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A B S T R A C T

Comprehensive reviews of syndromic surveillance in animal health have highlighted the hindrances to in-
tegration and interoperability among systems when data emerge from different sources. Discussions with syn-
dromic surveillance experts in the fields of animal and public health, as well as computer scientists from the field
of information management, have led to the conclusion that a major component of any solution will involve the
adoption of ontologies. Here we describe the advantages of such an approach, and the steps taken to set up the
Animal Health Surveillance Ontological (AHSO) framework. The AHSO framework is modelled in OWL, the W3C
standard Semantic Web language for representing rich and complex knowledge. We illustrate how the frame-
work can incorporate knowledge directly from domain experts or from data-driven sources, as well as by in-
tegrating existing mature ontological components from related disciplines. The development and extent of AHSO
will be community driven and the final products in the framework will be open-access.

1. Introduction

In 2011, Dórea and collaborators (Dórea et al., 2011) provided a
comprehensive review of syndromic surveillance in animal health,
highlighting ongoing initiatives and opportunities for automated ex-
traction of surveillance information from the rapidly growing quantity
of computerized animal health data. An update of that review in 2016
(Dórea and Vial, 2016) indicated remarkable growth in the field, but
concluded that automated analysis and interpretation of animal health
data was still hindered by a number of limitations. In particular, the
lack of syndromic classification standards was preventing integration
and interoperability among systems using different data sources.

The issue of compatibility becomes increasingly relevant as the
number and type of animal health data sources grows, as do the op-
portunities and pressure for surveillance officials to gather (timely)
evidence from multivariate surveillance systems (Gates et al., 2015;
VanderWaal et al., 2016). Secondary use and interpretation of data
collected in different contexts is only possible if “the integrity and

meaning of the data is preserved throughout the integration process”, a
quoted definition of semantic interoperability (Al Manir et al., 2018).

The adoption of data coding standards, such as the Systematized
Nomenclature of Medicine (SNOMED) (Stearns et al., 2001) can im-
prove interoperability. However, as pointed out by Dixon et al. (2014),
this puts the burden of data reuse solely on the data providers. The
authors suggest, instead, a cooperative approach and maximization of
the value of data collected through modern information management
systems. Mirhaji (2009) listed interoperability and multidisciplinary
reuse as two of four enabling principles to achieve translational public
health informatics. The other two, dynamic adaptability and human-
computer interaction, will require dynamic knowledge models that can
be used by humans and computers to reason with large volumes and
variety of data.

Considering these points, in this paper we outline the development
of an ontological framework to promote semantic interoperability
among health sources to be used for syndromic surveillance. Rather
than coding data, we suggest gathering knowledge from the community
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of domain experts to develop harmonized rules to interpret data, that is,
to translate health data into syndromic representations.

2. Ontologies – what and why?

Ontologies are data models which capture, in a way that is trans-
parent to both humans and digital devices/agents, the knowledge
structures needed to address tasks in a specific context. They therefore
facilitate communication among humans, and provide interoperability
among systems (machines) (Lambrix and Strömbäck, 2007).

Consider any specific knowledge set – for instance the biomedical
knowledge involved in analyzing health records for the purpose of
syndromic surveillance. Experts can agree that a case of abortion in
pigs, or the record of a suspicion of brucellosis, can both be classified as
“reproductive syndrome” events. This simple example involves a
number of concepts: the organism “Brucella suis”, the disease “bru-
cellosis”, the clinical sign “abortion”, among others. It also involves a
number of relationships (underlined), such as: “Brucella suis” is a
“bacterium”, which causes the disease “brucellosis”, which affects the
“reproductive system”, and can have clinical sign “abortion”.

Traditional vocabulary agreements and terminologies provide lists
of predefined concepts. Examples would be a hierarchical list of or-
ganisms and their taxonomic classification (which would contain
Brucella suis as a species of the genus Brucella), or a list of anatomical
entities. Ontologies are machine-interpretable models that include the
semantic relationships among concepts (Noy and McGuinness, 2001).
That is, they can capture both the terminologies and the relationships
across them, storing them in a format that can be used by machines to
reason with the data. Rather than expect data to be “smart”, these
models enable smart applications, which can get the right data to the
right place, and extract information from them (Allemang and Hendler,
2011). We can for instance construct syndromic definitions in real-time,
rather than requiring that data be coded according to specific syn-
dromic standards, and change these definitions as knowledge evolves or
new threats emerge. Whether we define a respiratory syndrome based
on clinical signs, anatomical location of pathological condition, or both,
we can query data which has not been specifically labelled with any
particular syndromic definition. This facilitates the automation of many
tasks, enhances interoperability among systems (including historical/
legacy systems), and increases the amount of information that can be
extracted from raw data.

Previous work has pointed out the limitations of biomedical ter-
minologies which only contain hierarchical relationships, or contain
relationships that are too generic (Ceusters et al., 2003). MeSH terms
(Medical Subject Headings; Lipscomb, 2000), for instance, make no
distinction between the relationships is a and part of (Ferreira et al.,
2012) (an example of this difference in a medical context is: lung is a
organ, which is part of the lower respiratory tract). In SNOMED-CT,
codes are organized into a hierarchy, but the relationships between sub-
classes and the class they specialize does not always hold to the form-
alism of an “is-a” relationship. Under clinical findings, for instance,
there is a code for “doctor left practice”. Under “body structure”, there
is a code for “normal anatomy” (i.e. reasoning with this knowledge
would require us to state that “normal anatomy” is a “body structure”).
Data annotated following terminologies lacking proper semantic logic
can be queried using the concepts in the terminology, but reasoning
with the data to discover new relationships and draw inferences will be
limited by any such inconsistencies in their semantic structure
(Pesquita et al., 2014).

Transforming data into actionable information is the goal of any
data analysis carried out in surveillance. A machine interpretable model
of the knowledge needed to interpret health data for surveillance is an
important step towards allowing computers to process large volume
and variety of data. Humans can then focus on digesting the processed
information and taking decisions, while the timeliness of the overall
process is improved. The benefits of an approach based on a computer-

interpretable knowledge model include:

• It provides a transparent and common understanding of the con-
cepts documented in the ontology, including but not restricted to
syndromes.

• Data sources do not need to be coded according to specific stan-
dards. Institutions may continue to use their own individual coding
practices. Data can then be marked up (often in a semi-automatic
manner) to allow for querying via the ontology.

• Since the data does not need to be coded into specific syndromes,
the parameters of the search are defined based on current needs.
Today it may be syndromes, but tomorrow it could be a search fo-
cused on specific clinical signs known to be associated with an
emerging disease.

• It can easily accommodate knowledge change or new knowledge,
which tend to be especially important in the case of emerging dis-
ease detection.

• It allows information to be queried based on relationships between
concepts, for instance “all diseases which can cause clinical sign A”,
or “all clinical signs associated with disease X”.

• Knowledge reuse – not only among syndromic surveillance in-
itiatives, but especially by incorporating existing knowledge already
contained in other ontologies.

3. Animal Health Surveillance Ontological framework (AHSO)

3.1. Animal health surveillance context

Ferreira and collaborators have pointed out the complexity and
multidisciplinary nature of epidemiology, highlighting the need for an
integrative framework that can only be addressed by enabling semantic
technologies (Ferreira et al., 2013 2012; Pesquita et al., 2014). Sur-
veillance in general, and syndromic surveillance in particular, face the
additional challenge of secondary use of data. Information for decision
making must be extracted from data that were collected for alternative
purposes, including clinical records, laboratory findings or slaughter
inspection data.

Digitalized data about an animal or herd can be collected along the
entire cycle of animal production, even in the absence of disease events,
as summarized in Fig. 1-B. Health care encounters can generate addi-
tional records, such as clinical and laboratory data. As schematized in
Fig. 1-A, health events are not directly modelled in any of the sources of
data available. Surveillance makes use of recorded observations which
can be, often, related to the same underlying health event. Health
events can be a disease occurrence or a regular animal production cycle
observation, such as birth or product yield (e.g. milk, weight gain, etc).
To be able to interpret these observations, knowledge models capable of
automated information extraction need to account for the structure of
animal production, the nature of the observation context and data being
recorded, in addition to the relevant health information (Fig. 1-C).

Modelling the knowledge needed to interpret information from each
of these data sources (the various observation contexts illustrated in
Fig. 1-C) requires that concepts from a multitude of disciplines and
specific subject fields be addressed, in addition to establishing re-
lationships among these concepts and contexts.

Ontologies provide the ideal framework for building knowledge
models that are interoperable and reusable, as demonstrated by the
growth and success of the Open Biomedical Ontologies (OBO) Foundry
initiative (Smith et al., 2007). We are addressing this task by reviewing
and reusing available knowledge models, and building a community of
experts to address knowledge gaps and create novel conceptual map-
pings.

3.2. Modular development: from data to a data model

AHSO has been designed as an ontological framework, rather than a
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single ontology. A key component of AHSO will be the provision of a
flexible structure that can be utilised to connect the various pieces of
existing knowledge required to produce actionable information for
surveillance.

In its core, the framework provides a structure to model the con-
textual information that comes with every observation of a health
event: information about the target population, such as population unit
(herd or animal, for instance), animal species, breed, age and sex;
geographical information; information about the observer; about the
registration or context in which an observation was made. The latter is
important for instance to record whether a data observation was trig-
gered by a health event (such as a visit to the veterinarian), or was part
of a routine data recording event, as would typically be the case for
production data. It also supports tasks such as: identifying mandatory
data recordings (e.g. cattle movement in Europe), inferring the tech-
nical level of the observer (e.g. veterinarian versus data owner), and
determining the specificity level of the health information (e.g. la-
boratory results versus clinical finding or presenting complaint).

The initial core framework has been modelled in OWL (Web
Ontology Language), using Protégé 4.1 (https://protege.stanford.edu/)
(Musen, 2005).

Given the magnitude and complexity of the task, we have chosen to
develop the ontology using a data-driven approach. One prototypic data
source is addressed at a time, and new concepts are added to the

ontological framework using a combination of top-down structuring,
and bottom-up generation of concepts from data. For example, mod-
elling diagnostic codes used by pathologists performing necropsies re-
quires, at a minimum, that the concept of a pathological lesion (such as,
for instance, inflammation) be modelled and that it be possible to define
an anatomical location (say, the lungs). As we further inspect data, we
may find the need to also model concepts that allow for the identifi-
cation of pathogens responsible for specific pathological conditions. In
the OWL language, concepts are modelled as “classes” which can have
“sub-classes”. The classes required are added to the framework – see for
instance the green boxes in Fig. 1-C. The next step is then to search for
existing ontologies that may already contain the classes, or have at least
defined vocabularies and terminologies. In the absence of such, the
novel classes are generated from data source examples, using cycles of
automated learning from data and expert review. Methods are illu-
strated for an example scenario below.

Addressing each specific data source results in functional modules
which can already be used to automate surveillance information ex-
traction in specific contexts. As more modules are added, the ontology
will become useful in a greater number of contexts.

The addition of new modules builds on existing knowledge already
available within the ontology, and many of the biological concepts can
be reused across several modules; for instance, the concept of “anato-
mical location”.

Fig. 1. Animal health surveillance information context. A) The AHSO framework makes the specific assumption that the data to be processed are composed of
(potentially multiple) recordings of observations made about an underlying health event, which is not directly modelled. B) These observations can be recorded in
different contexts, as part of the routine animal production cycle, or specifically triggered by health events. C) The AHSO framework has a core that tries to capture
the structure of the animal production (blue boxes). Modeling the health information will require a number of knowledge models, for different observation contexts,
which the framework will connect.
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3.3. Reusing knowledge

Ferreira et al. (2012) conducted a review of sources for modelling
epidemiological knowledge, and concluded that no existing ontological
framework provided the necessary characteristics to enable annotation
of epidemiological data. However, the authors identified a number of
sources of knowledge that contain important concepts that could be
reused, such as SNOMED (Stearns et al., 2001), the Unified Medical
Language System, UMLS (Bodenreider, 2004) and Medical Subject
Headings, MeSH (Lipscomb, 2000). The authors also noted a number of
biomedical ontologies which can model specific concepts within the
epidemiological framework, such as ontologies covering diseases,
clinical signs, pathogens as well as a number of anatomical ontologies.
Their results support our approach of establishing a framework that is
designed to connect existing resources.

We reviewed all biomedical ontologies listed in the OBO Foundry
(http://www.obofoundry.org/) and the BioPortal repository of biome-
dical ontologies (http://bioportal.bioontology.org/) to identify ontolo-
gies that could potentially contribute to the AHSO framework. In order
to identify terminology resources which are already in use by the sur-
veillance and scientific community, and could be adapted into an on-
tological framework, we continuously asked for feedback from these
communities, at relevant conferences and within our project networks.

We identified 42 resources related to the health surveillance domain
(see Supplementary Material 1). From those, 24 were considered re-
levant to contribute, in some manner, to the AHSO framework, and they
are listed in Table 1. Four are ontologies which contain useful concepts,
but do not appear to be under active development, and therefore we
would need to import their concepts and review the associated struc-
ture. Another 11 resources contain useful concepts, but are terminolo-
gies or vocabularies not constructed using a semantic framework, or are
not available in OWL, and therefore cannot be readily imported into the
AHSO framework. Nine ontologies available in OWL could contribute
directly to the framework, and are highlighted in green on Table 1.
Public tools exist which allow specific pieces (or even entire) ontologies
to be imported for reuse. We highlight the web-based tool Ontofox
(http://ontofox.hegroup.org) (Xiang et al., 2010). Reuse of existing
ontologies is exemplified further below using the case of Uberon (a
comprehensive animal anatomy ontology) (Mungall et al., 2012).

It is also worth highlighting GenEpiO (Genomic Epidemiology
Ontology) (Griffiths et al., 2017), a recent initiative also focused on
surveillance. As in the case of AHSO, GenEpiO is intended to provide a
framework to integrate existing ontologies, and to develop new mod-
ules where needed. GenEpiO is developed primarily from the human
surveillance perspective, focused on laboratory analysis (in particular
next generation sequencing) and case reporting. In contrast, AHSO was
motivated from the context of syndromic surveillance, and it is there-
fore primarily focused on secondary use of data. These two frameworks
have the potential to be highly complementary, and as such AHSO will
initially focus on modules not covered by GenEpiO, to avoid duplication
of effort, and will explore opportunities for collaboration to allow
combination of modules to/from GenEpiO at a later stage.

3.4. Building modules from data and expert elicitation

Not all required knowledge will be available in existing ontologies,
nor will all relationships important to the process of animal health
surveillance be adequately captured. When classes cannot be readily
imported from other ontologies, they are created reviewing existing
terminologies and coding the relevant concepts in OWL, within the
AHSO framework. Ontology learning could also be employed in the
future, by which new classes are created from available data through
semi-automated processes (Buitelaar et al., 2005; Cimino, 1999; Donald
et al., 2018). In either case, concepts added to the ontology are sub-
jected to community review, as detailed in the section below.

We anticipate field experts to be an important source of knowledge

for the ontology; however, no ontological design knowledge will be
required of those making such contributions. Tools exist to collect in-
formation from experts in simple formats, such as Excel spreadsheets,
from which the knowledge can be integrated into the ontology
(Courtot, 2014). Project resources for community engagement are de-
tailed further below.

4. Development of the framework core and content growth

To grow the ontology in modules, and also to create a workflow that
does not rely on data sharing, we follow the guidelines of the eXtreme
Design method (XD) (Blomqvist et al., 2016). Each iteration within the
XD method is triggered by small specific examples of data which need
to be modelled, and the process is focused on a test-driven and colla-
borative approach. In particular, the method is based on the use of
ontology design patterns (ODP), which are “reusable modelling solu-
tions that encode modelling best practices (Presutti et al., 2012)”. In
other words, each cycle of development aims to solve a very specific
modelling problem, and a catalogue of design patterns is searched to
look for non-domain-specific modelling solutions which may be reused
or adapted. An extended version of the XD method (Dragisic et al.,
2015) also supports the integration of pieces of ontologies as well as the
completion and debugging of the ontologies before and after integra-
tion with tools such as OOPS! (Poveda-Villalón et al., 2014) and Re-
pOSE (Lambrix and Ivanova, 2013).

Based on a data/information inventory from interested partners, we
have gathered documentation of 27 animal health data sources from 8
countries. Data-sharing is not always expected to be possible, but this
should not hinder ontological development. The XD protocol accounts
for development based on “requirement stories”, which are narrative
examples of the events contained in a specific dataset, and therefore
examples of the events that need to be modelled. Data owners can
provide either a data sample or a user requirement story, and would
therefore not be required to divulge potentially private data, nor would
they require any understanding of the ontology building methodology.

Below is an example of a requirement story. It is meant to be a
narrative version of a type of event that would be registered in a cattle
movement registry (still-birth), in substitution to sharing data from
such a registry:

Farmer Nilsson, during his morning visit of his stables in Skåne on the
10th of June 2015, notices that his cow Daisy gave birth during the night
to a calf that was dead-at-birth. Farmer Nilsson notifies the abortion to
the electronic cattle register.

The requirement story informs questions around the types of con-
cepts that will typically be needed to model the observation. In this
example we would need to model the structure of animal production,
such as animal clustering in herds, herd location, and ownership; as
well as the fact that health information can be recorded at the animal or
herd level. This story was chosen to drive structuring of the framework
core, because it is focused not on the specific health information, but on
the structure of animal production, animal ownership, and event re-
porting.

In traditional data recording, we often think of data as a two-di-
mensional spreadsheet. The concepts in the story above, such as the
animal, the date and the occurrence, would be reported in specific
columns. While simple, this format of data recording limits data reuse
and creates common problems for data entry when a simple 2D format
is inadequate to model the information requirements.

In the representation languages of the Semantic Web, such as OWL,
each information point is considered individually as a triple of subject,
predicate and object (Allemang and Hendler, 2011), for example: A
(subject) P (predicate) B (object); where A and B can be concepts (e.g.,
cow, representing all cows) or instances (real world objects, e.g., Daisy,
representing a particular cow). For instance, we can represent “cow is_a
animal” and “Daisy has_birthdate 2011-03-23″.
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Table 1
Inventory of ontologies and terminology resources that could be useful in the construction of the AHSO framework. White rows are ontological resources with high
potential for direct reuse: the concepts are valuable for AHSO, available publicly and in the OWL language, and the ontology seems to be active. Rows shadowed gray
are resources that may offer concepts for reuse, but they would need to either be coded into an ontological framework within the AHSO project (terminologies and
vocabularies not available as an ontology) or updated within the project (inactive ontologies).

(continued on next page)
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Our job when structuring the ontology is to model concepts in our
knowledge domain as classes, where instances within these classes re-
present individual objects in the world that we wish to represent. For

instance, Daisy, in the example above, may be an instance of the class
“cow”; which could itself be a sub-class of the class “animal”. We can
then define the properties (which we have been calling the

Table 1 (continued)

F.C. Dórea, et al. Preventive Veterinary Medicine 166 (2019) 39–48

44



relationships between concepts) that connect different classes in the
world, by specifying their specific domain, range, and cardinality. For
instance, we may wish to state that the “person” class can be linked to
the “animal” class by the property “is owner of”. We specify that the
property has domain “person”, and range “animal”. We could actually
set the range to any “animal population unit”, and state that both
“animal” and “herd” are (“is-a”) “animal population unit”. We then can
set the cardinality – whether an animal owner must have at least one
animal, and whether it can have more than one. Properties that link
instances of two classes, such as this one, are called object properties.
Data properties link an object to a value, for instance the observation
“occurred on date”.

The small requirement story above was subjected to several rounds
of discussion among the authors, to model the structure of animal
production in a way that would be robust enough to accommodate
many different data sources. We needed to account for different formats
of data recording, and various limitations that can be encountered, such
as missing information regarding animals. It was agreed that it may
often be difficult to identify the individual population units associated
with each health event observation, and that much of the information
gathered will be uniquely identified only at the level of the observation
(unique observations in a dataset). This prompted the conclusion that
all pieces of information must be linked to the observation ID, which
resulted in the structure shown in Fig. 2-A. An example of how this
model would inform the conversion of data into triples, using the re-
quirement story, is also shown.

Additional properties linking the other modelled classes are shown
in Fig. 2-B. Together, these figures show the entire structure of the
current framework, that might be required to fulfil the relatively simple
requirement story, though this structure is still missing the actual health
information recording for the event. The model has grown to include
concepts considered essential to model the basic animal production
structure, which were not exemplified in the original requirement story,
such as animal breed and the production type of the herd, as shown in
Fig. 2.

In Fig. 2-A and -B, the non-specified relationships drawn as a

hierarchical scheme (animal and herd to population unit) must be in-
terpreted as an “is a” type relationship (an animal is a population unit).
Each of the round-cornered boxes in Fig. 2 represents a top class that
now needs to be specialized with subclasses representing the various
concepts that need to be modelled, with varied depth of the hierarchy
within each one. For instance the class “species” can be specialized
using a complex taxonomy of animal species. For production type, we
could find no ontology that addressed this specific concept, but many
different standards relating to animal production can be found. We
have thus chosen to model the concept using a data-driven approach,
where new production types will be added as needed, to cover the
modelling needs of each new data source (or requirement story) being
addressed within each iteration of the AHSO development process.

By this stage of development, we have a framework of animal
production, but as yet no model of health information. To test the
process of specializing the classes learning from data, we explored a
dataset of mandatory cattle movement reporting in Sweden. For this
new iteration, we detailed the class “observation” with the following
sub-classes: birth, death, declared movement, slaughter, and stillbirth.
These are types of observations. Note for instance that stillbirth here
serves as an observation trigger, rather than a clinical sign recorded by
a veterinarian. This explicitly models the fact that the observation was a
mandatory observation reported by a farmer; that is, the stillbirth was
the trigger for the event. Specific additional classes will be needed later
to model the observation of stillbirth as a clinical sign, by a veter-
inarian.

As a first step to tackling data containing diagnostic information, we
considered the list of codes used in the pathology department of the
Swedish National Veterinary Institute when annotating necropsy diag-
nostics (SVA-pathology dataset). This was chosen because the codes
were relatively straightforward, often being in the form of “anatomical
location” + “lesion type”; for example, “liver abscess”.

Explicitly modelling such a set of codes around these two specific
concepts facilitates data reuse of all the knowledge that has been coded
around these concepts. Consider the specific example of pathology
codes that are related to the respiratory system. In the SVA-pathology

Fig. 2. AHSO core classes and relationships. Concepts are shown in round-cornered boxes, and relationships as arrows. Panel A shows relationships directly linked to
the class “Observation” (and sub-classes); panel B shows other relationships. The requirement story exemplified in the text is displayed, which instances in that story
shown in red. Relationships from both panels are exemplified using those example instances.
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dataset we found the following anatomical locations mentioned among
the various diagnostic codes: pleura and thorax; sinuses and air sacs;
trachea and bronchus; nose; and lungs. Fig. 3 shows a scheme of the
many concepts linked to the anatomical entities “lungs”, “bronchus”
and “trachea” in the Uberon ontology (Mungall et al., 2012). If we map
all diagnostic codes involving lungs to the specific “lungs” class in
Uberon (for instance explicitly saying that a code for pneumonia “ha-
s_anatomical_location” lungs), a query would be able to return ob-
servations of “pneumonia” automatically when a user requests any le-
sions in the lower respiratory tract.

Consider this list of specific diagnostic codes relating to the re-
spiratory system in the SVA-pathology dataset:

1) Catarrhal pneumonia
2) Purulent pneumonia
3) Mycotic pneumonia
4) Respiratory syncytial cell pneumonia (RSV)
5) Acute lung emphysema
6) Normal lungs

As we inspect these codes in further detail, we realise that modelling
the concepts of a lesion, or a “pathological process” and an “anatomical
entity” may not be enough. “Normal lungs”, for instance, have no pa-
thological process. Yet, we need to model the concept of a normal lung,
as observing no lesion is different from not making an observation in
the lungs. One solution is to consider pathological codes as belonging to
a broader category of “health findings”, and model the facts that health
findings can have an observed “morphological description” (for in-
stance normal morphology), a “pathological process” (for instance in-
flammation), and a specific “anatomical location”.

The class “anatomical entity” was created to represent the latter,
and imported from the Uberon ontology. Uberon is an extensive on-
tology that also includes anatomical details of invertebrates, reptiles
and amphibians. To take advantage of the relevant complexity in
Uberon, without importing a set larger than necessary, we created a
subset of Uberon using the following steps: classes in Uberon

representing each anatomical location found in the SVA-pathology
dataset were listed; OntoFox was then used to generate a subset of
Uberon that would contain the classes in this list, using the option
“includeAllAxioms”. This option ensures that classes are imported with
all of their annotations (definition, comments, references to other
ontologies, synonyms, translation to other languages, etc), together
with all properties involving these classes, and the classes linked to
them through such properties. This results, for instance, in importing all
of the classes and properties depicted in Fig. 3, when OntoFox was
instructed to import only the three classes highlighted in thicker outline
(“lung”, “bronchus” and “trachea”).

Looking at terms 3 and 4 in the list above, we realise that it is now
necessary to create classes for organisms and the specific diseases
caused by them. Term 5, “acute lung emphysema”, highlights the need
to model various qualifiers for the pathological conditions, such as
acute and chronic. Modelling these concepts and classes are part of the
on-going ASHO design process.

In addition to integrating general and widely-used ontologies, such
as Uberon, within the AHSO framework we also wish to explore the use
of controlled vocabularies that specifically target the veterinary con-
text. Our initial focus will be the Veterinary Nomenclature (VeNom)
clinical terminology (http://www.venomcoding.org). These codes are
being considered in parallel to the pathology codes, to ensure that we
can model pathological conditions without confusing these with the
concept of observational context. That is, some of the findings from
necropsy cases could also be findings reported by clinicians, based on
simple clinical evaluation or further tests. Although a veterinarian can
give a diagnosis of “pneumonia”, this should not be listed in the on-
tology as a “clinical finding” concept – pneumonia is the pathology, and
the observation context is clinical finding. Whether a health finding has
been reported by an animal owner (presenting complaint), a physician
(clinical finding) or a pathologist during necropsy, is a matter of the
observation context. Codes for pneumonia should not be repeated, for
instance, under different classes for each of these contexts.

Examples such as this prompted us to separate what was being
modelled simply as “observation”, into “observation” and “observation

Fig. 3. UBERON (anatomy ontology) classes linked to the anatomical entities “lungs”, “bronchus” and “trachea”. Blue arrows are to be understood as IS-A re-
lationships.
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context”. Under the “observation context” of a veterinary visit, for in-
stance, there could be observations of “clinical history”, “presenting
complaint”, “physical examination”, “clinical finding”, among others.
This provides an example of how complexity may be gradually added to
the ontology as we address a more complete set of data examples.

5. Community involvement

We are developing AHSO aiming for compliance with the OBO
Foundry’s (evolving) set of principles, which include open use, colla-
borative development, non-overlapping and strictly-scoped content,
and common syntax and relations. AHSO is available publicly in the
BioPortal (http://bioportal.bioontology.org/ontologies/AHSO).

To ensure open development, we have created four main Web re-
sources:

• Besides being accessible in the BioPortal, the latest ontology release
can also be found at http://datadrivensurveillance.org/ahso. The
page is managed with content negotiation, so that people visiting
this address will find a webpage with information regarding the
project. However, the URL can also be accessed directly using on-
tology programming software (such as Protégé) to interact directly
with the “.owl” ontology file.

• GitHub (https://github.com/SVA-SE/AHSO) is being used to pub-
licly store ontology source files, which allows any interested parties
to: see and download the current version of the ontology; suggest
improvements and corrections; submit requirement stories or other
issues that need to be addressed in future development stages; access
a wiki with relevant references regarding ontologies in general, and
the project in particular.

• A discussion forum (Google group) has been created to establish
conversations with a community of users particularly interested in
influencing ontology development. Please send an e-mail to the first
author if you are interested in joining this group, or visit https://
groups.google.com/forum/#!forum/ahsontology.

• Regular webinars are planned to expose the developed content to
members of the surveillance and scientific community, and gather
objective feedback. Those interested can find information on http://
datadrivensurveillance.org/ontology/.

Any interested members of the health surveillance community are
encouraged to become engaged through interacting using any and all of
these resources. As explained, no level of ontological knowledge will be
needed to be an active member of the community, as the ontology
curation group will oversee the task of translating the community input
into iterations of ontology development, as well as translating the re-
sults back to the community.

6. Discussion and conclusions

We have discussed the development of an Animal Health
Surveillance Ontological framework (AHSO), and presented a core
structure modelling animal production. Active development is in place
to expand this framework to model health observations from a varied
number of contexts. Development is driven mostly from data examples,
and content is added to the ontology by reusing other ontologies, re-
using concepts from existing terminologies, and relying on surveillance
and research community involvement to review and update knowledge.

Modelling the biological knowledge associated with animal health
observations will support the automation of tasks related to translating
those data into actionable information for surveillance (Awaysheh
et al., 2017). In the case of syndromic surveillance, in particular, this
should promote agreement regarding the definitions of syndromes; and
allow these definitions to be used by machines across systems (re-
gardless of the varied coding practices and languages used in different
institutions), promoting interoperability and also knowledge sharing.

Moreover, the model will facilitate simple and swift adjustment to ac-
commodate new knowledge or the need to respond to new threats.

The AHSO framework is built under the assumption that we are not
modelling actual health events, but rather modelling observations made
about or relating to these events at specific moments in time. We may,
for instance, need to identify observations related to the same animal or
same herd, or observations connected to the same event. However,
disease progression over time is not specifically modelled. The goal of
extracting information relevant to the purpose of animal health sur-
veillance is the main driver of the knowledge modelling process, though
we will attempt to reflect all of the key interests of those contributing
data and knowledge.

Chapman and collaborators (Chapman et al., 2010) highlighted the
fact that while much of the biomedical knowledge necessary for sur-
veillance is coded into ontologies within specific domains, such as
ontologies of infectious diseases or anatomy, there existed no ontology
to support syndromic classification for surveillance. The group then
attempted to gather consensus definitions of syndromes within public
health into an ontology, the syndromic surveillance ontology (SSO)
(Okhmatovskaia et al., 2009), later extended into ESSO (Extended SSO)
(Conway et al., 2011; Crubézy et al., 2005). Ultimately, the initiative
did not move forward (personal communication with Wendy Chapman
and Michael Conway) due to a lack of uptake within surveillance ap-
plications, and a lack of community involvement. In the AHSO frame-
work, we have invested in a number of formats in an attempt to secure
community engagement. We are planning yearly workshops to inform
surveillance researchers, as well as regular webinars to engage com-
munity expertise. Those will be advertised in the project public pages
listed above. Community involvement in its development and use has
been pointed out as one of the key reasons for the success of the Gene
Ontology (Bada et al., 2004).

Developers of other ontological frameworks have also emphasized
the need to provide tools for ontology development, curation and
adoption (Dhombres et al., 2017; Griffiths et al., 2017; Maurice et al.,
2017), which are required to ensure ontology uptake. Once used in
practice, the framework will facilitate the annotation of data using the
ontological model (prospective); and enable mining of historical data
empowered by the ontology (retrospective) (Chapman et al., 2011;
Furrer et al., 2015). That is, information retrieval, integration and ex-
traction will be empowered by complex semantic analysis based on the
semantic relationships coded within the ontological model (Ferreira
et al., 2012).

While highlighting the need to provide tools that can support the
use of the ontology in practice, we should note that the adoption of
semantic web tools does not require open access to the underlying data;
rather they facilitate information extraction for those who have access
to such data, and to promote interoperability (Ferreira et al., 2013). If
tools are available which can query health data for syndromic classi-
fication, for instance, it is these tools that can be shared, rather than the
data itself. Results of data analysis will, however, be comparable among
systems from different institutions. Moreover, because the tools will be
applicable to a larger range of datasets, without relying on the data
being coded using the same standards, the tools for data analysis can be
improved as a community effort. A community of syndromic surveil-
lance researchers and practitioners can share knowledge and efforts to
advance tools, which they then apply to their respective data sets pri-
vately.

The development of any ontology is a long-term task, but the
growing number of biomedical ontologies and open access tools for
ontology construction and management allow for the reuse of both
knowledge and modelling solutions. The development of AHSO will
build on achievements evident from the successful use of other ontol-
ogies. The methodology proposed is problem-oriented, collaborative,
and will continue to promote community involvement.
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