.

Linked Data Approach In an enterprise exist at least two distinct areas where search
technology needs to be applied. On the one hand, there is corporate internal search,
which enables employees to find relevant information required for their work. On the
other hand, all large enterprises need at least simple search capabilities on their public
web portal(s), since otherwise the huge amounts of information provided may not be
reachable for potential customers. Some dedicated companies (e.g. automotive compa-
nies) would actually have a need for more sophisticated query capabilities, since the
complexity of offered products is very high. Nevertheless, in reality, search, both inter-
nal and external, is often solely based on keyword matching. We argue that by employ-
ing the Linked Data paradigm in enterprises the classical keyword based search can be
enhanced. Additionally, more sophisticated search mechanisms can be easily realized
since more information is available in a uniform and machine-processable format.

In cooperation with Daimler a prototype that employs multiple Linked Data sources
to provide a uniform search application was developed. By entering simple keywords
users can (a) find documents that are attached to terms from the taxonomy that match
the given query or (b) find specific car models that match the criteria given by the user
(e.g. more than 6 seats). In the first case the advantage is, that documents can be found

9 http://sharepoint.microsoft.com/en-us/product/capabilities/
search/Pages/Fast-Search.aspx

10 http://www.sap.com/platform/netweaver/components/
enterprisesearch/index.epx

11 http://www.autonomy.com/content/Products/
idol-universal-search/index.en.html

http://sharepoint.microsoft.com/en-us/product/capabilities/search/Pages/Fast-Search.aspx
http://sharepoint.microsoft.com/en-us/product/capabilities/search/Pages/Fast-Search.aspx
http://www.sap.com/platform/netweaver/components/enterprisesearch/index.epx
http://www.sap.com/platform/netweaver/components/enterprisesearch/index.epx
http://www.autonomy.com/content/Products/idol-universal-search/index.en.html
http://www.autonomy.com/content/Products/idol-universal-search/index.en.html

even if the content does not mention the keyword. The second case would not be even
possible without taking another datasource into account, namely structured information
about possible car configurations. Thus, when a user queries for a keyword that matches
a term that is linked to a car related property and also provides a value restriction (e.g.
less than 10), the system can obtain a list of matching cars (via SPARQL queries) and
return them to the user together with some metadata about the models.

Challenges In order to implement search systems that are based on a Linked Data ap-
proach and that provide a substantial benefit in comparison with traditional search ap-
plications, the challenge of bootstrapping an initial set of high-quality RDF datasources
needs to be tackled first. Mechanisms then need to be established to automatically create
high-quality links between datasets.

Finally, although a search engine that queries RDF data directly works (in fact the
prototype described above was implemented using this approach), it results in subopti-
mal performance. The challenge here is to develop methods for improving performance
to match traditional search engines, while keeping the advantages of using SPARQL
directly.

2.4 Database Integration

Relational Database Management Systems (RDBMS) are the predominant mode of data
storage in the enterprise context. We therefore deem the integration of relation data into
Linked Data a crucial Enterprise Data Integration technique. For providing a unified
view over different databases multiple methods like data warehousing, schema media-
tion and query federation have been devised and successfully used. However, problems
arise with more heterogeneous data landscapes, where strict schema adherence can not
be guaranteed and external data is utilized. The integration of heterogeneous sources re-
quires a costly transformation of the data into the relational model. This has the effect,
that only key data sources and thus only a small fraction of the RDBMSes in a typical
enterprise are integrated.

Linked Data Approach The mapping of relational data to the RDF data model adopts
relational database integration techniques and augments them. By employing a map-
ping from relational data to RDF, data can be integrated into an internal or external data
cloud. By using URIs for identifying resources, integration with non-relational and ex-
ternal data is facilitated. The RDB to RDF Mapping Language (R2RML) standard de-
scribes how a relational database can be transformed into RDF by means of term maps
and triple maps. In order to avoid a costly materialization step, R2RML implementa-
tions can dynamically map an input SPARQL query into a corresponding SQL query,
which renders exactly the same results as the SPARQL query being executed against a
materialized RDF dump. By avoiding a costly materialization of the relational data into
a dedicated triple store, a light-weight integration into existing architectures is possible.
Consequently, semantic wikis, query federation tools and interlinking tools can work
with the data of relation databases. The usage of SPARQL 1.1 query federation [13]
allows relational databases to be integrated into query federation systems with queries
spanning over multiple databases.

Challenges A primary concern when integrating relational data is scalability and query
performance. With our R2RML based tool SparqlMap12 we show that an efficient query
translation is possible, thus avoiding the higher deployment costs associated with the
data duplication inherent in ETL approaches. The challenge of closing the gap between
triple stores and relational databases is also present in SPARQL-to-SQL mappers and
drives research. The standardization of the RDB to RDF Mapping Language (R2RML)
by the W3C RDB2RDF Working Group establishes a common ground for an inter-
operable ecosystem of tools. However, there is a lack of mature tools for the creation
and application of R2RML mappings. A challenge lies in the creation of user friendly
interfaces and establish best practices for creating, integrating and maintaining those
mappings. Finally, for a read-write integration updates on the mapped data need to be
propagated back into the underlying RDBMS. An initial solution is presented in [3]. In
the context of Enterprise Data an integration with granular access control mechanisms
is of vital importance.

3 Conclusions

In this work we identified several data integration challenges that arise in corporate en-
vironments. We discussed the use of Linked Data technologies in those contexts and
presented some insights gained during the development of corresponding prototypes
for Daimler. We conclude from our experiments, that the deployment of Linked Data
approaches in enterprise scenarios has huge potential and can result in extensive ben-
efits. However, we are aware that more challenges than the aforementioned need to be
tackled when trying to create sophisticated enterprise knowledge intranets. We consider
as future work to investigate XML schema governance (due to the numerous applica-
tions that employ XML for information exchange) and enterprise single sign-on from a
Linked Data perspective. In order to ultimately establish Linked Data as a strategy for
enterprise data integration also many organizational challenges have to be tackled. For
example, it is relatively easy to determine the return-on-investment for an integration
of two information systems, while it is very difficult to precisely assess the cost savings
of the Linked Data approach. Also, the added value of the Linked Data approach might
only become visible after a critical mass of Linked Data interfaces and resources are
already established in the enterprise.

References

1. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A nucleus
for a web of open data. The Semantic Web, pages 722–735, 2007.

2. S. Auer, S. Dietzold, and T. Riechert. OntoWiki - A Tool for Social, Semantic Collaboration.
volume 4273, pages 736–749. 2006.

3. V. Eisenberg and Y. Kanza. D2RQ/update: updating relational data via virtual RDF. In
WWW (Companion Volume), pages 497–498, 2012.

4. G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabulary problem in
human-system communication. ACM, pages 964–971, Nov. 1987.

12 http://askw.org/Projects/SparqlMap

http://askw.org/Projects/SparqlMap

5. J. Grudin. Enterprise Knowledge Management and Emerging Technologies. In System Sci-
ences, 2006. HICSS ’06, volume 3, page 57a, 2006.

6. A. Halevy, A. Rajaraman, and J. Ordille. Data integration: the teenage years. In VLDB ’06,
pages 9–16. VLDB Endowment, 2006.

7. D. Hawking. Challenges in enterprise search. In ADC ’04, ADC ’04, pages 15–24, Dar-
linghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

8. N. Heino, S. Dietzold, M. Martin, and S. Auer. Developing Semantic Web Applications with
the OntoWiki Framework. Networked Knowledge. Springer, 2009.

9. M. Krötzsch, D. Vrandečić, and M. Völkel. Semantic MediaWiki. The Semantic Web-ISWC
2006, pages 935–942, 2006.

10. A. Majchrzak, C. Wagner, and D. Yates. Corporate wiki users: results of a survey. In WikiSym
’06. ACM, Aug. 2006.

11. P. N. Mendes, M. Jakob, A. Garcı́a-Silva, and C. Bizer. DBpedia spotlight: shedding light
on the web of documents. In I-Semantics ’11, pages 1–8. ACM, 2011.

12. A. Miles and S. Bechhofer. SKOS Simple Knowledge Organization System Reference. W3C
Recommendation, 2008.

13. E. Prud’hommeaux. SPARQL 1.1 Federation Extensions, November 2011.
http://www.w3.org/TR/sparql11-federated-query/.

14. S. Schaffert, J. Eder, S. Grünwald, T. Kurz, and M. Radulescu. Kiwi–a platform for semantic
social software (demo). The Semantic Web, pages 888–892, 2009.

15. C. Shirky. Ontology is overrated: Categories, links, and tags, 2005.

http://www.w3.org/TR/sparql11-federated-query/

Adaptive Semantic Publishing

Georgi Georgiev, Borislav Popov, Petya Osenova, Marin Dimitrov

Ontotext AD, Bulgaria
{borislav.popov, georgiev, petya.osenova,

marin.dimitrov}@ontotext.com

Abstract. The paper describes the approach, methodology and main software
components of an Adaptive Semantic Publishing Platform for digital medias;
applied previously to numerous use cases and publishers like the BBC, Euro-
Money and Press Association. The semantic publishing relies on the interaction
among the common sense model in ontologies, the world knowledge in Linked
Open Data (LOD), the named entity categorization and the set of domain-
specific keywords. Hence, the contribution of the related LOD datasets is brief-
ly considered. The adaptive publishing relies on the user’s requirements (inter-
ests, searches, activities) provided as summaries of articles on selected topics
(sports, politics, society, etc.). Also, approaches to gold standard data are pre-
sented, which enable the fast and high quality clusterization of numerous in-
formation streams per topic.

Keywords: Semantic Publishing, Personalization, Clustering, Ontologies,
Linked Open Data, Summarization

Introduction

In recent years Semantic publishing applications get more and more user-oriented
in several aspects, among which: customization and re-purpose of data and content
reflecting the user needs; focused summaries with respect to user interests; high re-
levance of the retrieved information and minimal effort in receiving it.

There are various works, exploring the relation between publishing and Linked
Open Data. In [4], for example, authors present their idea on a life cycle model (speci-
fication, modeling, generation, linking, publication, exploitation) and demonstrate its
application within various domains. At the same time, in [3] a DBpedia service has
been presented (called DBpedia Spotlight), which automatically annotates text docu-
ments with DBpedia URI’s using the DBpedia in-house ontology. Similarly, Zeman-
ta1 provides a plug-in to content creators, which recommends links to relevant content
(articles, keywords, tags). Our approach is generally in-line with these ideas and ser-
vices – domain specific applications, automatic semantic annotation, adding relevant
linked content. However, our focus is preferably on: the trade-off between the seman-

1 http://en.wikipedia.org/wiki/Zemanta

mailto:georgiev,%20petya.osenova%7d@ontotext.com
mailto:georgiev,%20petya.osenova%7d@ontotext.com
mailto:georgiev,%20petya.osenova%7d@ontotext.com
http://en.wikipedia.org/wiki/Zemanta

tic knowledge holders (ontologies, linked data) and their language reflection (domain
texts), mediated by the linguistic processing pipelines; the adaptive flexibility of the
constructed applications and the efficient storage and publishing of large data.

Within Ontotext, examples of mass media, semantic publishing web sites, such as
the BBC’s sport web2 and the official web of the London’s Olympics 2013, have
proven to attract a multi-million user bases. Behind such applications, as revealed by
lead engineers at the BBC3, there lies the complex architecture of the state-of-the-art
Semantic and Text Analytics technologies, such as in-house: fast RDF database man-
agement system OWLIM4 and knowledge management platforms KIM5; for robust
semantic annotation and search, as well as for text analytics applications.

Both platforms are incorporated into numerous successful Semantic Publishing So-
lutions (including the BBC Sport6, Press Association7, Newz8, EuroMoney9, Publi-
cis10 etc.). This paper aims to describe the approach, main software components, in-
formation architecture, text analytics and semantic annotation and indexing, used
successfully in many solutions for more than 5 years, to build semantic publishing
solutions.

Our approach relies on the calibration between the RDF semantic repository
OWLIM, the semantic resources in KIM and the optimized Text Analytics techniques
including methodologies for fast creation of gold data in the selected domain; focused
curation of the automatically analyzed data and the application of advanced machine
learning algorithms in data clustering. Thus, the success of our solutions lies in the
customization of the advanced semantic technologies in combination with text analyt-
ics techniques, tuned to the needs of publishers and adapted to the requested domains.

The Overall Architecture of Semantic Publishing System

Our generalized system, presented on Fig. 1 below, comprises several compo-
nents, connected in a life cycle. The Content Store on the left side contains the news
articles, along with the associated pictures and videos. The textual content of these
assets is then passed to the Text Processing Pipeline, implemented in GATE11. The
pipeline includes various components. The generic components refer to: tokenization,
POS tagging, chunking. The Gazetteer refers to named entity recognition, such as
Person, Location, Organization, etc. The Rules are written in JAPE12 style. They

2 www.bbc.com/sport
3 www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html
4 www.ontotext.com/owlim
5 http://www.ontotext.com/kim
6 http://www.ontotext.com/publishing
7 http://www.pressassociation.com/
8 newz.nl
9 http://www.euromoney.com/
10 http://www.publicis.de/
11 http://gate.ac.uk/
12 http://gate.ac.uk/sale/tao/splitch8.html#chap:jape

http://www.ontotext.com/owlim
http://www.ontotext.com/kim
http://gate.ac.uk/

usually cover the relation extraction, such as Person works for Organization; Organi-
zation is located in Location, etc. Machine learning component scales up the applica-
tion when there is manually annotated training data. Semantic indexing refers to
URIs, which map the detected entities with real objects in the world. For example,
Obama is recognized as Person, but then, more information about him is provided
through a link to Obama’s DBPedia13 profile. Geo localization of the articles relies on
automatic association with GeoNames14 map coordinates. This means that the recog-
nized country is assigned with its longitude and latitude information from the inter-
linked map.

Additionally, some other knowledge is provided, such as capital, currency, etc. In
this way the facts are available in interconnected knowledge maps. The ontology ab-
stracts over the text chunks and specifies the categories and relations within linked
data. We initially rely on common sense ontology (such as PROTON), which might
be further extended with the necessary domain knowledge depending on the required
conceptualization granularity. Given the common ontology and the data, the extension
is trivial and easy.

Fig. 1. Generalized Semantic Publishing Architecture.

13 http://dbpedia.org/About
14 http://www.geonames.org/

In Fig. 2 below the Basic Information Architecture is shown. The Domain Exten-

sion and Ontology design process include modeling of the specific domain (finance,
sports, etc.) in domain ontology, connected to the upper-level PROTON ontology15.
At the same time, the processed data is mapped to Linked Open Data. Linked Open
Data also provides updates on named entities.

Fig. 2. Basic Information Architecture. The arrowed lines show what types of concepts are
present in the specific linked resource (for example, GeoNames have only Locations). The
dotted lines show that there might be various relations among Persons, Locations, Organiza-
tions (such as, Person lives-in Location). All the instances from linked data are mapped to a
common ontology (PROTON).

The interconnected data then goes into clustering models for focused categoriza-
tion with respect to the task. We work in a hierarchical way of knowledge recognition
– first, we try to detect a referent in LOD (i.e., that Obama is a Person with features
like birthday, birthplace; LivesIn; is_a president of the USA in the appointed time
periods, etc.); if there is no such connection, then we aim at recognizing the more
abstract concept in the Ontology (Person with a Role in Society, and with other ap-
propriate features); if this information is also not available for some reason, then the
named-entity is detected (Obama is Person); if this is not possible either, then the
most important key phrases are recognized (the terminology in the domain, etc.); last,
but not least, topics of documents can be categorized (Sports, Society, Politics,

15 proton.semanticweb.org

Finance, etc.). In most of our use cases, however, all these types of recognition are
available and connected to each other. Thus, clustering of data is based on detailed
semantic annotations.

The recognized knowledge pieces (referents, concepts, entities, etc.) can be also
cross-related. For example, the categorization of entities in Sports, will provide
groups of Persons, involved in Sports activities, Types of Sports, etc. On the other
hand, information might be given about most popular sports per country or about
Sports careers of Persons in various Organizations.

The Semantic Annotation Solution

The Underlying Datasets.
The OWLIM repository uses the following datasets: Freebase (version

jan_9_2012), DBpedia (version 3.8) and subset of Geonames. From Freebase and
DBpedia all the people and organizations are integrated. The subset of Geonames
includes bigger cities, countries, continents, oceans, seas, US states, selected places in
Europe. All these linked open data sets have their own ontologies, which are also part
of the repository. All the above-mentioned ontologies are mapped to the common
sense upper-level PROTON ontology. The added value of such a mapping is that a
high quality reasoning and consistency of the modeled knowledge is ensured.

Since there is duplicated information in the three data sets, which, however, is pre-
sented in different ways, a mapping effort has been performed also between Freebase
and DBpedia; Geonames and DBpedia. Thus, via the mappings of two bases to
DBpedia, Freebase has also its mapping to Geonames.

Gold Standard Annotation and Curation.
The gold standard annotation includes the following steps: understanding the task;

preparation of annotation guidelines; manual annotation of some texts with pre-
selected tags; training an algorithm over gold data; automatic annotation of big data-
sets; curation of the processed documents; re-training (if necessary). For more details
see [1] and [2].

The curated documents are used in turn as a bigger gold standard corpus for auto-
matic text analysis evaluation, but also for training further machine learning models
over the data.

The level of granularity for the creation of Annotation Types and their Features is
based on more concrete classes for Person, Organisation, Location of the PROTON
Ontology, with extension of classes and properties from linked open resources, such
as DBpedia, Freebase and GeoNames. Modularization depends also on the specific
task. In the case of media publishing, it detects Person, Organization and Location
and maps them to the descriptions in Linked Open Data sources. But it also respects
the domains, in which the named entities occur (Sports, Politics, Economics, etc.)

The document curation subsumes three related tasks:

x Instance disambiguation. It handles cases, such as ambiguities between vari-
ous people with the same name or various locations with the same name, or even

person, location and/or organization with the same name. Since such properties are
very context-dependent, the possible true candidates are verified by assigning the
correct URL from Linked Open Data. For example, the name ‘Washington’ is am-
biguous, since it refers to a Politician, an Actor, a US state and a US city.
x Tagging. This step is applied only for Person, Organisation and Location.
The labels Person, Organisation or Location assigned during the automated an-
notation stage are verified and new labels are added to specific words or phrases in
the text. This step prevents from considering a Person as a Location, or vice versa.
The step is very important, since such mis-tagged entities might not be many, but
might be very frequent in the domain. On Fig 2 above the complex relations are
given among named entities, such as Persons, Organizations and Locations, etc.
and their Linked Open Data mappings.
x Topic or key words correction. This step is applied when a document is mis-
categorized for a topic (for example Society instead of Finance) or when some
phrases are detected which do not belong to the terminology of the domain.

In Fig. 3 below the activities cycle behind the Basic Semantic Annotation Process

is shown.
From the perspective of the Agent, it contains the following actions. The reports or

articles, provided by the client (the person on the top), are carefully examined by the
company specialists (SME – small medium enterprise).

Then some probe annotations are performed for clarifying and defining the re-
quired annotation types. Then bigger chunks of data are annotated by annotators while
keeping high interannotator agreement and providing checks by a superannotator.

When the data has been automatically annotated via the trained manually produced
data, then also the curator is involved.

He/she chooses the correct mappings from a set of available mappings. Very often
the set contains ambiguous mappings, which have to be resolved.

He/she also adds new links or deletes some, if needed. Simultaneously, the infor-
mation from Linked Open Data store is mapped to the semantic annotations (both
manual and automatic).

These mappings need a careful curation for achieving a high precision and recall.
The person on the right indicates the client, who might examine the annotated data
before its linking to the open data and its storage. This involvement is optional.

Fig. 3. Basic Semantic Annotation Architecture. The persons indicate human intervention in the
automatic process.

Personal Semantic Publishing

The Semantic Publishing Platform provides the following adaptive instruments:
parallel streams of excerpts from topic-related articles (trending); personalized user
area (profile); search by topic-related keywords and focused summary. Let us consid-
er each service separately.

Trending provides parallel streams of articles on various topics. The user can get
oriented within the variety of topics, can select the ones of interest to him and explore
them further (see Fig. 4).

Fig. 4. Trending: parallel news streams.

The personalized user area allows the user to mark the articles and summaries that are
of interest to him, to tag them with pre-selected tags and to store them for further
usage. Additionally, the user can see related articles to the selected topic (see Fig. 5).

Fig. 5. Showing similar content to the chosen article.

The user can search information through sequencing of as many keywords and con-
cepts as necessary for constraining the requested topic. Also, an autocomplete search
is added as a facility (see Fig. 6).

Fig. 6. Showing autocomplete options.

The user can get a summary of the topic, customized from related articles and

built on the clustered data. Additionally, he/she receives the most frequent named
entities and keywords in a rated list (see Fig. 7).

Fig. 7. Showing summary and related keywords.

Conclusions

The current work reveals a platform and methodology for development of Adap-
tive Semantic Publishing solution, applied previously in many use cases such as the
BBC Sport web site. A concrete solution is described in terms of methodology and
main software components and is publicly available as demonstration software.

The main user interface components: faceted search, trending, term and word
search as well as channel’s customization are also described with examples. The im-
plementation of the user interfaces for personalization/profile and authoring are main
areas of future work.

References

1. Kiryakov et. al 2003: Atanas Kiryakov, Borislav Popov, Damyan Ognyanoff, Dimitar Ma-
nov, Angel Kirilov, Miroslav Goranov. Semantic Annotation, Indexing, and Retrieval.
2nd International Semantic Web Conference (ISWC2003), 20-23 October 2003, Florida,
USA. LNAI Vol. 2870, pp. 484-499, Springer-Verlag Berlin Heidelberg 2003.

2. Popov et al. 2003: Borislav Popov, Atanas Kiryakov, Angel Kirilov, Dimitar Manov, Da-
myan Ognyanoff, Miroslav Goranov. KIM – Semantic Annotation Platform,

3. 2nd International Semantic Web Conference (ISWC2003), 20-23 October 2003, Florida,
USA. LNAI Vol. 2870, pp. 834-849, Springer-Verlag Berlin Heidelberg 2003.

4. Mendes et. al 2011: Pablo N. Mendes, Max Jakob, Andres Garcia-Silva and Christian Bi-
zer. DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th
International Conference on Semantic Systems, pp. 1-8, ACM, New York, NY, USA.

5. Villazon-Terrazas et. al 2012: Boris Villazon-Terrazas, Daniel Vila-Suero, Daniel Garijo,
Luis M. Vilches-Blazquez, Maria Poveda-Villalon, Jose Mora, Oscar Corcho, and Asun-
cion Gomez-Perez. Publishing Linked Data - There is no One-Size-Fits-All Formula. In:
Proceedings of the European Data Forum 2012, Copenague, Dinamarca.

