
Statistical Knowledge Patterns for Characterising

Linked Data

Eva Blomqvist1, Ziqi Zhang2, Anna Lisa Gentile2,
Isabelle Augenstein2, and Fabio Ciravegna2

1 Department of Computer and Information Science, Linköping University, Sweden
2 Department of Computer Science, University of She�eld, UK

eva.blomqvist@liu.se,

{z.zhang,a.l.gentile,i.augenstein,f.ciravegna}@dcs.shef.ac.uk

Abstract. Knowledge Patterns (KPs), and even more specifically Ontology De-
sign Patterns (ODPs), are no longer only generated in a top-down fashion, rather
patterns are being extracted in a bottom-up fashion from online ontologies and
data sources, such as Linked Data. These KPs can assist in tasks such as mak-
ing sense of datasets and formulating queries over data, including performing
query expansion to manage the diversity of properties used in datasets. This paper
presents an extraction method for generating what we call Statistical Knowledge
Patterns (SKPs) from Linked Data. SKPs describe and characterise classes from
any reference ontology, by presenting their most frequent properties and property
characteristics, all based on analysis of the underlying data. SKPs are stored as
small OWL ontologies but can be continuously updated in a completely automated
fashion. In the paper we exemplify this method by applying it to the classes of the
DBpedia ontology, and in particular we evaluate our method for extracting range
axioms from data. Results show that by setting appropriate thresholds, SKPs can
be generated that cover (i.e. allow us to query, using the properties of the SKP)
over 94% of the triples about individuals of that class, while only needing to care
about 27% of the total number of distinct properties that are used in the data.

1 Introduction

Originally, the notion of Ontology Design Patterns (ODPs) referred only to a top-
down view on modelling best practices, and constituted manually designed patterns
representing those best practices. More recently, however, Knowledge Patterns (KPs), as a
generalisation of ODPs and other patterns, have also been created in a bottom-up fashion,
i.e., representing the way information on the Web or Linked Data is actually represented,
rather than how it “should” be represented according to some best practice. This paper
follows the more recent tradition and presents what we call Statistical Knowledge
Patterns (SKPs), which aim to characterise concepts that exist within Linked Data
based on a statistical analysis of those data. Since the SKPs are wholly based on the
characteristics of data itself, their construction is a completely automatic process, which
means that they can be kept up-to-date with respect to data without any manual e↵ort.

In a related paper [15] we have presented the details of the initial steps of the SKP
generation method, with specific focus on discovering relations that are (to some extent)

synonymous, and evaluating that part of the extraction in the context of query expansion.
In this paper we instead focus on the pattern extraction method as a whole, and the
resulting resource, i.e., the pattern catalogue, and in particular discuss the parts of the
method not covered by the previous paper. In Section 2 we first present some related work
on ODP generation from di↵erent sources. We then briefly present our SKP extraction
method in Section 3, and exemplify the resulting SKPs in Section 4. In Section 5 we show
through some empirical findings that the SKPs fulfill their purpose, i.e., characterise and
provide access to the underlying data, but in particular we study and evaluate the range
extraction method. Finally, in Section 6 we discuss some general implications of this
research, and in Section 7 we provide conclusions and outline future work.

2 Related Work

Ontology Design Patterns (ODPs) were originally conceived for the task of ontology
engineering, and in particular were intended to encode general best practices and mod-
elling principles in a top-down fashion [5,6]. Since then several kinds of patterns have
been proposed, such as Content Ontology Design Patterns (CPs) [7]. CPs focus on
domain-specific modelling problems and can be represented as small, reusable pieces of
ontologies. CPs are similar to the SKPs presented in this paper, in the way that they also
represent concepts with their most distinguishing characteristics. Unlike SKPs however,
CPs are usually created manually, and since they are abstract patterns intended for being
used as “templates” in ontology engineering they usually lack any direct connection to
data and cannot directly (without manual specialisation) be used for querying Linked
Data. Since CPs represent an abstract top-down view, they additionally do not consider
aspects such as diversity and synonymy among properties, which is one of the benefits
that our proposed SKPs display.

The approach closest to our SKPs is the Encyclopedic Knowledge Patterns (EKPs)
[11], which were intended mainly for use in an exploratory search application [9,10].
The EKP generation process exploits statistics about link-usage from Wikipedia3 to
determine which relations are the most representative for each concept. The assumption
is that if instances of a target concept A frequently link to instances of concept B, then
concept B is an important concept for describing instances of A. This information is
then formalised and stored as small OWL ontologies (the EKPs), each having one main
class as their focus and all its significantly frequent relations (based on the wiki-link
counts) to other classes represented as object properties of the main class. The main
purpose of these EKPs is presenting relevant information to a human user, e.g., the
ability to filter out irrelevant data when presenting information about DBpedia entities,
while the ability to query for data is not a primary concern. This is reflected by the fact
that EKPs mainly contain abstractions of relevant properties, such as “linksToClassB”,
where linksToClassB expresses the fact that the pages in Wikipedia representing
instances of concept A (the class in focus of the EKP) commonly links to pages in
Wikipedia representing instances of concept B (links which could in many cases in turn
be represented by various DBpedia properties, but not necessarily). This is however
not su�cient for our case, since our main goal is to use our SKPs to characterise

3 http://en.wikipedia.org

and give e↵ective access to actual data. In such a use case one needs to be able to
distinguish between, for instance, di↵erent properties that link instances of the same
classes but have di↵erent meaning (e.g., birth place and death place, which both link a
person to a location). Hence, we propose an extension of the existing EKPs, which also
include a su�cient coverage of actual properties of the underlying datasets, together
with additional features we attach to each of those properties, such as range axioms.

There exist other approaches aiming to statistically characterise datasets, such as the
one by Basse et al. [3], which also exploits statistics from a specific dataset to produce
topic frames of that dataset. In contrast to Nuzzolese et al. [11] they do not produce a
pattern for each class but rather generate clusters of classes (up to 15 classes each) that
reflect main topics of the dataset. For giving access to data (querying), however, the main
focus needs to be on the properties of the classes, rather than the classes themselves.
Also Atencia et al. [1] perform statistical analyses on datasets, but for the purpose of
detecting key properties (i.e., to be expressed through the OWL2 notion of “key”) rather
than characterising the complete property landscape of a class. A related approach is also
the LODStat framework [2], which has the broader scope of extracting an publishing
many kinds of interesting statistics about datasets. While that framework also takes
into account statistics on property usage, and declaratively represents the statistics, the
approach is focused on per-dataset statistics, rather than per-class, and does not induce
new information (e.g., synonymity or new range axioms) from the extracted statistics.

Looking at patterns from a more general perspective, however, Knowledge Patterns
(KPs) have been defined as general templates or structures used to organise knowledge
[8], which can encompass both the “traditional” view of ODPs and more recent e↵ort
such as EKPs and our SKPs. In the Semantic Web scenario they are used both for
constructing ontologies [4,7,13] and for using and exploring them [3,9,10,11,12]. Presutti
et al. [12] explore the challenges of capturing Knowledge Patterns in a scenario where
explicit knowledge of datasets is neither su�cient nor straight-forward, which is the case
for Linked Data. They propose a dataset analysis approach to capture KPs and support
datasets querying. Our SKPs expand on this work as not only do we capture direct
statistical information from the underlying datasets, but also further characterise relevant
properties with additional features (e.g., synonymous properties and range axioms),
which is highly beneficial for querying the datasets.

3 SKP Construction Method

A Statistical Knowledge Pattern (SKP) is an ontological view over a class that sum-
marises the usage of the class (hereafter called the main class of the SKP) in data. The
main class of an SKP can be seen as the “focus”, or the context, of that SKP, hence,
each SKP has exactly one main class. The term “statistical” refers to that the pattern
is constructed based on statistical measures on data. Each SKP contains: (1) properties
and axioms involving the main class that relates it to other classes, derived from a
reference ontology or from a pre-existing EKP characterising that class; (2) properties
and axioms involving the main class that are not formally expressed in the reference
ontology, but which can be induced from statistical measures on statements published as

Linked Data. The information from (1) and (2) is consolidated in the form of an SKP,
which is represented and stored as a small OWL ontology.

More formally, let the main class of an SKP be cmain, which is a class of the se-
lected reference ontology – in fact, this is the only thing we need from the reference
ontology, hence, the ontology can simply consist of one or more class URIs if noth-
ing else is available, as long as there is some data using that class. The main class is
the starting point for extracting an SKP, hence, it is selected before the construction
process begins, and normally one would build SKPs for as many of the classes in the
reference ontology as possible (or for the classes that are of specific importance in some
use case). The SKP of cmain contains the set of properties from the reference ontology
Pont = {pont1 . . . pont�n} and the set of properties from any pre-existing EKP of the main
class Pekp = {pekp1 . . . pekp�m}, with the requirement that only properties that are actually
used in data (or have relations to properties that are actually used in data, see further
below, are included). A property from the reference ontology or an EKP, pi may have a
set of “synonymous properties” SPi induced from data. The decision on synonymity of
properties is based on a synonymity measure (described in detail in [14]), hence, almost
none of the properties are actual synonyms (i.e., with a maximum score) but rather
represent properties that are to some extent exchangeable in the particular context of the
main class. While we will continue to use the term “synonymous properties” throughout
this paper, the reader should bear in mind that these are rarely perfect synonyms, but
rather “close matches” (as we shall see later, this is also represented in the resulting
model through skos:closeMatch rather than equivalence). To decide which properties,
or synonym clusters of properties, should be selected to be included in the SKP, their
relevance is measured based on the frequency of usage of the properties in available
Linked Data.

In practice, since SKPs are an extension of EKPs [11], if an EKP already exists it can
be used as an abstract frame for the concrete properties and axioms that are added through
our SKP generation method. In particular, we use the abstract properties introduced by
EKPs (i.e., “links to class X”) in order to group properties with range axioms overlapping
the general EKP property, to give the SKP a more intuitive structure and improve human
understandability of the pattern. The properties are thereby organised in two hierarchical
layers, through the rdfs:subPropertyOf relation, where, in particular, domain and
range restrictions of properties are used to induce sub property relations between the very
general properties of a pre-existing EKP and the properties retrieved from data. Note
that we are, at this point, not attempting to induce a sub-property structure among the
properties found in data, hence, we only group them under the general EKP properties.
A more elaborate structuring of the extracted properties is still part of future work.

The most important characteristics of SKPs and their generation are:

– SKPs encode class-specific characterisations of properties that are commonly used
with individuals of that class, i.e., synonymous properties, ranges, etc. are all specific
to the use of the properties with instances of that class, which provides an interesting
and detailed account of property meanings and usage in Linked Data. For example,
the same property may be present in several SKPs, but with distinct range axioms,
and as part of separate property synonym clusters, depending on that the property is
used di↵erently with instances of the respective main class of each SKP.

– Synonymous (i.e., to some extent interchangeable) properties are identified, and in-
formation about them are stored to be reused; one possible usage is query expansion,
when querying the data underlying the SKP. See [15] for details.

– Ranges are identified for properties that have no range in the reference ontology,
hence, showing the actual use of the property in data, which can be used to restrict
property selection when building a query or to filter out unwanted data at query-time.

– The method for SKP generation is fully automated, whereby SKPs can be re-
generated as soon as data changes, without manual e↵ort, but SKPs are in the
meantime used as stored resources, for increased usage e�ciency.

The SKP generation process consists of three key components: (1) discovering and
grouping synonymous properties of the main class, (2) selecting properties (and groups
of properties) to include in the SKP, and (3) collecting additional axioms describing
the selected properties, such as rdfs:subPropertyOf relations and domain and range
restrictions, and creating an ontological representation of the SKP.

Synonymity of Properties To create an SKP we identify the properties used for the SKP
main class based on data and measure their synonymity. In [14] we have proposed a
novel synonymity measure of properties. The overall process is:

1. Query the dataset for all the instances (IND) of the main class; query the dataset
for all triples having any i 2 IND in subject position (we denote this triple set TS)
and additionally collect the types (through querying for rdf:type statements or for a
datatype) of the objects of all those triples.

2. For each property used in TS , collect the subset of IND having the property as
predicate, INDprop, and collect the corresponding objects of each subject in INDprop

– the subject-object pairs of this set represents the characteristics of that property,
given the main class at hand.

3. Do a pairwise comparison of all subject-object pairs of INDprop for all the properties
and calculate a synonymity score for each pair of properties.

4. Use the synonymity scores (representing evidence of properties being interchange-
able) to cluster properties that are likely to represent a su�ciently similar (i.e.,
su�ciently synonymous) semantic relation.

Selection of Properties The aim of the above process is to discover, for each specific
main class, clusters of properties with the same meaning. In practice, a certain number
of properties are found to be noise or non-representative of the main class. Thus, we
further refine the set of properties for each SKP as follows:

5. Calculate the frequencies of properties used in data, i.e., counting distinct objects in
INDprop. For clusters, treat the cluster as if it was a single property hence add the
frequency counts of the constituent properties.

6. Use a cuto↵ threshold T (explored further in [15]) to filter out infrequent properties
(or clusters), as they may represent noise in the data. Add those above the thresh-
old to the SKP, including information about their appropriate property type (e.g.
owl:DatatypeProperty or owl:ObjectProperty), with their original names-
pace intact.

7. For each member of a property cluster that is added to the SKP, add a skos:closeMatch
relation between the cluster members.

Characterisation of Properties Finally, we add as much information as we can about the
selected properties, based on what we can induce from the data, and retrieve from the
reference ontology or the pre-existing EKP.

8. For each property, add a range axiom that consists of any range that is given to the
property in the reference ontology or the EKP (if present), but if not present instead
add any range that is identified in data (i.e., by looking at the frequencies of the
object types of the triples above a certain threshold).

9. Add rdfs:subPropertyOf axioms for those properties where the ranges match
some abstract EKP property (i.e., the “links to class X” abstract properties).

10. Store the SKP as an OWL file.

More in detail the range extraction method starts by inspecting the types of all the
triple objects in TS that were retrieved at the beginning of the overall process. This is
done on a per-property-basis, i.e., for each property selected for inclusion in the SKP,
which does not have a range axiom defined in the reference ontology, the corresponding
subject-object pairs are again analysed, and this time inspected together with the types
of the objects of those pairs. Assume that the set of distinct objects, for the triples of TS
using a property pi is OBJpi . Now, count the frequency of the types of the instances in
OBJpi , i.e., associating each class (or datatype) type j that is a type of one of the instances
in OBJpi with a count value counttype j . Then calculate the relative frequency of this type,
for the specific property, by dividing counttype j with the total number of distinct objects
of that property, i.e., |OBJpi |. Intuitively, this is a measure of how large fraction of the
triple objects in the set of triples characterising this property that “support” this type
being in the range of pi.

For avoiding to include too much noise in the axiomatisation of the SKPs, a threshold
is set on this “range support” value, i.e., a class should not be included unless it has su�-
cient support in the data. Where, “su�cient” may di↵er depending on if one prioritises
precision or recall. We investigate a reasonable trade-o↵ for the relative threshold in
Section 5, however, we also set an absolute threshold (for really small triple sets) not to
include any type that has less than 10 occurrences in the triple set. Since this process
may result in a set of classes being selected as the appropriate range of a property, the
range axiom included in the SKP is then expressed as the union of those classes.

4 Results

The resulting patterns have been published4 in the form of small OWL ontologies. Where
pre-existing EKPs exist, they can be extended with new properties, while if no pre-
existing EKP existed, the SKP is generated completely from scratch. Overall, an SKP
contains the main class that is the focus of the pattern, and the properties that are selected
for that SKP, including their domain and range axioms. The name of the SKP is the same
as the name of the main class. As an example, we illustrate a small part of the resulting
SKP called Language5 in Figure 1, with the main class dbpedia:Language. This is one

4 SKPs are being made available at http://www.ontologydesignpatterns.org/skp/
5 http://www.ontologydesignpatterns.org/skp/Language.owl

of the smallest SKPs generated in our evaluation set (see Section 5), only including 36
distinct properties, distributed over 35 object properties and 1 datatype property. Each
property has kept its original URI, so as to be directly usable for querying data, and is
given the main class of the SKP as domain. In this particular SKP we, for instance, find
properties such as dbpedia:spokenIn, dbprop:region and foaf:name, i.e., coming
from three di↵erent namespaces. At a first glance, foaf:name may seem to be an error,
however, this nicely exemplifies the SKPs ability to reflect actual usage in data. The
property was certainly not intended for expressing the name of languages, however, for
this particular class the property is actually used in this way and could be useful to include
when querying for data about languages. Without seeing the SKP, or experimenting with
queries manually, this may be hard to discover.

Fig. 1. Illustration of a small part of the Language SKP. Classes are illustrated as boxes, including
the union classes representing complex ranges, and properties as arrows. An arrow starting from a
class means that is the domain of the property, and the class at the end of the arrow is the range.
The skos:closeMatch-arrows represent assertions on properties.

The property foaf:name is additionally part of a property cluster, which includes
additional properties such as dbprop:name and dbprop:language, which represent
properties that may be considered as synonymous to foaf:name in the context of
the class dbpedia:Language and are linked to each other in the SKP though the
property skos:closeMatch. The property dbprop:language is another good example
of a highly ambiguous property name, which is not easy to interpret, without actually
looking at its detailed use with individuals of this particular class (i.e., individuals of
dbpedia:Language). Another example of a property cluster is the one containing the
object properties dbpedia:spokenIn, dbprop:region, and dbprop:states, which
are all used to express the area, or usually the country, where a language is spoken.

The properties dbprop:region and dbprop:states did not have any prior range
axioms defined, since they are not part of the DBpedia ontology, but rather of the part of
DBpedia that is generated completely automatically without aligning it to the ontology.
As an obvious remedy, one may consider using the range of dbpedia:spokenIn also
for the other members of the cluster. However, not all properties are involved in clusters
that include properties with range axioms in the reference ontology, this is actually
true only for a small fraction of the total number of properties. Hence, although not
absolutely necessary in this case, we may generate range axioms directly from data for
the two properties. The property dbprop:region then, for instance, receives the union
of the following classes as its range: dbpedia:Place, dbpedia:PopulatedPlace,
dbpedia:Settlement, schema:Place and opengis: Feature.

5 Experiments

In the related paper [15] the extraction of synonymous properties was evaluated, together
with the property selection threshold. In this paper we focus on analysing the range
extraction method, but additionally show some general statistics in order to motivate the
usefulness of the SKPs we are proposing. For performing the experiments we selected a
set of 34 DBpedia classes to focus on, and generated SKPs for these. The classes were
not selected randomly, but rather we focused on the DBpedia classes that are involved in
answering the benchmark queries in the QALD-1 query set6, as our evaluation set.

5.1 Pattern Characteristics

SKPs aim at reducing the complexity of understanding and querying data, by reducing
the diversity of properties to only include the core properties of the main SKP class.
However, to be useful in practice, such a reduced representation should still allow for
accessing as large part of the underlying data as possible. This is a trade-o↵ that the
SKPs must be able to su�ciently support if they are to be used in practice. To illustrate
that the SKPs do fulfill both these requirements su�ciently well, Table 1 presents some
statistics of the set of 34 SKPs in our evaluation set.

Min Average Max

Number of included properties 31 107 436
Percentage of included properties 12% 27% 38%
Percentage of data triples covered 88% 94% 97%

Table 1. Characteristics of the generated SKPs

The patterns range in size (in terms of the number of properties of the main class)
between 31 and 436 properties. While 436 properties may be perceived as a large number,

6 QALD-1 contains a “gold standard” of natural language questions associated with ap-
propriate SPARQL queries and query results, see: http://greententacle.techfak.
uni-bielefeld.de/˜cunger/qald1/evaluation/dbpedia-test.xml

this should be considered in light of the second row of the table, i.e. the fraction of
the total number of properties used for that main class in the data that the included
properties represent. For instance, the largest pattern, with 436 properties included,
is the AdministrativeRegion pattern characterising the AdministrativeRegion
class in the DBpedia ontology, which in total uses 1235 distinct properties with its 28229
instances in the DBpedia dataset. Hence, those 436 properties constitute only 35% of the
total number of distinct properties, but still allows us to access 89% of the data triples,
about AdministrativeRegion instances. In the last row of the table we summarise
similar results for the complete SKP set, i.e., on average the SKPs allow us to still
access 94% of the data about their instances, while reducing the number of properties
to on average 27% of the original number. One should also keep in mind that these are
SKPs generated with a particular property inclusion threshold (see [15] for a detailed
evaluation and discussion of the threshold), whereby tailored sets of SKPs could also be
generated with a specific use case in mind, prioritising either triple coverage or reduced
size of the SKP as needed.

We have not yet evaluated how the accuracy of the data, and responses to queries,
are a↵ected by filtering out some portion of the properties used in data. This is mainly
due to the di�culty of evaluating the quality of data in DBpedia in general, i.e., what is
a correct triple and what is not? Ideally, we would like to be able to measure also how
correct the data is, and evaluate if the data that is no longer accessible (if using only the
SKP property set) is correct and useful data, or perhaps mostly consist of noise. However,
we believe that crowdsourcing e↵orts such as the DBpedia Data Quality Evaluation
launched, may be able to provide evaluation datasets that makes this feasible.

5.2 Range Extraction

For evaluating the range extraction method, which had to be done manually, a set of
SKPs were selected (among the 34 we initially generated, corresponding to the QALD
query classes). Unfortunately due to lack of evaluators, we were not able to evaluate
the complete set of 34 SKPs, but had to focus on 8 SKPs that were randomly selected
but where we made sure to cover both “small” and “large” SKPs (in terms of number of
properties and range axioms). Using di↵erent cuto↵ thresholds for the inclusion of range
classes, all the resulting proposals for range axioms were manually assessed by three
evaluators (each range axiom was evaluated by at least 2 evaluators). The evaluators
were asked to assess if the range class could be considered correct or not, in the context
of the particular SKP main class, and for the property at hand. Initially, the evaluators
simply assessed if the range class was correct or not (an “unsure” alternative was also
available), but in addition, if deemed correct the evaluators were also asked to assess the
level of abstraction of the range class. The latter, to evaluate if the method used was able
to arrive at range classes that are neither too specific nor too general.

For instance, consider the SKP Actor, where the main class is dbpedia:Actor. This
SKP includes a property dbprop:spouse, which relates an actor to his or her spouse.
One class that is extracted as being part of the property range is the dbpedia:Actor
class. However, despite this being a common type of the objects, it is not an appropriate
range class – it is more of a coincidence that most actors are actually married to other

actors, rather than a general axiom. A more appropriate class to include would be a super-
class of dbpedia:Actor, i.e., dbpedia:Person. On the other hand, more general is not
always better. Consider the superclass of dbpedia:Person, which is dbpedia:Agent
(a class that also includes subclasses such as dbpedia:Organisation). This would
not be an appropriate class either, since there are agents, e.g., companies, that cannot
be the spouse of an actor. Through this example, we note that there is often a level of
abstraction that is the most appropriate for expressing the range axioms, although more
specific or more general classes cannot be considered as “wrong”.

To combine the results of the three evaluators we have classified something as correct
if at least one evaluator considered it correct, and the others either agreed that it was
correct or were not sure. We have classified something as incorrect if, on the contrary,
one evaluator considered it incorrect, and the others either agreed or were not sure. If the
evaluators disagreed, e.g., one considering it correct and one incorrect, or they agree on
the “unsure” alternative, the combined result is classified into the “unsure” category.

In Figure 2 we can see the results of the correctness evaluation of range axioms. On
average, for each SKP, the method is able to find an appropriate range (one or more
classes) for about 8 properties that were to be included in the SKP but that previously
had no range axioms. In the figure we can see that for a cuto↵ threshold of 0.1 (meaning
that a range class is included if it is the assigned type of more than 10% of the objects
in triples using this specific property, and that are covered by this SKP) already around
80% of the proposed range classes are deemed as correct by the evaluators. This fraction
increases as the cuto↵ threshold is raised, and at a threshold of 0.5 it is about 87%. As
can be seen, the fractions of incorrect (and unsure) range classes stays well below 10%
for a threshold of 0.3 and higher, and even before that the maximum fraction of incorrect
suggested ranges is only about 12%.

Fig. 2. Correctness of new range axioms, and fraction of properties that still receive a range axiom
as threshold increases.

However, this increase in precision comes at a price of fewer suggested range axioms.
In the figure we have therefore included also the “loss” of range axioms, in terms of the

fraction of the properties where (correct) range axioms were proposed at threshold 0.1,
but which when the threshold is increased no longer will have any range axiom in the
SKP (called “Added ranges” in the diagram). When increasing the threshold above 0.3,
this drop starts to become significant, e.g. going from 96% at the 0.3 threshold down to
91% at 0.4.

An additional drawback when raising the threshold, which is not directly visible
in the figure, is the level of abstraction of the included range classes. In general, the
agreement between evaluators is quite poor when it comes to evaluating the level of
abstraction, and it varies quite a lot between the 8 SKPs that were assessed, hence, we do
not provide any numerical results of this part of the evaluation. Instead, based on the cases
when the evaluators do agree, and the trends in their individual assessments, we try to
summarise some tendencies. The trend is that as the threshold increases, the first (correct,
but not necessarily appropriate with respect to abstraction level) range axioms that are
removed seem to be the ones that are considered too specific (c.f. dbpedia:Actor in the
example above) by at least some evaluator. However, continuing to further increase the
threshold, i.e., from 0.4 and onwards, seems to remove a significant amount of (agreed
on) appropriate range classes as well as the overly general ones, hence, increasing the
threshold too much seems to come with too much negative side-e↵ects in terms of
increasing the fraction of overly general range classes compared to the appropriate ones.

Based on these results, we conclude that, both from the perspective of including as
many correct range axioms as possible without introducing too many errors, and from
the (somewhat inconclusive) indications on appropriate level of generality, a selection
threshold around 0.3 seems to be a reasonable pick. This threshold has been used for
generating the SKPs in the current catalogue.

6 Discussion

Originally, the notion of Ontology Design Patterns (ODPs) referred solely to a top-
down view on modelling best practices, and constituted manually designed patterns
representing those best practices. More recently, however, the more general notion of
KPs has been proposed, and such patterns have also been created in a bottom-up fashion,
i.e., representing the way information on the Web or Linked Data is actually represented,
rather than how it “should” be. It is highly relevant in this context to discuss the relation
between best practices and patterns. Although we do agree that actual modelling patterns,
found in data, do not necessarily conform to best practices, we also acknowledge that
determining what is a “best practice” is very di�cult. By investigating real-world data
we observe actual practices, and by storing these as SKPs users are able to understand
the current practice. For many use cases (e.g., querying or linking to data) it is more
important to understand and adhere to current practices, rather than best practices that
may not at all be used in the data at hand. Since our SKPs are dynamic, i.e., can be
re-generated as soon as data changes, we envision that assuming data and model quality
increases over time, the gap between best practices and actual practices is reduced.

Another general aspect of the SKPs that is worth mentioning is their generalisability
over di↵erent datasets. Our experiments have so far been limited to DBpedia data,
however, the method we are using is in no way restricted to this particular data. Although

DBpedia may be a particularly tricky dataset (due to its semi-automatic construction,
and large coverage), we have observed that similar problems with duplicated properties
and lack of ranges and other axioms do exist also in other datasets. However, the most
interesting problem arises when starting to extract cross-dataset SKPs, which will be
our next step. To find “synonymous” properties across vocabularies and datasets, and
to be able to compare patterns between overlapping datasets is where we envision
that the substantial benefits arise. The methods presented here are su�ciently general
to be applied to this extended scenario with only minor modifications to the current
implementation.

7 Conclusions and Future Work

KPs are more and more being extracted bottom-up, e.g., from Linked Data, rather than
only being hand-crafted in a top-down fashion, e.g., as ODPs. This new kind of KPs is
important since they can assist in making sense of datasets, and allow users and systems
to formulate appropriate queries over data, while managing the diversity of properties
used in datasets. Diversity of data representation, and lack of agreement on schemas and
ontologies, is currently a major obstacle towards taking full advantage of the Semantic
Web and Linked Data. Therefore, approaches like ours, for characterising and structuring
data (e.g., by identifying synonymous properties and property ranges), are of essence.

This paper has provided an overview of our method for generating SKPs from Linked
Data (details on the synonymy detection and property selection in [14,15]) focusing
particularly on the final part; characterising the properties, e.g., through range axioms.
Generally, SKPs can characterise classes from any reference ontology, by presenting their
most frequent properties and property characteristics, based on analysing the underlying
data. SKPs are stored as OWL ontologies but can be continuously updated in a completely
automated fashion to reflect changes in the underlying data. We have exemplified the
method by applying it to classes of the DBpedia ontology, and in particular we have
thereby evaluated our method for extracting range axioms. Results show that by setting
appropriate thresholds, SKPs can be generated that cover (i.e., allow us to query, using
the properties of the SKP) over 94% of the triples about individuals of that class, while
only needing to care about 27% of the total number of distinct properties that are used in
the data. The range extraction method results in range axioms that are on average correct
in 82% of the cases (merely 10% are clear errors), at the selected threshold level. These
results clearly show that it is possible to make sense of data, and manage the diversity of
Linked Data, by analysing the data and identifying the underlying patterns.

The catalogue of SKPs for the DBpedia classes is being published at the moment.
While this will be an important resource, it is simply one example of a reference ontology
that can be used. As future work we intend to publish the method described in the paper
as a software component to be reused by others, over their dataset of choice. We also
intend to extend the generated set of DBpedia-based SKPs, by taking into account other
datasets that align to DBpedia, creating cross-dataset SKPs that can be used to formulate
queries (and distribute queries) over several dataset. Another interesting line of future
work is to use the SKPs in order to analyse data quality, similar to what is described for
“key properties” in [1], by studying the triples that do not adhere to the pattern.

Acknowledgements

Part of this research has been sponsored by the EPSRC funded project LODIE: Linked
Open Data for Information Extraction, EP/J019488/1.

References

1. Atencia, M., David, J., Schar↵e, F.: Keys and pseudo-keys detection for web datasets cleansing
and interlinking. In: Proc. of the 18th International Conference, EKAW 2012, Galway City,
Ireland, October 8-12, 2012. LNCS, vol. 7603, pp. 144–153. Springer (2012)

2. Auer, S., Demter, J., Martin, M., Lehmann, J.: Lodstats - an extensible framework for high-
performance dataset analytics. In: Proc. of the 18th International Conference, EKAW 2012,
Galway City, Ireland, October 8-12, 2012. LNCS, vol. 7603, pp. 353–362. Springer (2012)

3. Basse, A., Gandon, F., Mirbel, I., Lo, M.: DFS-based frequent graph pattern extraction to
characterize the content of RDF Triple Stores. In: Proc. of the WebSci10: Extending the
Frontiers of Society On-Line, April 26-27th, 2010, Raleigh, NC: US [Online proc.] (2010)

4. Blomqvist, E.: Ontocase-automatic ontology enrichment based on ontology design patterns.
In: Proc. of the 8th International Semantic Web Conference (ISWC 2009). LNCS, vol. 5823,
pp. 65–80. Springer (2009)

5. Blomqvist, E., Sandkuhl, K.: Patterns in ontology engineering: Classification of ontology pat-
terns. In: ICEIS 2005, Proc. of the Seventh International Conference on Enterprise Information
Systems, Miami, USA, May 25-28, 2005. pp. 413–416 (2005)

6. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: The Semantic Web
ISWC 2005. LNCS, vol. 3729. Springer (2005)

7. Gangemi, A., Presutti, V.: Handbook on Ontologies, chap. Ontology Design Patterns. Springer,
2nd edn. (2009)

8. Gangemi, A., Presutti, V.: Towards a pattern science for the Semantic Web. Semantic Web
1(1-2), 61–68 (2010)

9. Musetti, A., Nuzzolese, A., Draicchio, F., Presutti, V., Blomqvist, E., Gangemi, A., Ciancarini,
P.: Aemoo: Exploratory Search based on Knowledge Patterns over the Semantic Web (2011),
[Finalist of the Semantic Web Challenge 2011]

10. Nuzzolese, A.G.: Knowledge Pattern Extraction and Their Usage in Exploratory Search. In:
Proc. of the 11th International Semantic Web Conference (ISWC 2012). LNCS, vol. 7650, pp.
449–452. Springer (2012)

11. Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Encyclopedic knowledge patterns
from wikipedia links. In: Proc. of the 10th International Semantic Web Conference (ISWC
2011). pp. 520–536. LNCS, Springer (2011)

12. Presutti, V., Aroyo, L., Adamou, A., Schopman, B.A.C., Gangemi, A., Schreiber, G.: Ex-
tracting Core Knowledge from Linked Data. In: Proc. of the Second International Workshop
on Consuming Linked Data (COLD2011), Bonn, Germany, October 23, 2011. vol. 782.
CEUR-WS.org (2011)

13. Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-based ontology design. In: Ontol-
ogy Engineering in a Networked World, pp. 35–64. Springer (2012)

14. Zhang, Z., Gentile, A.L., Augenstein, I., Blomqvist, E., Ciravegna, F.: Mining equivalent rela-
tions from linked data. In: Proc. of the annual meeting of the Association for Computational
Linguistics (ACL) 2013 (2013)

15. Zhang, Z., Gentile, A.L., Blomqvist, E., Augenstein, I., Ciravegna, F.: Statistical knowl-
edge patterns: Identifying synonymous relations in large linked datasets. In: (To appear)
Proceedings of ISWC2013. LNCS, Springer (2013)

Ontology Patterns: Clarifying Concepts and Terminology

Ricardo A. Falbo1, Giancarlo Guizzardi1,2, Aldo Gangemi2, Valentina Presutti2

1Federal University of Espírito Santo, Vitória, Brazil
{falbo, gguizzardi}@inf.ufes.br

2ISTC, National Research Council, Italy
{aldo.gangemi,valentina.presutti}@cnr.it

Abstract. Ontology patterns have been pointed out as a promising approach for
ontology engineering. The goal of this paper is to clarify concepts and the ter-
minology used in Ontology Engineering to talk about the notion of ontology
patterns taking into account already well-established notions of patterns in
Software Engineering.

Keywords: ontology pattern, ontology design pattern, ontology engineering

1 Introduction

Although nowadays ontology engineers are supported by a wide range of ontology
engineering methods and tools, building ontologies is still a difficult task even for
experts [1]. In this context, reuse is pointed out as a promising approach for ontology
engineering. Ontology reuse allows speeding up the ontology development process,
saving time and money, and promoting the application of good practices [2]. Howev-
er, ontology reuse, in general, is a hard research issue, and one of the most challeng-
ing and neglected areas of ontology engineering [3]. The problems of selecting the
right ontologies for reuse, extending them, and composing various ontology frag-
ments have not been properly addressed yet [4].

Ontology patterns (OPs) are an emerging approach that favors the reuse of encoded
experiences and good practices. OPs are modeling solutions to solve recurrent ontolo-
gy development problems [5]. Experiments, such as the ones presented in [4], show
that ontology engineers perceive OPs as useful, and that the quality and usability of
the resulting ontologies are improved. However, compared with Software Engineering
where patterns have been used for a significant time [6, 7, 8], patterns in Ontology
Engineering are still in infancy. The first works are from the beginning of the 2000s
(e.g. [9, 10]), and only recently this approach has gained more attention, especially by
the communities of Ontology Engineering [2, 3, 4, 5] and Semantic Web [1, 11].

In this paper, we discuss the notion of ontology pattern by means of an analogy to
the notion of pattern in Software Engineering. A premise underlying the discussion
made in this paper is that, for developing a domain ontology, an ontology engineer
should follow an ontology development process that is quite similar to the software
development process in Software Engineering. i.e., in our view, a domain ontology

mailto:gguizzardi%7D@inf.ufes.br

should be developed following an ontology development process comprising activi-
ties such as ontology requirements elicitation, ontology conceptual modeling, ontolo-
gy design, ontology implementation, and ontology testing.

This paper is organized as follows. In Section 2, we present some important pat-
tern-related concepts as used in Software Engineering, and also the current view of
patterns in Ontology Engineering. In Section 3, we revisit some notions related to
ontology patterns by means of an analogy to patterns in Software Engineering. In
Section 4, we show, by means of examples, how some types of ontology patterns can
be used during the ontology development process. Finally, in Section 5, we present
our final considerations.

2 Software Engineering Patterns and Ontology Patterns

Patterns, in general, are vehicles for encapsulating knowledge. They are considered
one of the most effective means for naming, organizing, and reasoning about design
knowledge. “Design knowledge” in this sentence is applied in a general sense, mean-
ing design in several different areas, such as Architecture and Software Engineering.
According to [12], “a pattern describes a particular recurring design problem that
arises in specific design contexts and presents a well-proven solution for the problem.
The solution is specified by describing the roles of its constituent participants, their
responsibilities and relationships, and the ways in which they collaborate”.

In Software Engineering, patterns help to alleviate software complexity in several
phases of the software development process [13]. During the software development
process, regardless of the method or process model adopted, there are some activities
that should be performed, namely: requirements elicitation, conceptual modeling,
architectural design, detailed design, and implementation. There are different types of
patterns covering different abstraction levels related to these phases. Analysis patterns
are to be used during conceptual modeling. They describe how to model (in the con-
ceptual level) a particular kind of problem in an application domain. They comprise
of conceptual model fragments that represent knowledge of the problem domain, and
their goal is to aid developers in understanding the problem rather than showing how
to design a solution. According to [14], there are two main types of analysis patterns:
domain-specific and domain-independent analysis patterns. Domain-specific analysis
patterns model problems that only appear in specific domains. They capture the core
knowledge related to a domain-specific problem and, therefore, they can be reused to
model applications that share this core knowledge. On the other hand, domain-
independent analysis patterns capture the core knowledge of atomic notions that are
not tied to specific application domains and, hence, can be reused to model the same
notions whenever they appear in any domain. Patterns such as the ones proposed by
Fowler [7] are examples of analysis patterns. Architectural patterns describe selected
types of components and connectors (the generalized constituent elements of all soft-
ware architectures) together with a control structure that governs system execution
[15]. They can be seen as templates for concrete software architectures [8], and thus
are to be used during the architectural design phase. Several of the patterns proposed
in the Pattern Oriented Software Architecture (POSA) approach [8], and most of the

patterns presented in [16] are architectural patterns. Design Patterns provide a scheme
for refining subsystems or components of a software system, or the relationships be-
tween them. They describe commonly-recurring structures of communicating compo-
nents that solves general design problems within a particular context [6]. Design pat-
terns are medium-scale patterns. They are smaller in scale than architectural patterns,
but they are independent of a particular programming language (implementation-
independent patterns) [8]. Moreover, they are used in the detailed design phase. The
Gang of Four (GoF) patterns [6] are the most known examples of a design patterns
catalog. Finally, idioms (or programming patterns) represent the lowest-level patterns.
They are specific to a programming language (patterns at a source code level). An
idiom describes how to implement particular aspects of components or the relation-
ships between them, using the features of a given language [8]. Idioms are used in the
implementation phase. Coplien’s C++ patterns [17] are examples of idioms.

The Ontology Engineering community has also tackled the notion of patterns, es-
pecially for aiding developing domain ontologies. Domain ontologies aim at describ-
ing the conceptualization related to a given domain, such as electrocardiogram in
medicine [18].

According to [3], an Ontology Design Pattern (ODP) is a modeling solution to
solve a recurrent ontology design problem. Gangemi and Presutti [3] have identified
several types of ODPs, and have grouped them into six families: Structural, Reason-
ing, Correspondence, Presentation, Lexico-Syntactic, and Content ODPs.

Structural ODPs include Logical and Architectural ODPs. Logical ODPs provide
solutions for solving problems of expressivity, while architectural ODPs affect the
overall shape of the ontology either internally or externally. Reasoning ODPs inform
about the state of an ontology, and let a system decide what reasoning has to be per-
formed on the ontology in order to carry out queries and evaluation, among others.
Correspondence ODPs include Reengineering ODPs and Mapping ODPs. Reengi-
neering ODPs provide solutions to the problem of transforming a conceptual model
(which can even be a non-ontological resource) into a new ontology. Mapping ODPs
are patterns for creating semantic associations between two existing ontologies.
Presentation ODPs deal with usability and readability of ontologies from a user per-
spective. They are meant as good practices that support the reuse of ontologies by
facilitating their evaluation and selection (e.g. naming conventions). Lexico-syntactic
ODPs are linguistic structures or schemas that consist of certain types of words fol-
lowing a specific order, and that permit to generalize and extract some conclusions
about the meaning they express. They are useful for associating simple Logical and
Content ODPs with natural language sentences, e.g., for didactic purposes. Finally,
Content ODPs are small fragments of ontology conceptual models that address a spe-
cific modeling issue, and can be directly reused by importing them in the ontology
under development. They provide solutions to domain modeling problems [3].

As pointed by Gangemi [19], Content ODP can extract a fragment of either a foun-
dational or a core ontology, which constitutes its background. Based on this fact,
Falbo et al. [20] consider two types of Content ODPs: Foundational ontology patterns,
which are extracted from foundational ontologies, and tend to be more generally ap-
plied, and Domain-related ontology patterns, which are domain-specific patterns, and
thus are applicable to solve problems in specific domains.

The Manchester’s Ontology Design Patterns Catalog [21] is a public catalog of
ODPs focused on the biological knowledge domain. In this catalog, there types of
ODPs are considered, namely [21, 22]: Extensional ODPs, which provide ways of
extending the limits of the chosen knowledge representation language; Good practice
ODPs, which are used to produce more modular, efficient and maintainable ontolo-
gies; and Domain Modeling ODPs, which are used to model a concrete part of the
knowledge domain.

In contrast with the case of patterns in Software Engineering, patterns in Ontology
Engineering are not properly linked to the development phase in which they can be
applied. Moreover, it is important to highlight that the term “design” in “ontology
design patterns” does not have the same meaning of “design” in “design patterns” of
Software Engineering. In “ontology design patterns”, the term “design” is applied in a
general sense, meaning the creation (building) of the ontology. In Software Engineer-
ing, in the other hand, “design” refers to the software development phase in which
developers cross the border from the problem space to the solution space. While re-
quirements elicitation and analysis deal with the problem domain, aiming at under-
standing the problem to be solved and its domain, in the design phase, the focus is on
providing a solution, what requires taking technological aspects into account. Concep-
tual models, built during requirements analysis, are only concerned with modeling a
view of the domain for a given application, and thus are independent of the technolo-
gy to be applied in the solution. Design models, on the other hand, are committed to
translating the conceptual view to the most suitable implementation according to the
underlying implementation environment and also considering a number of non-
functional (technological) requirements (such as efficiency, usability, reliability, port-
ability, etc.). Thus, designers should know a priori features of the implementation
environment to properly address the non-functional requirements in a given solution.
In fact, the same conceptual model can lead to several design solutions, and the de-
sign phase involves choosing the most adequate solution for the problem.

Guizzardi [23] defends an analogous process for Ontology Engineering. In an on-
tology conceptual modeling phase, a reference domain ontology should be produced,
whose aim is to make a clear and precise description of the domain elements for the
purposes of communication, learning and problem solving. Reference ontologies are
to be used in an off-line manner to assist humans in tasks such as meaning negotiation
and consensus establishment. In the design phase, this conceptual specification should
be transformed into a design specification by taking into account a number of issues
ranging from architectural issues and non-functional requirements, to target a particu-
lar implementation environment. The same reference ontology can potentially be used
to produce a number of (even radically) different designs. Finally, in the implementa-
tion phase, an ontology design is coded in a target language to be then deployed in a
computational environment. This implementation version is frequently termed an
operational ontology [20]. Unlike reference ontologies, operational ontologies are not
focused on representation adequacy, but are designed with the focus on guaranteeing
desirable computational properties. A design phase, thus, is necessary to bridge the
gap between the conceptual modeling of reference ontologies and the coding of them
in terms of a specific operational ontology language (such as, for instance, OWL and
RDFS, but other DL-based languages [24], Datalog-based languages [25], relational

databases [26], etc.). Issues that should be addressed in the design phase are, for in-
stance: determining how to deal with the differences in expressivity of the languages
that are used in each of these phases; or how to produce lightweight specifications
that maximize specific non-functional requirements, such as reasoning performance.
Figure 1 illustrates this Ontology Engineering view.

Fig. 1. Ontology Engineering as a Software Development Process

Based on this view of Ontology Engineering, in the next section, we revisit the no-
tion of ontology patterns in order to clarify some concepts and the terminology used.
Moreover, we compare the types of ontology patterns identified by Gangemi and
Presutti [3] with the types of patterns related to the development phases in Software
Engineering.

3 Ontology Patterns: Aligning Concepts and Terminology to
Software Engineering Patterns

Once we have discussed a view of ontology development that is analogous to the well
established view of software development in Software Engineering, we can revisit the
notion of Ontology Pattern. Gangemi and Presutti [3] define Ontology Design Pattern
as a modeling solution to solve a recurrent ontology design problem. As discussed in
the previous section, “design” in this definition is used in a broad sense. In order to
avoid confusion with the term “design” referring to the “design phase” of ontology
development, we prefer to name patterns applied to Ontology Engineering as Ontolo-
gy Patterns (instead of Ontology Design Patterns).

We can now further elaborate the definition of ontology pattern: an Ontology Pat-
tern (OP) describes a particular recurring modeling problem that arises in specific
ontology development contexts and presents a well-proven solution for the problem.

Taking this definition into account, we can now look at the types of ontology pat-
terns identified by Gangemi and Presutti [3], and try to introduce them in another
classification of ontology patterns that considers the ontology development phase
depicted in Figure 1.

First, there are some types of patterns in [3] that, according to the definition pre-
sented above, do not qualify as OPs. They capture best practices, but do not conform
to this definition. This is the case, for instance, of the lexico-syntatic and presentation
patterns, which do not refer to a modeling problem. Mapping OPs also do not fit well
to the definition above, since they do not address a modeling problem in a specific
ontology development context. Mapping OPs are useful for integrating ontologies,
and not for developing a new one. Although presentation OPs cannot be properly said
to be ontology pattern, they have a counterpart in Software Engineering: naming con-
ventions. In Software Engineering, there are name conventions that apply to different
development phases. For instance, language-specific naming conventions, such as
Java naming conventions, are to be applied during the implementation phase; naming
conventions for classes, attributes and operations in general can be applied during
conceptual modeling and design phases. Thus, analogously, ontology name conven-
tions that are language-independent are to be applied during ontology conceptual
modeling and design phases; language-specific ontology name conventions (such as
OWL name conventions) are to be used during ontology implementation.

The Reengineering OP type is a case apart. Reengineering OPs are defined as
transformation rules applied in order to create a new ontology (target model) starting
from elements of a source model [3]. Based on this definition, we can say that they
can be applied in several ontology development phases. However, most of the exist-
ing Reengineering patterns are language-dependent, such as patterns to transform
non-OWL models to OWL DL operational ontologies, or refactoring patterns for
refactoring an existing OWL DL source ontology into a new OWL DL target ontolo-
gy. Such alleged patterns are, in fact, not proper patterns but Idioms.

In the other hand, content, architectural, logical and reasoning OPs can be related
to ontology development phases. Content OPs are analogous to analysis patterns in
Software Engineering; Architectural OPs to architectural patterns; and Logical and
Reasoning OPs to design patterns, although some of them are, again, in fact, idioms.

Regarding the Manchester’s Catalog, according to [21], “this catalog is generated
from OWL files”. Thus, its patterns better classify as Idioms.

Figure 2 shows a taxonomy of OPs, reorganizing some of the ontology pattern
types identified in [3], and introducing subtypes of Content OPs (renamed as Concep-
tual OPs), as defined in [20].

Ontology Conceptual Patterns are fragments of either foundational ontologies
(Foundational OPs) or domain reference ontologies (Domain-related OPs). They are
to be used during the ontology conceptual modeling phase, and focus only on concep-
tual aspects, without any concern with the technology or language to be used for de-
riving an operational ontology. Ontology Conceptual Patterns are analogous to Analy-
sis Patterns in Software Engineering. Foundational OPs are analogous to Domain-
independent Analysis Patterns, while Domain-related OPs are analogous to Domain-
specific Analysis Patterns.

Fig. 2. Ontology Pattern Types

Foundational OPs (FOPs) are reusable fragments of foundational ontologies. Since
foundational ontologies span across many fields and model the very basic and general
concepts and relations that make up the world [18], FOPs can be applied in any do-
main. They are reused by analogy between the pattern and the problem in hand. An
example of a FOP is the pattern for the problem of specifying roles with multiple
disjoint allowed types, which were extracted from the ontology of substantial univer-
sals of the Unified Foundational Ontology (UFO) [27]. Another example is the ap-
pointment pattern, which were extracted from the ontology of social entities of UFO
[28]. These two FOPs and how they can be reused are discussed in Section 4.

Domain-related OPs (DROPs) are reusable fragments extracted from reference
domain ontologies. DROPs should capture the core knowledge related to a domain,
and thus they can be seen as fragments of a core ontology of that domain. In contrast
with FOPs, DROPs are reused by extension, i.e. concepts and relations of the pattern
are specialized when the pattern is reused. In Section 4, we present a DROP for the
domain of software processes and discuss its reuse by extension in the development of
a software testing ontology.

Ontology Architectural Patterns are patterns that describe how to arrange an ontol-
ogy (generally a large one) in terms of sub-ontologies or ontology modules, as well as
patterns that deal with the modular architecture of an ontology network, where the
involved ontologies play the role of modules [3]. These patterns can be used both
during the conceptual modeling phase, and at the beginning of the ontology design
phase. Since modularity is recognized as an important quality characteristic of good
ontologies, we advocate for their use since the first stages of ontology development,
for splitting the ontology into smaller parts, allowing tackling the problems one at a
time. When applied at the beginning of the design phase, the purpose is to reorganize
the ontology modules for addressing technological aspects, in special by taking non-
functional requirements into account.

Ontology Design Patterns (ODPs) are patterns that address problems that occur
during the ontology design phase. Based on the Gangemi and Presutti’s taxonomy of
types of ontology patterns [3], we identified two main types of ODPs: logical and
reasoning ODPs. Reasoning ODPs, as the name suggests, aims at addressing specific
design problems related to improving reasoning with ontologies (and qualities related
to reasoning, such as computational tractability, decidability and reasoning perfor-
mance). Logical ODPs, in turn, regards problems related to the expressivity of the
formalism to be used in ontology implementation. They help to solve design problems
that appear when the primitives of the implementation language do not directly sup-

port certain logical constructs. Logical ODPs are extremely important for ontology
design, since most languages for coding operational ontologies are not focused on
representation adequacy, but are designed with the focus on guaranteeing desirable
computational properties [23]. We should highlight, however, that many patterns that
address reasoning and logical problems are, in fact, Ontology Idioms (or Ontology
Coding Patterns), since they describe how to solve problems related to reasoning or to
expressivity of a specific logical formalism (e.g. OWL). According to the notion de-
fended here, ODPs are more widely applied than ontology idioms, since they address
problems related to various languages that share the same characteristics. For in-
stance, a pattern addressing the problem of how to express n-ary relation semantics by
only using class and binary relation primitives is a Logical ODP. It applies to all logi-
cal formalisms that do not have a construct for representing n-ary relationships, but
have constructs for representing classes and binary relations. A pattern addressing the
problem of how to express n-ary relation semantics in OWL is an Ontology Idiom.

Figure 3 shows the relationships between the types of ontology patterns shown in
Figure 2 and the ontology development activities, shown in Figure 1. In the next sec-
tion, we illustrate some Ontology Conceptual Patterns, and discuss how they can be
reused.

Fig. 3. Applicability of Ontology Patterns with respect to Ontology Development Phases

4 Reusing Ontology Conceptual Patterns

There are two main ways of reusing ontology patterns: by analogy and by extension.
Moreover, several patterns can be reused when developing a domain ontology. Thus,
pattern composition is also an important mechanism for combining patterns.

In reuse by analogy [29], with an ontology modeling problem at hands, we look for
OPs that describe knowledge related to the type of situation we are facing. Once se-
lected the pattern, we have to identify which concepts in our domain correspond to the
concepts in the pattern, and we reproduce the structure of the pattern in the domain
ontology being developed. Most of the OPs are reused by analogy (including most
Ontology Architectural and Design Patterns, Idioms, but also Foundational Ontology
Patterns (FOPs)). Domain-related OPs (DROPs), in turn, are typically reused by ex-
tension. In reuse by extension, the OP is incorporated in the domain ontology being
developed, and it can be extended by means of specialization of its concepts and rela-
tions, and also by including new properties and relationships with the extended con-
cepts.

Figure 4 shows the conceptual model of the FOP for the problem of specifying roles
with multiple disjoint allowed types [27]. In this picture, the abstract class A is the
role mixin that covers different role types. Classes B and C are the disjoint subclasses
of A that can have direct instances, representing the roles (i.e., sortal, anti-rigid and
relationally dependent types) that carry the principles of identity that govern the indi-
viduals that fall in their extension. Classes D and E are the ultimate kinds that supply
the principles of identity carried by B and C, respectively. The association R repre-
sents the common specialization condition of B and C, which is represented in A.
Finally, class F represents a type that class A is relationally dependent of. Kind, Role
and Role mixin are concepts from the Unified Foundational Ontology (UFO), part A,
an ontology of endurants. This pattern is also embedded as a higher-granularity mod-
eling primitive in the ontology-driven conceptual modeling language OntoUML. For
details, see [27].

Fig. 4. Foundational OP for roles with multiple and disjunctive kinds [27].

Figure 5 shows two FOPs extracted from UFO-C, an ontology of social entities
[28], namely: atomic/complex commitment types and appointments. The Atom-
ic/Complex Commitment Types pattern, as the name suggests, models the distinction
between atomic and complex commitments. According to UFO-C, Commitments, as
intentional moments, inhere in Agents. Commitments can be atomic (Atomic Com-
mitment) or complex (Complex Commitment). Complex commitments are composed
of other commitments. The Appointment Pattern models a special type of commit-
ment, named Appointment in UFO-C. An appointment is a commitment whose pro-
positional content explicitly refers to a time interval.

Fig. 5. (a) Atomic/Complex Commitment Types FOP; (b) Appointment FOP

In Figure 6, we apply the three aforementioned patterns when developing a domain
ontology on the domain of Agendas. The Agenda Ontology was developed to support

the semantic integration of the Google Calendar API and the Google Contacts API to
a Software Engineering Environment. In an agenda we are mainly interested in regis-
tering contacts and scheduled appointments. Contacts can be either organizations or
people, which have different principles of identity. For addressing the modeling prob-
lem regarding contacts, we reuse the FOP presented in Figure 4; for addressing the
modeling problem regarding appointments, we reuse the FOPs presented in Figure 5.
The Agenda Ontology fragment produced applying these three FOPs is shown in
Figure 6. In this model, the fragment that was solved by reusing the FOP for roles
with multiple and disjunctive kinds (Figure 4) is shown detached in grey. As one can
observe, the structure of the FOP is exactly applied to solve the problem in the Agen-
da Ontology.

Regarding the reuse of the Atomic/Complex Commitment Types FOP and the Ap-
pointment FOP, the structure of the models, although not exactly the same, is analo-
gous. An Appointment in the Agenda Ontology is an Appointment in the sense of
UFO-C. Like Commitments, Appointments can be classified as Atomic and Complex
Appointments (see Atomic/Complex Commitment Types FOP). In the case of the
Agenda Ontology, all complex appointments (said Multiple Appointment) are com-
posed of atomic appointments (said Single Appointment). Multiple Appointments are
further categorized according to their frequency of occurrence into: Diary Appoint-
ment, Weekly Appointment and Monthly Appointment. Since in the agenda domain we
are not interested in commitments that are not appointments, we did not represent the
concept of commitment. However, since appointment is a special type of commit-
ment, appointments inhere in an agent (Agenda Owner).

Fig. 6. A fragment of an Agenda Ontology.

Concerning the reuse of DROPs, which occur by extension, Figure 7 shows a frag-
ment of the Reference Ontology on Software Testing (ROoST) [30], which were de-
veloped reusing DROPs organized as an ontology pattern language [20]. This picture
shows a small (and simplified) fragment of ROoST dealing with artifacts produced
and used by three software testing activities. This fragment of ROoST was built by
composing and extending two DROPs: Work Product Participation (WPPA) pattern
and Work Product Types (WPT) pattern. In Figure 7 the concepts from these patterns
are shown detached in grey. As shown in this model fragment, concepts and relations

from the DROPs (concepts: Activity Occurrence, Document and Code; relations: uses
and produces) are extended for the testing domain. Test Execution, Test Coding and
Test Case Design are subtypes of Activity Occurrence. Test Case and Test Result are
subtypes of Document (sub-kinds in UFO). Test Code is a sub-kind of Code, while
Code To Be Tested is a role played by a Code when used in a Test Execution. Regard-
ing relation specializations, Test Case Design produces Test Case. Test Coding uses
Test Case and produces Test Code. Finally, Test Execution uses Test Code and Code
To Be Tested, and produces Test Results.

Fig. 7. A Fragment of the Reference Ontology on Software Testing

It is worthwhile to point out that new concepts and relations can also be added to
the domain ontology being developed. In the case of ROoST model fragment shown
in Figure 7, two relations were added: Test Code implements Test Case, and Test Re-
sult is relative to Test Case.

5 Final Considerations

Ontology patterns (OPs) are currently recognized as a beneficial approach for ontolo-
gy development [3, 4]. In this paper we made an analogy between patterns in Soft-
ware Engineering and patterns in Ontology Engineering, in order to clarify and har-
monize the terminology used in both areas. Since patterns in Software Engineering
have already been studied and used longer than in Ontology Engineering, we revisited
some notions in the latter. In particular, by revisiting the classification proposed by
Gangemi and Presutti in [3], we propose another way of classifying OPs, which is
strongly related to the ontology development phase in which they are to be used.
Moreover, we discuss ways of reusing OPs, namely by analogy and by extension.
Domain-related OPs are typically reused by extension; while the other types of OPs
are typically reused by analogy. It is worthwhile to point out that a third way is com-
plementary to both: patterns composition. By means of examples, we illustrated how

different ontology conceptual patterns can be reused for developing domain reference
ontologies.

Acknowledgments. This research is funded by the Brazilian Research Funding
Agencies FAPES (PRONEX # 52272362/11) and CNPq (#311578/2011-0).

References

1. Noppens, O., Liebig, T., Ontology Patterns and Beyond - Towards a Universal Pattern
Language. In: Proceedings of the Workshop on Ontology Patterns (WOP 2009), Washing-
ton D.C., USA, 2009.

2. Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A., Reusing Ontology Design
Patterns in a Context Ontology Network. In: Second Workshop on Ontology Patterns
(WOP 2010), Shangai, China, 2010.

3. Gangemi, A., Presutti, V., Ontology Design Patterns. In: Handbook on Ontologies, Second
edition, Staab, S., Studer, R. (Eds.), Springer, 2009, pp. 221 - 243.

4. Blomqvist, E., Gangemi, A., Presutti, V. Experiments on Pattern-based Ontology Design.
In Proceedings of K-CAP 2009, pp. 41-48. 2009.

5. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E. eXtreme Design with Content Ontology
Design Patterns. In: Proceedings of the Workshop on Ontology Patterns (WOP 2009),
Washington D.C., USA, 2009.

6. Gamma, E., Helm, R., Johnson, R.E., Vlissides,J. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

7. Fowler, M. Analysis Patterns: Reusable Object Models. Addison-Wesley Professional
Computing Series, 1997.

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns, John Wiley & Sons, 1996.

9. Clark, P., Thompson, J., Porter, B. Knowledge patterns. In: Proceedings of the 7th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR 2000),
pp. 591–600, San Francisco, 2000.

10. Reich, J.R. Ontological design patterns: Metadata of molecular biological ontologies, in-
formation and knowledge. Proceedings of the 11th International Conference on Database
and Expert Systems Applications, DEXA 2000, pp. 698–709, London, 2000.

11. Svatek, V., Design Patterns for Semantic Web Ontologies: Motivation and Discussion. In:
Proceedings of the 7th Conference on Business Information Systems, Poznan, Poland,
2004.

12. Buschmann, F., Henney, K., Schmidt, D.C., Pattern-Oriented Software Architecture: On
Patterns and Pattern Languages, John Wiley & Sons Ltd, 2007.

13. Schmidt, D. C., Fayad, M., Jonhson, R.E., Software Patterns, Communications of the
ACM, vol. 39, no. 10, October 1996.

14. Hamza, H., Mahdy, A., Fayad, M.E., Cline, M. Extracting domain-specific and domain-
independent patterns. In Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications (OOPSLA '03), New
York, USA, pp. 310-311, 2003.

15. Devedzic, V. Software Patterns, In: Handbook of Software Engineering and Knowledge
Engineering Vol.2 -Emerging Technologies, S.K. Chang (Ed.), World Scientific Pub Co
Inc., 2002.

16. Fowler, M., Patterns of Enterprise Application Architecture, Addison Wesley, 2003.
17. Coplien, J.O., Advanced C++ Programming Styles and Idioms, Addison-Wesley, 1992.
18. Guarino, N.: Formal Ontology and Information Systems. In: Guarino, N. (ed.) Formal On-

tology and Information Systems, pp. 3–15, IOS Press, Amsterdam, 2008.
19. Gangemi, A. Ontology Design Patterns for Semantic Web Content, In: Proc. of the 4th In-

ternational Semantic Web Conference – ISWC’2005, p. 262 – 272, Galway, Ireland, 2005.
20. Falbo, R. A., Barcellos, M.P., Nardi, J.C., Guizzardi, G. Organizing Ontology Design Pat-

terns as Ontology Pattern Languages, 10th Extended Semantic Web Conference, Montpel-
lier, France, 2013.

21. Ontology Design Patterns (ODPs) Public Catalog.
http://www.gong.manchester.ac.uk/odp/html/. Last access in 2nd September 2013.

22. Aranguren, M.E., Antezana, E., Kuiper, M., Stevens, R. Ontology Design Patterns for bio-
ontologies: a case study on the Cell Cycle Ontology. BMC bioinformatics, 9(Suppl 5):S1,
2008.

23. Guizzardi, G., On Ontology, ontologies, Conceptualizations, Modeling Languages and
(Meta)Models, In O. Vasilecas, J. Edler, A. Caplinskas (Org.). Frontiers in Artificial In-
telligence and Applications, Databases and Information Systems IV. IOS Press, Amster-
dam, 2007.

24. Guizzardi, G., Zamborlini, V., A Common Foundational Theory for Bridging two levels in
Ontology-Driven Conceptual Modeling. In: 5th International Conference of Software Lan-
guage Engineering (SLE 2012), Dresden. Germany, 2012.

25. Angele, J., Kifer, M., Lausen, G., Ontologies in F-Logic, In: Handbook on Ontologies, Se-
cond edition, Staab, S., Studer, R. (Eds.), Springer, 2009, pp. 45 – 70.

26. Silbernagl, D., Reasoning with Ontologies in Databases: including optimization strategies,
evaluation and example SQL code, VDM Verlag, 2011.

27. Guizzardi, G. Ontological Foundations for Structural Conceptual Models, Netherlands:
Universal Press, 2005.

28. Guizzardi, G., Falbo, R.A., Guizzardi, R.S.S. Grounding software domain ontologies in the
Unified Foundational Ontology (UFO): the case of the ODE software process ontology. In:
Proceedings of the XI Iberoamerican Workshop on Requirements Engineering and Soft-
ware Environments, IDEAS’2008, Recife, Brazil, pp. 244-251, 2008.

29. Rittgen, P., Translating Metaphors into Design Patterns, In: Advances in Information Sys-
tems Development, Springer, pp. 425 – 436, 2006.

30. Souza, E.F., Falbo, R.A., Vijaykumar, N.L., Using Ontology Patterns for Building a Ref-
erence Sofware Testing Ontology, The 8th International Workshop on Vocabularies, On-
tologies and Rules for the Enterprise (VORTE 2013), Vancouver, Canada, 2013.

http://www.gong.manchester.ac.uk/odp/html/

Reasoning Performance Indicators for Ontology
Design Patterns

Karl Hammar

Jönköping University
P.O. Box 1026

551 11 Jönköping, Sweden
karl.hammar@jth.hj.se

Abstract. Ontologies are increasingly used in systems where perfor-
mance is an important requirement. While there is a lot of work on
reasoning performance-altering structures in ontologies, how these struc-
tures appear in Ontology Design Patterns (ODPs) is as of yet relatively
unknown. This paper surveys existing literature on performance indica-
tors in ontologies applicable to ODPs, and studies how those indicators
are expressed in patterns published on two well known ODP portals.
Based on this, it proposes recommendations and design principles for
the development of new ODPs.

Keywords: OWL, Ontology Design Pattern, reasoning, performance

1 Introduction

The Semantic Web is built upon, and depends on, the use of OWL DL ontologies.
The adoption rate of such ontologies among practitioners is as of yet limited.
Ontology Design Patterns (hereafter ODPs) attempt to simplify ontology de-
velopment for everyday users, by packaging recurring ontology problems, along
with recommended solutions, as recipes or small reusable building blocks [3].
By providing users with such ready-made solutions to common design problems,
ontologies can be developed with less risk of inconsistencies and errors [2], a key
factor if uptake of ontology technology is to be improved. Since their introduction
in 2005, more than 170 Ontology Design Patterns have been published on the
two most prominent ODP portals on the web1. Patterns and pattern-based on-
tology engineering methods have been the topic of a number of research projects
and publications, e.g., pattern typologies [12], agile ontology development with
patterns [11], pattern-based ontology learning [1], ontology transformation [13].

However, less e↵ort has been spent on studying the e↵ects of ODP design on
reasoning performance over resulting ontologies. Certain structures occurring in
Ontology Design Patterns for meronomy modelling have been shown to impact
reasoning performance [9], but which other commonly used ODP features or

1 http://ontologydesignpatterns.org/ and http://odps.sourceforge.net

http://ontologydesignpatterns.org/
http://odps.sourceforge.net

structures that a↵ect performance characteristics is as of yet unknown. The im-
portance of establishing such a list of performance-a↵ecting indicators becomes
obvious when studying use cases in which reasoning with semantic technolo-
gies is performed (complex event processing with stream reasoning, ubiquitous
computing scenarios, etc.). In many of these cases, immediate or rapid system
responses are critical requirements. Consequently, the ontologies employed must
be designed to provide appropriate reasoning performance characteristics.

While obtaining a better understanding of performance-altering structures
in ODPs is an important goal in itself, if the work is to provide practical rec-
ommendations on the use of published ODPs, one needs also study how the
developed performance indicators appear in those ODPs commonly used by the
community. With this in mind, the following research questions were selected for
study:

1. Which existing performance indicators from literature known to a↵ect the
performance of reasoning with ontologies are also applicable to ODPs?

2. How do these performance indicators vary across published ODPs?
3. Which recommendations on reasoning-e�cient ODP design can be made,

based on the answers to the above two questions?

2 Method

In order to answer the research questions, a two-step approach was employed. To
begin with, a literature study on existing ontology performance indicators that
are reusable in describing Ontology Design Patterns was performed, the results
of which answer the first research question. Thereafter, the distribution of these
indicators over published Ontology Design Patterns from two ODP portals was
studied, in order to answer the second question. In the end, recommendations
for ODP developers based on the findings of both these steps were developed.

In the literature study, publications at the main tracks and the associated
workshops of four high-impact conferences dealing with formal knowledge mod-
elling, from 2005 to 2012, were studied. The conferences in question were the
International and Extended Semantic Web Conferences (ISWC and ESWC), the
International Conference on Knowledge Capture (K-CAP), and the International
Conference on Knowledge Engineering and Knowledge Management (EKAW).

All papers matching the above criteria were downloaded, and their abstracts
studied. Abstracts mentioning metrics, indicators, language expressivity e↵ects,
classification performance improvements or performance analyses (in total, 16
papers) were selected for thorough reading. Of these, eight were found to identify
performance-altering structures likely to exist or be relevant in Ontology Design
Patterns. These papers and their contributions are discussed in Section 3.1.

The second research question concerned the study of how performance-altering
indicators varied among the patterns available in the pattern repositories used
by the community. To this end, the reusable OWL building blocks of the patterns
from two well known ODP repositories, http://ontologydesignpatterns.org

http://ontologydesignpatterns.org

and http://odps.sourceforge.net, were downloaded and studied. A modular
expandable tool for measuring ontology or ODP metrics was developed2 specif-
ically for this purpose. The Java-based tool parses an input ontology (or in this
case, ODP module) and based on which metric measurement plugins are located
in the tool’s classpath, measures di↵erent aspects of said ontology. It generates
as output CSV data suitable for post-processing in a spreadsheet or statistics
tool. Plugins for all of the performance related indicators under study (with two
exceptions, detailed in Section 3.2) were developed for this tool, and it was then
executed over the downloaded pattern set.

In analysing the data from the execution of the indicator measurements, a
simple four step process was repeated for each indicator under study:

1. Sort all ODPs by the studied indicator.
2. Observe correlation e↵ects against other indicators. Can any direct or inverse

correlations be observed for whole or part of the set of patterns?
3. Observe distribution of values. Do the indicator values for the di↵erent pat-

terns vary widely or not? Is the distribution even or clustered?
4. For any interesting observation made above, attempt to find an underlying

reason or explanation for the observation, grounded in the OWL ontology
language and established ODP usage or ontology engineering methods.

In performing the above analysis, some interesting correlations were discov-
ered and studied, as shown in Section 3.2. In some cases, an explanation for the
correlations based on the structure of the OWL language and the constructs
within it could also be generated.

3 Findings

The below two sections summarise the key findings of the literature study and
the subsequent indicator variance study.

3.1 Literature Review

In the studied papers, three main types of indicators and corresponding e↵ects
could be identified, namely expressivity profile indicators (i.e., indicators related
to profiles or constraints of ontology language structures available for use), in-
heritance hierarchy structural indicators (i.e., indicators related to the structure
of the subsumption tree), and axiom usage indicators (i.e., general indicators
related to the logical axioms employed in an ontology). Each of these categories
and the indicators found to be associated with them are discussed in the follow-
ing subsections.

2 https://github.com/hammar/OntoStats

http://odps.sourceforge.net
https://github.com/hammar/OntoStats

Profile indicators Urbani et al. discuss the issue of scaling out description
logic reasoning on parallel computing clusters using the MapReduce framework.
They show in [15] that materialising the closure of an RDF graph using RDFS
semantics can be performed using MapReduce, due to certain characteristics of
the RDFS semantics. As shown in [14], the increased expressivity of OWL means
that implementing such parallelisable scalable reasoning over datasets based on
OWL ontologies is significantly more di�cult than when using RDFS. Limiting
themselves to ontologies within the OWL Horst fragment of OWL, the authors
manage to work around these issues and present a resulting solution that enables
reasoning with OWL Horst significantly faster than previous solutions [14].

In [7] Horridge et al. analyse the characteristics of the three OWL 2 profiles,
OWL 2 RL, OWL 2 EL, and OWL 2 QL, and study the adherence to these
profiles among ODPs published on the Web. The three profiles are subsets of
OWL 2, developed by the W3C specifically for particular usages [16]. By limiting
the semantics used, both in terms of actual axioms allowed and the positioning
and use of those axioms, computational properties suitable to di↵erent uses are
achieved. Horridge et al. [7] find that relatively few ODPs fit in these profiles,
and that this may in part be due to modelling practices and recommendations
(e.g., to always declare an inverse for an object property, or the use of cardinality
restrictions where existential restrictions could be used instead).

Developing an ontology that lies solely within OWL Horst or one of the OWL
2 profiles, requires that no axioms exist in the ontology that lies outside of the
target language restriction. Therefore, it is obviously important that ODP users
be aware of the language profile of the patterns that they consider for reuse.
Consequently, the profile indicators are highly relevant when describing ODP
performance characteristics.

Structural indicators Kang et al. [8] perform a thorough evaluation of the
e↵ects of a number of di↵erent ontology metrics on performance in di↵erent
commonly used reasoners. While most of their observations are on e↵ects of
axiomatic indicators, one interesting finding concerns the subsumption hierar-
chy. Kang et al. find that the indicator that they denote tree impurity has a
measurable impact on reasoner performance, such that a high degree of tree
impurity in an ontology correlates to slower reasoning over that same ontology.
This tree impurity metric measures how far the ontology’s inheritance hierarchy
deviates from being a tree, by calculating how many more owl:subClassOf ax-
ioms are present in the ontology than are needed to structure a pure tree. Kang
et al. [8] find that tree impurity has a clear negative impact on computational
e�ciency over an ontology. This finding mirrors the predictions of Gangemi et
al. [4,5] regarding the computational e�ciency e↵ects of subsumption hierarchy
tangledness, which they define as the number of classes in an ontology with mul-
tiple superclasses. While tree impurity and tangledness are measured di↵erently,
they both capture the same underlying design structure (that is, subsumption
hierarchy deviation from a simple one-parent tree).

In [10], LePendu et al. study the characteristics of ontologies in the biomedicine
domain. One of the metrics studied, and found to have a high impact on ma-
terialisation performance, is the depth of the subsumption hierarchy. They note
that for every asserted instance of a subclass, all of the logic axioms pertaining
to each and every superclass must also be calculated. For a shallow ontology, this
may be a matter of just a few classes before the top level class is reached. For a
deeper ontology however, this may be a quite significant amount of entailments
that need to be computed. Kang et al. [8] also study the depth indicator, and
like LePendu et al. find that it contributes to slower reasoning performance.

The structure of the subsumption hierarchy (both depth-wise and in terms of
tree impurity/tangledness) is often a↵ected by extensive pattern use. Given that
a common pattern usage method involves importing and subclassing a reference
building block, and given that patterns often build upon and refine one another
such that this usage method is repeated, extensive pattern usage may quickly
lead to an increased ontology depth or tangledness.

Axiomatic indicators The majority of performance-a↵ecting indicators dis-
cussed in the studied literature concerns the use of particular types of axioms or
structures in an ontology. Two papers in particular contribute to this knowledge,
namely Goncalves et al. [6] and the aforementioned work by Kang et al. [8].

Goncalves et al. [6] investigate performance variability in ontologies, and
details a developed method for isolating performance-degrading sections of on-
tologies, by the authors denoted “hot spots”, for di↵erent reasoners. The removal
of hot spots were found to cut reasoning times by between 81 and 99 %. As a side
e↵ect of their work, the authors notice that the removal of hotspots correlate
with the removal of General Concept Inclusions, GCIs, from the ontologies. GCIs
are subclass or equivalency axioms that have a complex class expression on their
right hand side, for instance (HeartDisease and hasLocation some HeartValve)

SubClassOf CriticalDisease. These results suggest that the number of GCI ax-
ioms in an ontology are useful as indicators of reasoning performance. Given the
relatively high impact of the hot spots/GCIs seen by Goncalves et al. [6], and
given that the existence of a GCI axiom in a single pattern could give rise to
many such hot spots if the pattern is instantiated multiple times, it is important
to study the prevalence of this type of modelling in ODPs.

As mentioned above, Kang et al. [8] evaluate performance e↵ects of a num-
ber of metrics. They find four indicators that show a measurable performance-
altering e↵ect and that can easily be applied to ODPs also:

– Existential quantifications – the number of existential quantification axioms
in an ontology or ODP. This is easiest measured by counting the number of
ObjectSomeValuesFrom axioms in the ontology.

– Cyclomatic complexity – inspired by the same metric as used in software
engineering complexity calculations, this indicator measures the number of
linearly independent paths through the RDF graph, including not only sub-
class relations but any directed edges, which a reasoner needs to traverse in
classifying said graph.

– Class in-degree – the average number of incoming edges to classes in the
ontology. This gives an indication as to how interconnected an ontology is.

– Class out-degree – the inverse of the above indicator, i.e., the average number
of outgoing edges to classes in the ontology.

Summary The performance-altering indicators found via the literature study,
and further examined in the following section, are summarised in Table 1.

Table 1. ODP performance indicators found via literature study.

Indicator Source
Average class in-degree [8]
Average class out-degree [8]
Cyclomatic complexity [8]
Depth of inheritance [10]
Existential quantification count [8]
General concept inclusion count [6]
OWL Horst adherence [15,14]
OWL 2 EL adherence [7,16]
OWL 2 QL adherence [7,16]
OWL 2 RL adherence [7,16]
Tree impurity / Tangledness [8,4]

3.2 Indicator Variance in ODP Repositories

The results of the study of indicator variance are detailed below, with the excep-
tion of a few indicators that were not included, namely cyclomatic complexity,
and the set of OWL profile adherence indicators. It proved practically infeasible
to develop software for reliably measuring the former, and rather than make
assertions based on possibly inexact data, it has been left out of this analysis.
The latter set of indicators has as mentioned above been discussed extensively
in Horridge et al.[7], to which the interested reader is referred. In total, 104
patterns were studied, with an average size in number of classes of about seven,
and in number of properties about 15.

Average class in-degree The values for the average class in-degree indicator
vary between 0.75 and 8, with a median value of 2.39 and an average value of
2.6. The distribution of indicator values over the whole pattern set is shown in
Figure 1. The large majority of patterns (93 %) have a class in-degree of less
than four, whereas a small group of patterns di↵er quite significantly and have
an average value of around six.

Comparing some of the patterns exhibiting high and low values for the aver-
age class in-degree indicator, it was observed that they tended to di↵er in terms
of the number of object properties contained within the patterns. The patterns
exhibiting a high level of class in-degree seemed to contain a larger number of
object properties than those patterns displaying a low level of this indicator. To

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

0"

5"

10"

15"

20"

25"

30"

35"

1" 11" 21" 31" 41" 51" 61" 71" 81"

Cl
as
s%i
n(
de

gr
ee
%

O
bj
ec
t%p

ro
pe

rt
y%
/%
cl
as
s%r
a6

o%

Ontology%Design%Pa9ern%instances%

Object"
property"
count"(moving"
average,"N=3)"

Class"inE
degree"

Fig. 1. Class in-degree and object property per class distributions

test whether this held for the entirety of the pattern set, the object property
counts were mapped against the values of the class in-degree indicator. Such
a mapping should if the observation holds indicate the existence of an correla-
tion between the two mapped indicator value series. The results, as shown in
Figure 1, while not indicating a correlation of the indicators across the entire
studied pattern set, does indeed indicate that the patterns towards the high end
of the spectrum in terms of class in-degree also often contain a higher number
of object properties than the patterns with a lower class in-degree.

A possible explanation for this observation is the use of domain and range
definitions on many object properties in patterns with high average class in-
degree. It is considered good practice to establish such definitions for properties
one adds to an ontology. However, each domain or range definition gives rise
to one incoming RDF edge to the class in question, raising the average class
in-degree indicator. Based on this observation, a recommendation to the e↵ect
of limiting the number of domain and range definitions used in performance-
dependent ontologies can be made. However, there is likely to also be other as
yet unknown causes beside domain and range definitions that that give rise to
high average class in-degrees, for which reason ODP users and developers are
recommended to limit the use of structures that needlessly raise class in-degree.

Average class out-degree The values for the average class out-degree indi-
cator vary between 1 and 3.83, with a median value of 2.75 and an average of
2.64. The distribution of indicator values over the whole pattern set is shown in
Figure 2. The reason why all patterns exhibit a value of at least one is simply
that all defined classes by definition have at least one outgoing subClassOf edge
to another class.

In studying some patterns displaying low or high values, it was observed
that the patterns displaying a higher value seem to be patterns in which class

0"

0,5"

1"

1,5"

2"

2,5"

3"

3,5"

4"

4,5"

0"

5"

10"

15"

20"

25"

30"

35"

1" 11" 21" 31" 41" 51" 61" 71" 81" 91" 101"

Cl
as
s%o

ut
)d
eg
re
e%

An
on

ym
ou

s%c
la
ss
%c
ou

nt
%

Ontology%Design%Pa7ern%instances%

Anonymous"
class"count"
(moving"
average,"N=3)"

Class"outB
degree"

Fig. 2. Class out-degree and Anonymous class count distributions

restrictions are used extensively. Such restrictions are written as a class being
asserted to be either a subclass of or equivalent to a restriction axiom, which
would explain this observation – each subClassOf or equivalentClass axiom adds
an outgoing edge, increasing the value of the indicator. To test whether this
explanation is supported by further evidence, the number of anonymous class
definitions (i.e., restrictions) were plotted against the value of the class out-
degree indicator. The results are presented in Figure 2 which indicates a possible,
if slight, correlation between class out-degree and anonymous class count.

Since the presence of class restrictions can, in the author’s experience, help
guide novice users understand the purpose of classes in an ontology or ODP, this
unexpected performance-related e↵ect of using such restrictions is of particular
interest. Also, given the variation of this indicator’s values over the studied set of
published ODPs, a recommendation as to limiting its use in performance-critical
ontology applications is made.

Depth of inheritance Due to the di�culty of measuring the inferred indicators
across the transitive import closure graph of an ODP using the tools and APIs
available at the time of writing, the values below were only calculated over the
asserted depths of patterns, excluding imports. Moreover, as even this is quite a
di�cult task (due to di↵erent practices on how subclass relations to the top-level
owl:Thing class are expressed), certain simplifications had to be made. These
simplifications include the assumption of a subclass relation to Thing if no other
superclass is asserted within the particular OWL file.

The subsumption hierarchy depth of the patterns varies from 0 to 5.3, with
a median value of 1.5 and an average value of 1.7. In other words, most of the
patterns are not very deep. At the bottom end of this distribution is a fairly
large group (38 of 103 patterns) that have a depth of one or less. This partic-
ularly shallow group appears to consist of two types of patterns. The first type

consist of simpler domain specific vocabularies that do not employ much expres-
sive logics, but rather act as schemas for simple datatypes that may be reused.
Examples include patterns for species habitats, invoices, etc. The second type
consist of very general patterns that define abstract or intangible phenomena
without going into specific details. Examples include patterns modelling phe-
nomena like participation and situation. A large part of the latter group seems
to result from refactoring of top-level ontologies like DOLCE, whereas many
of the patterns in the former group seem to be developed for more concrete
and applied purposes. The patterns from the http://odp.sourceforge.net

repository are generally deeper (with an average depth of 3.29) than those from
the http://ontologydesignpatterns.org portal. However, the latter patterns
generally contain more example classes that would likely be removed before in-
stantiation in real cases, reducing this di↵erence.

While ontology depth is associated with poor performance as discussed by
LePendu et al. [10], the observations above indicate that very shallow patterns
are often either lacking in specificity or logic expressivity, which implies that
they may not be suitable for representing many types of medium-complexity
situations in which patterns may be more useful. The recommendation here is
for ODP developers to not shy away from subsumption hierarchy depth if needed
for modelling the concepts of a domain, but to otherwise avoid constructing
patterns that cause excessively deep ontologies.

Existential quantification count About half the patterns, 51 of 103, con-
tain no explicit existential quantification axioms. If cardinality restrictions are
rewritten into semantically equivalent existential restrictions as suggested in [7],
the number of patterns containing no existential quantification axioms drops to
43. Of the 60 patterns that contain such axioms half, 31, contain one or two
existential quantification axioms each. Studying a number of such patterns it
was observed that the axioms are used sparingly and only when required.

However, in studying the patterns that contained a higher number of exis-
tential quantification axioms (i.e., three or more, as seen in 29 of the patterns),
it was observed that these axioms were sometimes used in seemingly unneeded
ways. For instance, subclasses restating such axioms as were already asserted on
their superclasses, and existential quantification used to assert the coexistence
of two individuals where it seems one individual might well exist on its own.
These observed suboptimal uses of computationally expensive existential quan-
tification axioms motivates a recommendation on limiting their use – if pattern
users wish to add such axioms to restrict their model, the recommended axioms
can instead be included in pattern documentation.

General concept inclusion count GCIs were not displayed by any of the
studied ODPs. The author believes that this is because such constructs are
generally not well supported by ontology engineering tools such as Protégé or
TopBraid Composer. The lack of any patterns displaying values for this indicator
implies that the performance e↵ects of the use of this type of structure in ODPs

http://odp.sourceforge.net
http://ontologydesignpatterns.org

is negligible in practice. All the same, a recommendation can be made to the
e↵ect of limiting the use of these structures when developing new patterns.

Tree Impurity / Tangledness Due to the mentioned inconsistencies in how
subclass relations to the owl:Thing concept are modelled, the tree impurity in-
dicator is di�cult to measure in a reliable manner. However, as mentioned, this
indicator measures the same underlying structure as the tangledness indicator,
i.e., how far an ontology inheritance hierarchy deviates from being a tree with
one parent class per subclass. Therefore, observations regarding tangledness vari-
ation in the dataset should carry over to the tree impurity indicator also. Of the
103 studied patterns, only three display any degree of directly asserted tangled-
ness at all. In all three of these cases, the number of multi-parent classes in the
pattern was one. It appears that the use of asserted multiple inheritance in ODPs
is rare. However, it should be noted that the number of inferred multi-parent
classes may be significantly greater than this number. While inferred tangledness
has for technical reasons been infeasible to measure in this study, its e↵ect on
the performance of reasoning may be considerable.

4 Discussion

Table 2 summarises the recommendations presented in earlier sections on how
to develop and apply ODPs for uses in which reasoning performance matters.
These recommendations suggest some design principles for ODP development
and use:

– When developing patterns, don’t overspecify. While an ODP creator’s under-
standing of a domain may warrant adding domain and range restrictions to
properties, or to implement some existential or cardinality restriction (be-
cause that is how the real world concept being modelled actually works),
doing so will possibly have detrimental performance e↵ects. Ensure that re-
quirements on the ODP are made explicit, and implement only such axioms
as are required to fulfill those requirements. Do not aim for further com-
pleteness for the sake of neatness.

– If the reusable OWL building block associated with a certain ODP does
not display suitable reasoning characteristics, i.e., if it is overspecified, has
a needlessly deep subsumption hierarchy, or is outside of a computation-
friendly OWL 2 profile, don’t be afraid to rewrite it. Many patterns encode
a good practical solution to some modelling problem, which may be reused
even if the associated OWL file is not directly suitable for one’s purpose.

– The problem/solution mapping presented by a pattern may be more reusable
than the OWL file building block provided with the pattern, as suggested
above. Therefore, when when publishing a new Ontology Design Pattern,
ensure su�cient documentation exists on the pattern’s requirements, the
problem that it solves, and how it solves that problem, such that users actu-

ally can reengineer the pattern if needed. Presently several published ODPs
are only partially described, e.g., in the NeOn ODP portal 3.

Table 2. Recommendations on performance e�cient ODP design.

Indicator Recommendation
Average class in-degree Avoid designs that give a high count of ingoing edges per node.
Average class out-degree Avoid designs that give a high count of outgoing edges per node.
Class restrictions Limit the use of class restrictions (i.e., enumerations, property re-

strictions, intersections, unions, or complements) to the minimum
required by the ODP requirements.

Depth of inheritance Avoid developing ODPs that cause a deep subsumption hierarchy.
Existential quantification count Limit the use of existential quantification axioms to the minimum

required by the ODP requirements. Even if the addition of such an
axiom makes “real world” intuitive sense, first consider whether
it is strictly necessary for the purpose of the ODP.

General concept inclusion count Rewrite GCI axioms into property restrictions if possible. While
such restrictions also cause reasoning performance e↵ects, they
are not known to be associated with the type of performance “hot
spots” which GCIs can give rise to.

OWL Horst adherence If the pattern is specifically intended to be used in ontologies
which will be reasoned over using MapReduce, constrain the ax-
ioms allowed to the OWL Horst fragment of OWL.

OWL 2 EL adherence If the pattern is specifically intended to be used in large ontologies,
constrain the axioms allowed to the OQL 2 EL profile.

OWL 2 QL adherence If the pattern is specifically intended to be used in ontologies and
systems where query answering capability over large data sets is
prioritised, constrain the axioms allowed to the OWL 2 QL profile.

OWL 2 RL adherence If the pattern is specifically intended to be used in systems where
predictable reasoning performance is prioritised, or rule engines
used, constrain the axioms allowed to the OWL 2 RL profile.

Property domain and range re-
strictions

Limit the number of property domain and range definitions to
the minimum required by the ODP requirements, as these may
otherwise give rise to ine�cient high class in-degree values.

Tree impurity / Tangledness Avoid the use of multi-parent classes. In constructing class re-
striction axioms, avoid restrictions that give rise to inferred tan-
gledness, i.e., axioms which give rise to unions or intersections of
classes from di↵erent branches in the subsumption tree.

5 Conclusions

In this paper we have studied which published indicators of reasoning perfor-
mance for ontologies that carry over to Ontology Design Patterns, and how
those indicators are expressed in the ODPs published in two well-known pat-
tern portals on the web. The results indicate that certain structures occurring
in published ODPs can give rise to unfavourable performance when reasoning
over ontologies built using these ODPs. Recommendations and design principles
have been presented regarding trade-o↵s and prioritisations that ODP users and
developers may need to make in employing or constructing Ontology Design
Patterns for usage in systems where performance e�ciency is of importance.

3 http://ontologydesignpatterns.org/

http://ontologydesignpatterns.org/

References

1. Blomqvist, E.: Semi-automatic Ontology Construction based on Patterns. Ph.D.
thesis, Linköping University (2009)

2. Blomqvist, E., Gangemi, A., Presutti, V.: Experiments on Pattern-based Ontol-
ogy Design. In: Proceedings of the Fifth International Conference on Knowledge
Capture. pp. 41–48. ACM (2009)

3. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: The Se-
mantic Web–ISWC 2005. pp. 262–276. Springer (2005)

4. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling Ontology
Evaluation and Validation. In: The Semantic Web: Research and Applications.
pp. 140–154. Springer (2006)

5. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J., Gil, R., Bolici, F., Strig-
nano, O.: Ontology evaluation and validation. Tech. rep., Laboratory for Applied
Ontology, ISTC-CNR (2005)

6. Goncalves, R.S., Parsia, B., Sattler, U.: Performance Heterogeneity and Approxi-
mate Reasoning in Description Logic Ontologies. In: The Semantic Web – ISWC
2012. pp. 82–98 (2012)

7. Horridge, M., Aranguren, M.E., Mortensen, J., Musen, M., Noy, N.F.: Ontology
Design Pattern Language Expressivity Requirements. In: Proceedings of the 3rd
Workshop on Ontology Patterns (2012)

8. Kang, Y.B., Li, Y.F., Krishnaswamy, S.: Predicting Reasoning Performance Using
Ontology Metrics. In: The Semantic Web – ISWC 2012. pp. 198–214 (2012)

9. Lefort, L., Taylor, K., Ratcli↵e, D.: Towards Scalable Ontology Engineering Pat-
terns: Lessons Learned from an Experiment based on W3C’s Part-whole Guide-
lines. In: Proceedings of the Second Australasian Workshop on Advances in On-
tologies. pp. 31–40. Australian Computer Society, Inc. (2006)

10. LePendu, P., Noy, N., Jonquet, C., Alexander, P., Shah, N., Musen, M.: Optimize
First, Buy Later: Analyzing Metrics to Ramp-up Very Large Knowledge Bases. In:
The Semantic Web – ISWC 2010. pp. 486–501. Springer (2010)

11. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E.: eXtreme Design with Content
Ontology Design Patterns. In: Proceedings of the Workshop on Ontology Patterns
(WOP), collocated with International Semantic Web Conference (ISWC) (2009)

12. Presutti, V., Gangemi, A., David, S., Aguado de Cea, G., Suárez-Figueroa, M.C.,
Montiel-Ponsoda, E., Poveda, M.: D2.5.1: A Library of Ontology Design Patterns:
Reusable Solutions for Collaborative Design of Networked Ontologies. Tech. rep.,
NeOn Project (2007)

13. Svátek, V., Šváb-Zamazal, O., Vacura, M.: Adapting Ontologies to Content Pat-
terns using Transformation Patterns. In: Workshop on Ontology Patterns (2010)

14. Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., Bal, H.: OWL reasoning
with WebPIE: calculating the closure of 100 billion triples. In: The Semantic Web:
Research and Applications. Springer (2010)

15. Urbani, J., Kotoulas, S., Oren, E., Van Harmelen, F.: Scalable Distributed Rea-
soning using MapReduce. In: The Semantic Web - ISWC 2009. Springer (2009)

16. W3C: OWL 2 Web Ontology Language Profiles (Second Edition), http://www.w3.
org/TR/owl2-profiles/, checked on: 2013-02-27

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/

Detecting Good Practices and Pitfalls when Publishing
Vocabularies on the Web

María Poveda-Villalón1, Bernard Vatant2, Mari Carmen Suárez-Figueroa1, Asunción
Gómez-Pérez1

1Ontology Engineering Group. Universidad Politécnica de Madrid. Spain.
2Mondeca, Paris, France.

mpoveda@fi.upm.es, bernard.vatant@mondeca.com, {mcsuarez,
asun}@fi.upm.es

Abstract. The uptake of Linked Data (LD) has promoted the proliferation of
datasets and their associated ontologies bringing their semantic to the data being
published. These ontologies should be evaluated at different stages, both during
their development and their publication. As important as correctly modelling
the intended part of the world to be captured in an ontology, is publishing, shar-
ing and facilitating the (re)use of the obtained model. In this paper, 11 evalua-
tion characteristics, with respect to publish, share and facilitate the reuse, are
proposed. In particular, 6 good practices and 5 pitfalls are presented, together
with their associated detection methods. In addition, a grid-based rating system
is generated showing the results of analysing the vocabularies gathered in LOV
repository. Both contributions, the set of evaluation characteristics and the grid
system, could be useful for ontologists in order to reuse existing LD vocabular-
ies or to check the one being built.

Keywords: ontology, vocabulary, linked data, ontology publication, ontology
evaluation, pitfalls, good practices

1 Introduction

Vocabularies or Ontologies1 bring their semantics to Linked Data (LD)2 [3], by
formally defining shared sets of classes and properties, using semantic standards such
as RDFS or OWL. When a vocabulary element is used in a RDF dataset through its
URI, nothing more is generally declared in this dataset about this element, and that is
a good practice since datasets have not to re-define URIs already defined in external
vocabularies. In order to understand the meaning of such an URI, both humans and
applications should be able to de-reference it, discover the context in which it has

1 At this moment, there is no clear division between what is referred to as “vocabularies” and

“ontologies” (http://www.w3.org/standards/semanticweb/ontology). For this reason, we will
use both terms indistinctly in this paper.

2 http://www.w3.org/standards/semanticweb/ontology

been formally defined. This context is typically a RDFS or OWL file and the
matching HTML documentation. Both files are, in the best of cases, available from
the ontology URI through proper content negotiation implementation over HTTP
protocol. Both human-readable and machine-consumable information should provide,
not only the semantics of the elements defined in its namespace, but also a reasonable
amount of metadata about the vocabulary (dates, creator, publisher, versions, etc.).

 The Linked Open Vocabularies project (LOV)3 is intended to gather and describe
those vocabularies used or potentially usable by LD and to provide indicators of their
relevancy. Each vocabulary in LOV is described by metadata gathered either from its
formal publication, or from the vocabulary documentation or communication with the
publishers, or from the vocabulary content itself. Two years after its launch, LOV has
been widely acknowledged and embraced by the LD community.

A fundamental feature for the scope of our research is that each entry in LOV is
uniquely identified by a vocabulary URI, and is generally associated with a unique
namespace URI. Given the variety of interpretations and so many different implemen-
tation practices we have discovered in LOV, either OWL standards have underspeci-
fied the definition and relationship between those two URIs, or the specification has
been largely either ignored or misunderstood. The simplest configuration is to have
these two URIs being the same. But many other configurations are possible and are
indeed observed. Moreover, content negotiation on the namespace does not necessari-
ly leads to vocabulary URI.

An application dedicated to consume vocabularies is not likely to be prepared to
such a variety of configurations. It is likely to identify the vocabulary by either or
both the namespace URI or the vocabulary URI. Vocabulary publishing practices can
be classified as “good” or “bad” insofar as they ease or impede such applications.

In this paper, we have conducted a detailed analysis of more than 350 vocabularies
gathered in the LOV registry. Our aim is to automatize the detection of good practices
and common pitfalls when publishing vocabularies in order to ease the work of appli-
cations willing to access and consume LOV vocabularies with no more initial infor-
mation than the vocabulary URI, its namespace and the prefix assigned in LOV. The
results of such scan is: (1) a non exhaustive list of best practices and common pitfalls
about publishing LD vocabularies, (2) specific methods for detecting such good prac-
tices and common pitfalls, (3) some metadata about ontology quality (regarding the
appearance or lack of good practices and pitfalls) that could be added to the vocabu-
lary metadata stored in LOV, and (4) the inclusion of pitfalls in services such as
OOPS!4 to help eager vocabulary managers to check the quality of their vocabularies
prior to their publication.

The structure of the paper is the following. Section 2 introduces and describes the
framework with the evaluation characteristics to be used in the evaluation of LOV
vocabularies. Section 3 presents the detection methods implemented for checking the
characteristics presented in Section 2. The results of executing such detection meth-
ods over 355 vocabularies registered in LOV and an analysis of the obtained results
are shown in Section 4. Finally, Section 5 exposes related research efforts and Section
6 presents some concluding remarks and future lines of work.!

3 http://lov.okfn.org
4 http://www.oeg-upm.net/oops

2 Good practices and pitfalls for publishing vocabularies

Main guidelines for publishing data over the web are the extremely well-known
Linked Data principles and the Linked Open Data 5 Star rating system defined by
Tim Bernes-Lee5. More precisely, the rating system defines the following levels
(taken literally from the source):
LOD1. Available on the web (whatever format) but with an open licence, to be

Open Data
LOD2. Available as machine-readable structured data (e.g. excel instead of

image scan of a table)
LOD3. As (2) plus non-proprietary format (e.g. CSV instead of excel)
LOD4. All the above plus, Use open standards from W3C (RDF and SPARQL) to

identify things, so that people can point at your stuff
LOD5. All the above plus Link your data to other people’s data to provide

context
More specific recommendations about publishing ontologies on the web have been

proposed inspired by the above-mentioned 5-star linked data scale. We will refer to it
along this paper as the “Linked data vocabulary 5-start rating system”6 that defines
the following recommendations (taken literally from the source):
LDV1. Publish your vocabulary on the Web at a stable URI
LDV2. Provide human-readable documentation and basic metadata such as

creator, publisher, date of creation, last modification, version number
LDV3. Provide labels and descriptions, if possible in several languages, to make

your vocabulary usable in multiple linguistic scopes
LDV4. Make your vocabulary available via its namespace URI, both as a formal

file and human-readable documentation, using content negotiation
LDV5. Link to other vocabularies by re-using elements rather than re-inventing

Along the rest of the paper we will refer to the points stated in these two rating sys-
tems as LOD or LDV plus its ordinal numeration according to the lists above. We will
use some of these points or recommendations to support the good practices and pit-
falls proposed in this paper. We will also point to the 10 rules [1] for designing persis-
tent URI, since some points are also applicable.

In the following, we describe the 11 characteristics we have identified when pub-
lishing ontologies on the Web. It should be noted that in the remaining the term
“characteristics” will be used for referring to the set of both good practices and pit-
falls. That is, there are 11 characteristics described here, 6 of them represent good
practices and 5 of them represent pitfalls. Each characteristic has an identifier, a de-
scription and one example of an ontology holding that characteristic. The identifiers
are on the form of GPX for good practices where the X is a numerical identifier, in
this case starting in 1. For pitfalls, the identifiers are on the form of PY where Y is a
numerical identifier. In this case, as the pitfalls here defined will be included in
OOPS! catalogue7, the numeration follows to the one given in the catalogue to avoid
confusion and help the reader to find each pitfall both along this paper and within the

5 http://www.w3.org/DesignIssues/LinkedData.html
6 http://bvatant.blogspot.fr/2012/02/is-your-linked-data-vocabulary-5-star_9588.html
7 http://www.oeg-upm.net/oops/catalogue.jsp

catalogue by the same identifier. For the examples, we refer to the vocabularies regis-
tered in LOV.

2.1 Good practices proposal

The following six characteristics represent our proposal of good practices in
ontologies regarding publishing issues and metadata in an online ontology.

GP1. Provide RDF description: In order to make an ontology more reusable one
should publish it on an stable URI (LDV1) providing machine-readable for-
mats using open standards from W3C to identify things (LOD4).
• Example: the “Configuration ontology (cold)” ontology with URI

http://purl.org/configurationontology provides a turtle serialization when
looking up its URI.

GP2. Provide HTML documentation: It is important to provide human-readable
documentation (LDV2) so that third parties (data publishers, ontology devel-
opers, etc.) can understand the ontology more easily, boosting, therefore, its
use (e.g. describing data from) and reuse (e.g. within another ontology).
• Example: “Accommodation Ontology Language Reference (acco)”,

which URI is http://purl.org/acco/ns, provides HTML documentation by
redirecting to http://ontologies.sti-innsbruck.at/acco/ns.html.

GP3. Content negotiation for RDF: According to (a) LDV4, (b) the best recipes
for publishing vocabularies8 “It is accepted as a principle of good practice that
HTTP clients SHOULD include an 'Accept:' field in a request header, explicit-
ly specifying those content types that may be handled.” and (c) the rule “Im-
plement 303 redirects for real-world objects” proposed in [1], it is a good
practice to provide RDF description of the vocabulary using content negotia-
tion mechanisms to retrieve it when the Accept header indicates this format.
• Example: “ACM Classification Ontology (acm)” with URI

http://www.rkbexplorer.com/ontologies/acm provides correct content ne-
gotiation mechanism when asking for RDF content.

GP4. Content negotiation for HTML: According to (a) LDV4, (b) the best recipes
for publishing vocabularies “It is accepted as a principle of good practice that
HTTP clients SHOULD include an 'Accept:' field in a request header, explicit-
ly specifying those content types that may be handled.” and (c) the rule “Im-
plement 303 redirects for real-world objects” proposed in [1], it is a good
practice to provide HTML description of the vocabulary using content negotia-
tion mechanisms to retrieve it when the Accept header indicates this format.
• Example: “Agent Relationship Ontology (agrelon)” with URI http://d-

nb.info/standards/elementset/agrelon.owl# implements correct content
negotiation mechanism when requesting (X)HTML.

GP5. Provide vann metadata: As an ontology URI does not necessarily corre-
sponds to the namespace where the ontology elements are defined it is a good
practice to indicate by means of metadata the namespace used for defining

8 http://www.w3.org/TR/swbp-vocab-pub/

them. In this sense, we also consider a good practice to indicate a preferred
prefix used when referring to the given ontology. This good practice is related
to LDV2 as it is related with the metadata provided within the ontology.
• Example: “The Lingvoj Ontology (lingvo)” with URI

http://www.lingvoj.org/ontology it a good example of providing vann
metadata to indicate the preferred namespace and prefix for the ontology.

GP6. Well-established prefix: Even though it is no crucial, it would be desirable
that a prefix used for a given vocabulary is well-established and there is con-
sensus about it across applications. For example, in the case of “foaf” there is
no doubt to which vocabulary is this prefix referring to.
• Example: “Algorithms Ontology (algo)” with URI

http://securitytoolbox.appspot.com/securityAlgorithms has a consistent
prefix across systems, in this case, LOV and prefix.cc9.

2.2 Pitfalls proposed

The following five characteristics represent our proposal for pitfalls in ontologies
regarding publishing issues and metadata. These five characteristics represent
undesirable situations to be found in an online ontology, or in other words, a publisher
team would not like to see these characteristics in its ontologies.

P36. URI contains file extension: Guidelines in [1] suggest avoiding file extension
in persistent URIs, particularly those related to the technology used, as for ex-
ample “.php” or “.py”. In our case we have adapted it to the ontology web lan-
guages used to formalized ontologies and their serializations. In this regard, we
consider as pitfall including file extensions as “.owl”, “.rdf”, “.ttl”, “.n3” and
“.rdfxml” in an ontology URI.
• Example: “BioPAX Level 3 ontology (biopax)” ontology’s URI

(http://www.biopax.org/release/biopax-level3.owl) contains the extension
“.owl” related to the technology used.

P37. Ontology not available: This bad practice is about not meeting LOD1 from
Linked Data star system that stars “On the web” and LDV1 that says “Publish
your vocabulary on the Web at a stable URI”.
• Example: “Ontology Security (ontosec)” which URI is

http://www.semanticweb.org/ontologies/2008/11/OntologySecurity.owl
is not available online as RDF nor as HTML10.

P38. No OWL ontology declaration: The owl:Ontology tag aims at gathering
metadata about a given ontology as version information, creation date, etc. It is
also used to declare the inclusion of other ontologies. Not declaring this tag is
consider as a bad practice for owl ontologies as it is a symptom of not provid-
ing useful metadata as proposed in LDV2.
• Example: “Creative Commons Rights Expression Language (cc)” ontol-

ogy with URI http://creativecommons.org/ns does not have any

9 http://prefix.cc/
10 By the time of carrying out this study at 19th of June of 2013.

owl:Ontology declaration in its RDF file even though there are other
OWL elements used as, for example, owl:equivalentProperty.

P39. Ambiguous namespace: In the case of not having defined the ontology URI
nor the xml:base namespace, the ontology namespace is matched to the file lo-
cation. This situation is not desirable as the location of a file might change
while the ontology should remain stable as proposed in LDV1.
• Example: “Basic Access Control ontology (acl)” with URI

http://www.w3.org/ns/auth/acl has no owl:Ontology tag nor xml:base def-
inition.

P40. Namespace hijacking: This bad practice refers to the situation when an ontol-
ogy is reusing or referring to terms from other namespaces that are not defined
in such namespace. This is an undesirable situation as no information could be
retrieve when looking up those undefined terms, in addition, there would be no
meaning or semantic behind them. In addition this practice is against Linked
Data publishing guidelines provided in [3] “Only define new terms in a
namespace that you control.”
• Example: the “WSMO-Lite Ontology (wl)” which URI is

http://www.wsmo.org/ns/wsmo-lite#, uses
http://www.w3.org/2000/01/rdf-schema#Property" that is not defined in
the rdf namespace (http://www.w3.org/2000/01/rdf-schema#) instead of
using http://www.w3.org/1999/02/22-rdf-syntax-ns#Property, that is ac-
tually defined in the rdfs namespace (http://www.w3.org/1999/02/22-rdf-
syntax-ns#).

2.3 Dependencies between good practices and pitfalls

It is obvious that some good practices and pitfalls appearance is conditional upon the
appearance of another one. In this sense, some characteristics block the potential
appearance of others, for example, if it not possible to retrieve the RDF description of
an ontology it cannot be checked whether it has vann metadata defined in it. These
connections are shown in Figure 1 by means of the relation “X depends on Y”.

GP1:%Provide%%RDF%
descrip2on%

P36:%URI%contains%file%
extension%

P40:%Namespace%
hijacking%

P39:%Ambiguous%
namespace%

P38:No%OWL%
ontology%declara2on%

P37:%Ontology%not%
available%

GP2:%Provide%HTML%
documenta2on%

GP3:%Content%
nego2a2on%for%RDF%

GP4:%Content%
nego2a2on%for%HTML%

GP5:%Provide%vann%
metadata%

GP6:%WellV
established%prefix%

X%depends%on%Y%

X%is%more%specific%than%Y%

Legend&

Good%Prac2ce%

PiYall%

Figure 1. Dependencies between good practices and pitfalls.

Another dependency between characteristics is the case of a good practice or a pit-
fall being more specific than other. For example, providing HTML documentation

implementing correct content negotiation mechanisms is more specific than just serv-
ing HTML documentation. These associations are shown in Figure 1 by means of the
relation “X is more specific than Y”. For these cases we need the most general char-
acteristic to be true in order to check a more specific one. The opposite is also possi-
ble, for example, for “P37. Not available” to be possible “GP1. Provide RDF descrip-
tion” and “GP2. Provide HTML description” have to be false. This information is
important from the publisher point of view as it indicates which detections could be
affected when correcting another issue.

3 Description of the methods used to identify good practices
and pitfalls in ontologies

In this section, the detection methods used within this study for each good practice
(Section 3.1) and pitfall (Section 3.2) are detailed. These methods have been coded
and applied over the 355 vocabularies registered in LOV at the moment of carrying
out this study. The results and analysis of such execution are shown in Section 4.

3.1 Good practices detection methods

Detection method for GP1. Provide RDF description: To check whether the
ontology, given its URI it, can be loaded and processed by means of an RDF
API, in our case we use JENA11.

Detection method for GP2. Provide HTML documentation: To check
whether, given an ontology URI, an HTML document is retrieved when re-
questing HTML in the accept header. This is checked by means of looking
for HTML tags in the retrieved content. We do not use any HTML parser as
they add the tag needed to make a valid HTML page from sources that do not
really follow this syntax.

Detection method for GP3. Content negotiation for RDF: To check whether,
given an ontology URI, it provides an rdf/xml serialization when asking for
RDF in the accept header and it implements the redirections mechanism:
303-200. We use Vapour12 for checking this point and adapted its behaviour
for purl ontologies considering also the sequence 302-303-200.

Detection method for GP4. Content negotiation for HTML: To check
whether, given an ontology URI, it provides an HTML document when ask-
ing for HTML in the accept header and it implements the redirections mech-
anism: 303-200. We use Vapour for checking this point and adapted its be-
haviour for purl ontologies considering also the sequence 302-303-200.

Detection method for GP5. Provide vann metadata: To check whether there
is at least one result for the following SPARQL query executed over the on-
tology model loaded in JENA:

11 http://jena.apache.org/
12 http://validator.linkeddata.org/vapour

SELECT ?prefPrefix ?prefNS WHERE{
 OPTIONAL {?s vann:preferredNamespacePrefix ? prefPrefix.}
 OPTIONAL {?s vann:preferredNamespaceUri ?prefNS.}}

Detection method for GP6. Well-established prefix: To check that the prefix
defined in LOV for a given ontology matches with the one defined in pre-
fix.cc. The detection method first, checks if given the ontology namespace
we obtain from prefix.cc the same prefix as declared in LOV. If no prefix is
retrieved, the service is used the other way around, the namespace recorded
in prefix.cc for the prefix given in LOV is requested. If the two prefixes (the
one from LOV and the one obtained, if any, from prefix.cc) are equal we say
that the ontology meets this characteristic, otherwise it does not.

3.2 Pitfalls detection methods

Detection method for P36. URI contains file extension: To check whether
the ontology URI contains the string “.owl” or “.rdf” or “.n3” or “.ttl”.

Detection method for P37. Ontology not available: To check whether nei-
ther GP1 nor GP2 hold, that is, if they both are false.

Detection method for P38. No OWL ontology declaration: To check wheth-
er there is an “owl:Ontology” tag defined in the ontology or not. It is worth
mentioning that this check is done over the raw text containing the RDF code
and applying the following seven regular expressions:

<owl:Ontology rdf:about="
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Ontology"/>
a(\\s+)owl:Ontology(\\s*);
rdf:type(\\s+)owl:Ontology(\\s*);
a(\\s+)owl:Ontology(\\s*),
rdf:type(\\s+)owl:Ontology(\\s*),
<owl:Ontology>

Detection method for P39. Ambiguous namespace: To check whether the
RDF code of a given ontology matches at least one of the following cases:
a. There is no “owl:Ontology” tag declaration nor “xml:base” defined.
b. There is no “owl:Ontology” tag declaration and the “xml:base” is empty.
c. The “rdf:about” in the “owl:Ontology” tag declaration is empty and there

is no “xml:base” defined.
d. The rdf:about in the “owl:Ontology” tag and the “xml:base” are empty.

Detection method for P40. Namespace hijacking: For detecting this pitfall
we rely on Triple Checker13. It should be noted that we only consider as error
the case of an ontology using undefined terms in a namespace even though
Triple Checker also warns about other issues. For example, analysing “Ap-
pearances Ontology Specification”14 we consider as P40 the case of the term

13 http://graphite.ecs.soton.ac.uk/checker/
14 A copy of the result given by Triple Checker for the “Appearances Ontology Specification”

at 11th of June of 2013 is available at http://goo.gl/MD9FDo

“http://swrc.ontoware.org/ontology#date-added” however other warnings are
not, for example, the one given for the term “http://rdf.muninn-
project.org/ontologies/muninn#wikipedia_version”.

4 Results and Analysis over LOV vocabularies

In this section, results and statistics for the LOV ecosystem status at 19th of June of
2013 are shown. Main motivations for choosing vocabularies in LOV as vocabulary
registry for carrying out this study are the facts that (a) the ecosystem is updated and
manually curated, (b) contains a reasonable number of vocabularies registered (more
than 350) and (c) provides complete information and trustable values for the data
needed (in our case we need: namespace, URI and prefix) for each vocabulary.

Figure 2 shows for each characteristic (good practice or pitfall) how many times it
has been detected within the 355 analyzed vocabularies. For example, the first column
shows that “GP1. Provide RDF description” appears in 308 ontologies (marked as
‘Good Practice detected’) and it does not appear in 47 (marked as ‘Good Practice not
detected’). For the pitfalls, in the seventh column we observe that “P36. URI contains
file extension” appears in 39 ontologies (marked as ‘Pitfall detected’), while it does
not appear in 316 (marked as ‘Pitfall not detected’).

Figure 2. Good practices and pitfalls frequency.

The information shown in Figure 3 represents the distribution of good practices (a)
and pitfalls (b) among the total number of appearance. That is, looking at the pie chart
in the right, the slice for P40 means that among all the pitfalls appearances over the
355 ontologies (a total of 303: the sum of all the values for ‘Pitfall detected’ in Figure
2), 35% it has been a case of “P40. Namespace hijacking”.

From Figure 2 and Figure 3 we see that most of the good practices are present in
more than half of the ontologies analysed, being the most popular “GP1. Provide RDF
description” and “GP6. Well-established prefix”. Even though GP1 is the good prac-
tice appearing most it is still alarming that in more than 40 ontologies they could not
have been processed programmatically. This is clearly a problem as it impedes the the
ontology (re)usability and, in case some data is annotated with such an ontology, it
semantics could not be retrieved, turning it into meaningless data. The high appear-
ance of GP6 might be surprising as it is quite specific and requires and extra effort

from ontology managers. This high frequency is due to the efforts from LOV curators
editing prefix.cc content to keep as many prefixes as possible equal in both systems.
Regarding the pitfalls, we can observe that they are scarcely present apart from “P40.
Namespace hijacking” that have a high frequency. Which is also alarming as defining
terms in namespaces out of our control would lead to de-referenceability and lack of
semantics issues, indeed it clearly goes against main guidelines for publishing LD [3].

(a). Good practices distribution

(b). Pitfalls distribution

Figure 3. Good practices and pitfalls appearance distribution.

Figure 4 shows the number of ontologies that have a given number of good prac-
tices and pitfalls. For example, the bubble in the top row and third column starting
from the left means that there are 32 ontologies having 2 good practices and 0 pitfalls.
In this grid we see that most of the ontologies have none, one or two pitfalls while
most of the ontologies have between 2 and 5 good practices. Even though the general
landscape is not bad, there is still work to do in order to achieve the ideal situation
where all the vocabularies are placed in the right corner at the top, that is, having the
maximum number of good practices implemented and none pitfalls. It should be noted
that the information shown in Figure 4 has been condensed and that a detailed grid
showing the name of the ontologies is available at http://goo.gl/zu9ZbW.

Figure 4. Number of vocabularies by good practices and pitfalls accumulated grid.

5 Related work

Ontology evaluation is a key process that should be performed at different stages of
the ontology development and deployment. As important as correctly modelling the
intended part of the world to be captured in an ontology, is publishing the model
following good practices and avoiding bad practices.

However, apart from the aforementioned publishing recommendations (See Sec-
tion 2), to the best of our knowledge, most of the evaluation approaches are focused
on the ontology content quality or syntax checking and there is not too much research
on approaches for validating the ontology publication process.

Regarding ontology content quality evaluation, and not directly related to LD fea-
tures, it is important to mention plug-ins for desktop applications as XDTools plug-
in15 for NeOn Toolkit and OntoCheck plug-in16 for Protégé; the wiki-based ontology
editor MoKi [5] that incorporates ontology evaluation functionalities; and the online
tool OOPS! [6] that detects potential pitfalls in ontologies.

In addition, validation services for RDF and LD have also been developed. One of
the most popular tools is the W3C RDF Validation Service17 that checks the syntax of
RDF documents. In this regard, RDF:Alerts18 also checks for syntax errors, undefined
terms, among others. Regarding protocol issues, the online tools Vapour19 [2] and
Hyperthing20 aim at validating the compliance of a resource according to LD publica-
tion rules. These tools check the de-referenceability of a given URI.

We can also mention evaluation works with respect to SKOS vocabularies where
several tools have been proposed. Those that check characteristics related to LD, are
qSKOS [4] that checks missing in and out links, broken links, undefined SKOS re-
sources and HTTP URI scheme violation; and PoolParty21 that also checks URI cor-
rectness.

6 Conclusions and future work

Along this paper 6 good practices and 5 pitfalls have been proposed and described.
Detection methods for each of them have also been suggested and implemented22.
With this contribution, ontology evaluation tools and quality features catalogues could
be extended. In addition, an evaluation of the good practices and pitfalls detection has
been carried out over 355 vocabularies registered in LOV.

A grid-based rating system has also been proposed. In this grid23 the vocabularies
are positioned according to the total number of good practices and pitfalls appearing.

15 http://neon-toolkit.org/wiki/2.3.1/XDTools
16 http://protegewiki.stanford.edu/wiki/OntoCheck
17 http://www.w3.org/RDF/Validator
18 http://swse.deri.org/RDFAlerts
19 http://validator.linkeddata.org/vapour
20 http://www.hyperthing.org/
21 http://demo.semantic-web.at:8080/SkosServices/check
22 Complete execution results are provided at http://goo.gl/zu9ZbW
23 It refers to the detailed grid available at http://goo.gl/zu9ZbW instead of the one in section 4.

This grid could be used by (a) LOV curators in order to identify which vocabularies
need to be reviewed and (b) vocabulary authors and publishers in order to detect pos-
sible improvements by meeting more good practices and avoiding pitfalls.

First conclusion we can draw is that vocabularies in LOV seem to be well main-
tained and likely to be high quality. It could be due to the fact that the LOV ecosys-
tem is reviewed and conflictive vocabularies authors are contacted when a problem is
encountered and, in the worst case, the vocabularies are deleted from the ecosystem.
In this way, LOV administrators keep a high standard for the vocabularies registered.
That is, it is a goodness of a semi-handcrafted registry against crawlers gathering
vocabularies and ontologies over the web with little or no review and maintenance.

Second, it is worth mentioning that some practices that one would not expect to
find in a stable and well-established ontology are surprisingly quite present within the
analysed ontologies, e.g. making the RDF code of the ontology available online or not
using terms from other namespaces that are not actually defined in such namespace.

Third, it is worth mentioning that it is difficult to define the division line between
good practices and pitfalls as in some cases the absence of a good practice (e.g. “GP1.
Provide RDF description”) could be taken as a pitfall and the other way round. How-
ever, it does not hold for all of the good practices and pitfalls defined in this work. For
example, the lack of some pitfalls (e.g. “P40. Namespace hijacking”) does not really
represent a good practice or a high quality point for the ontology.

Future lines of work will include to deal with the detection of (a) metadata about
licences in order to check LDV1; (b) other kind of metadata apart from vann annota-
tion, for example, creators, authors, dates, languages, etc. as proposed in LDV2; (c)
linguistic information in order to check LDV3 and (d) reused terms within the ana-
lysed ontology in order to check LDV5. In addition different importance levels could
be attached to each good practice or pitfall, as it is obvious that, for example, an on-
tology containing the file extension in its URI is not as critical as a case of namespace
hijacking. This information would be useful to assess and rank ontologies weighting
the evaluation results for the good practices and pitfalls observed.

As complement to this work, we propose, as future work, to provide guidelines to
solve the problems when a good practice in not implemented or a pitfall is detected.

Finally, we propose to execute described methods over an ontology registry as
LOV in regular basis in order to observe the evolution of the quality of the ecosystem
as a whole and for each particular vocabularies in particular and draw trends and pat-
terns when publishing vocabularies.

Acknowledgments. This work has been partially supported by the Spanish project
BabelData (TIN2010-17550), the! mobility! and! internationalization! program! by!
the!Consejo'Social!of!the!Universidad'Politécnica'de'Madrid!and!the!French!project!
Datalift (ANR-10-CORD-009).!

References

1. Archer, P., Goedertier, S., and Loutas, N. D7.1.3 – Study on persistent URIs, with identifi-
cation of best practices and recommendations on the topic for the MSs and the EC. Deliv-
erable. December 17, 2012.

2. Berrueta, D., Fernández, S., and Frade, I. Cooking HTTP content negotiation with Vapour.
ESWC2008 workshop on Scripting for the Semantic Web (SFSW2008), Tenerife, Spain.
June 2, 2008.

3. Heath, T., Bizer, C.: Linked data: Evolving the Web into a global data space (1st edition).
Morgan & Claypool (2011)

4. Mader, C., Haslhofer, B., & Isaac, A. Finding quality issues in SKOS vocabularies. In
Theory and Practice of Digital Libraries. Springer Berlin Heidelberg. 2012.

5. Pammer, V. PhD Thesis: Automatic Support for Ontology Evaluation Review of Entailed
Statements and Assertional Effects for OWL Ontologies. Engineering Sciences. Graz Uni-
versity of Technology.

6. Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A. Validating ontologies with
OOPS!. 18th International Conference on Knowledge Engineering and Knowledge Man-
agement. (EKAW2012) Galway, Ireland, 8 - 12 October 20

Event Processing in RDF

Mikko Rinne1, Eva Blomqvist2, Robin Keskisärkkä2, and Esko Nuutila1

1 Department of Computer Science and Engineering,
Aalto University, School of Science, Finland

firstname.lastname@aalto.fi

2 Linköping University, 581 83 Linköping, Sweden
firstname.lastname@liu.se

Abstract. In this study we look at new requirements for event models
based on concepts defined for complex event processing. A corresponding
model for representing heterogeneous event objects in RDF is defined,
building on pre-existing work and focusing on structural aspects, which
have not been addressed before, such as composite event objects encap-
sulating other event objects. SPARQL querying of event objects is also
considered, to demonstrate how event objects based on the model can
be recognized and processed in a straightforward way with SPARQL 1.1
Query-compliant tools.

Keywords: Complex event processing, ontologies, SPARQL, RDF

1 Introduction

Event models (e.g. [17, 19]) currently available for tools using Semantic Web tech-
nologies do not address all necessary aspects of event processing, for example,
composite event objects where higher-level event objects encapsulate lower-level
event objects. Work on stream processing using Semantic Web technologies has
initially focused on processing streams of individual triples [3, 11, 10] rather than
events, but the use of larger subgraphs with more heterogeneous structures us-
ing RDF3 and SPARQL4 has also been described [15]. We extend current event
models to incorporate more aspects of (complex) event processing and demon-
strate how streams of structured and heterogeneous event objects, represented
based on our model, can be processed using SPARQL 1.1.

Complex event processing, as pioneered by Luckham, Etzion and Niblett [13,
6], is based on layered abstractions of events. An event is defined by [14] as “any-
thing that happens, or is contemplated as happening”. A complex event is “an
event that summarizes, represents, or denotes a set of other events”. Real-world
events are observed by sensors, which translate them to simple event objects,
i.e., records of the observations in the system environment, which constitute
the representation of an event that the system processes. Interconnected rule
processors, denoted “event processing agents” (EPA) [14], transform patterns of

3http://www.w3.org/RDF/
4http://www.w3.org/TR/sparql11-query/

simple event objects, potentially from very heterogeneous sources, to complex
event objects of higher abstraction levels. As an example, we may have sensors
measuring the water level and flow in di↵erent parts of a network of rivers and
lakes. That information combined with a weather forecast for heavy rain could
be used to derive a flood warning, which in this case would be an abstract com-
plex event object. So far, none of the existing event ontologies address any of
the challenges of treating complex and composite event objects.

The solution has been modelled in the form of a Content Ontology Design
Pattern [7] (hereafter simply denoted ODP), which is a reusable ontology com-
ponent that can be used independently of the event models it is built upon, but
which is also aligned to several important models. The proposed ODP is avail-
able in the ODP Portal5. By defining a comprehensive and structured model
for representing event objects, this work addresses challenges on the level of ab-
straction as well as integration [5], and constitutes a novel and necessary step for
further research in event processing based on Semantic Web technologies. The
proposed model can be used as a tool for event processing systems to structure,
integrate and manage such streams (whatever their original vocabularies), and
for interchange of event objects. To use the model, it is not necessary that an
incoming stream is already structured according to the ODP, refactoring of the
streamed data can also be a task performed by the event processing system itself.

The paper starts by an in-depth discussion of the state of the art, existing
solutions and tools, which are reviewed in Section 2. Section 3 reviews the re-
quirements for an event model for event processing. Our solution is described
in Section 4, with a discussion on benefits and shortcomings, as well as future
work, in Section 5. Conclusions are presented in Section 6.

2 Background and Related Work

When something happens in the material world, it may be detected by mechan-
ical, electric, or human sensors. These sensors emit streams of observations. A
particular pattern of observations, detected by an event processing system, trig-
gers the creation of an event object mirroring and/or describing the real-world
event, as illustrated in Figure 1. Traditionally, observation streams have been
handled by data stream management systems, with their roots in databases,
where the processing unit is a row of a table [2]. Parameters, such as time, are
used to portion infinite streams into windows, which are processed by aggre-
gate operators to derive numerical conclusions descriptive of the contents. This
heritage has later been applied to the Semantic Web by constructing streams
out of time-annotated RDF triples [8, 9, 3] and extending SPARQL with window
operators [3, 11], which isolate portions of the streams based on the timestamps.

Processing based on individual triples is, however, very limited. Most data
sources, including sensors, can attach various measurements and other attributes
than time (e.g., location) to the units of data they provide [12]. Moreover, an

5http://ontologydesignpatterns.org/wiki/Submissions:EventProcessing

Fig. 1: An event object compiled from sensor observations and other data sources.

event object can be associated with multiple time-related parameters, e.g., time
of sampling based on the clock of the sensor, time of entry to the data stream,
time of arrival in the event processing system and time of event object validity
[8], which need to be understood by the system to produce the desired result.
Computing aggregate values such as minimum, maximum, sum and average from
a single parameter is a practical way to summarize and clean noisy data, but it
is not yet a means to derive layered conclusions for complex event processing.

The SPARQL query language has the capability to match and isolate sub-
graphs of data, with significant new functionality added in v. 1.1, e.g., property
path handling. Processing heterogeneous event objects consisting of multiple
RDF triples with a common timestamp has been demonstrated in [15, 16]. In
this paper we review those aspects of (complex) event modelling, which in our
view have not been fully addressed in the event (and semantic sensor) ontologies
currently available [17, 19, 12].

The final report of the W3C Semantic Sensor Network XG [12] reviews nu-
merous existing event and sensor ontologies, and subsequently describes a com-
prehensive ontology6 (hereafter denoted the SSN ontology) for conveying the
output of sensors. The concepts “Observation” and “SensorOutput” in the SSN
ontology are, however, restricted to describing the output of exactly one sensor,
so they do not extend to the concept of event objects nor abstractions into com-
plex events. Our model extends the SSN ontology with such concepts, and follows
a common baseline by using the DOLCE Ultra Light7 (hereafter denoted DUL)
top-level ontology as a formal basis, to be compatible with the SSN ontology.

When extending the SSN ontology with the concept of (complex) event ob-
jects, we have reviewed and considered to reuse existing event ontologies. The
Event Ontology8, rooted in describing music events, and the LODE ontology9,

6http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
7http://www.loa-cnr.it/ontologies/DUL.owl
8http://motools.sf.net/event
9Linking Open Descriptions of Events: http://linkedevents.org/ontology/

are both general enough to be applicable also for event processing, but lack
some of the structures needed, for instance, the notion of complex events as ab-
stractions over simple events. Taylor and Leidinger define an ontology [19] for
complex event processing10, but it is highly specific to the problem domain, con-
taining references to particular observations, such as wind speed, which makes it
unsuitable as a general pattern. The Event-F ontology11 [17] on the other hand
is a comprehensive framework, also derived from DUL, which is general enough
to serve our purpose, but which still lacks the specifics of complex events. How-
ever, since Event-F is directly compatible with the SSN ontology, through DUL,
it provides a good foundation for our extension, hence, we align our concepts
also to Event-F. Another alignment between the two ontologies was made in
the SPITFIRE project, producing an extended ontology12 for describing sensor
contexts as well as energy requirements, but this extension still lacks classes and
properties for describing complex events. Also note that both SSN and Event-F
are large ontologies (as is the SPITFIRE extension), and being based on DUL
quite heavily axiomatized. In contrast to this, our model is published as an ODP,
without importing either ontology, but rather simply aligning to them.

3 Requirements of an Event Model for Complex Event

Processing

When developing the Event-F ontology, the WeKnowIt project collected a com-
prehensive set of requirements of general event models [18]. Such generic require-
ments include: participation of objects in events, temporal duration of events,
spatial extension of objects, relationships between events (mereological, causal,
and correlations), as well as documentation and interpretation of events. Addi-
tionally, a number of non-functional requirements, such as extensibility, formal
precision (axiomatization), modularity, reusability, and separation of concerns.
Even though the requirements are covered by Event-F, it does not cover all the
needs of modelling complex events, hence, we here add the requirements that
have not yet been addressed. The non-functional requirements have influenced
the design of the model we are proposing, while taking some of the requirements
even further, such as providing an ODP rather than a large core ontology of
complex events, which takes the modularity requirement even one step beyond
the design of the Event-F ontology.

Requirements not directly addressed by Event-F (nor any other current event
model, or the SSN ontology):

1. Events and event objects: In the commonly agreed terminology of [14] there is
a clear separation between events, as something occurring in the real world,
and event objects, which are representations of the real-world events as de-
scribed within some computer system that may be used to detect or process

10http://research.ict.csiro.au/conferences/ssn/EventOntology no imports.owl
11http://west.uni-koblenz.de/Research/ontologies/events
12http://spitfire-project.eu/ontology/ns/

the real-world events in some way. Although one could argue that an event
model will never contain the real-world events themselves, i.e., whatever is
modeled by an ontology will always be a representation of an event, we find
it important to allow this distinction in a model for complex events because
the breakdown of events into their parts and related events that a human
user finds reasonable may considerably di↵er from the event objects that are
actually present in the system for detecting or describing the event. Hence
two parallel modelling structures should be used for this purpose. For in-
stance, consider a music festival night as an event that occurs in the real
world. Intuitively we may, for instance, describe this event as a set of con-
certs by di↵erent artists that are held in sequence on the same stage. How-
ever, a system representation of this event, i.e., the event objects, may very
well display a completely di↵erent content and structural breakdown. For in-
stance, we may use sound level sensors to detect that there is some activity
on the stage, and make readings every minute, then the music festival night
is actually represented by a “loud period” event object in the system, which
consists of sub-events that are the individual sound level readings, together
with some mechanism detecting that what is heard is actually music.

2. Payload support: Following [6], an event object is split into an event object
header, which contains necessary information for processing the event object,
and optional payload, which may not be fully understood or processed by
the event processing network but needs to be kept associated with the event
object. We incorporate optional “header” and “body” segments for event
objects to demonstrate the capability of handling unknown components,
e.g., unknown vocabularies used for the body of the event object.

3. Encapsulated event objects: The structurally most demanding type of event
object in [14] is a “composite event object”, which contains the event objects
it is composed of, in a separable form. As the event objects constituting a
composite event object may themselves be composite event objects, the re-
cursion of composite event objects within composite event objects should
be supported in any number of layers. It is worth noting that such a struc-
tural relation between actual events is already present in Event-F through
the mereological relations borrowed from DUL. However, as we have already
noted in the first requirement we need to clearly separate events from event
objects, hence, when aligning event objects to the SSN ontology, i.e., mod-
elling them as information objects in a system, we will need an additional
such structure for the event objects (in addition to the one in Event-F).

4. References to triggering events: Complex event objects resemble composite
event objects, since both are referencing other event objects, but while the
parts of a composite event object are wholly dependent on the encapsulating
event object (through partonomy) a complex event object can also simply be
an event object that somehow is related to other event objects (referencing
other event objects), e.g., by being an abstraction of a set of low-level event
objects. The relation between complex event objects and their related event
objects is therefore a kind of constituency (in the DUL terminology) rather
than partonomy. An important use of such a relation is the ability to point

to the triggering event objects, so that it is possible to trace what triggered
the abstraction, and hence the appearance of this complex event object.

5. Multiple time-stamps: An event object can be associated with multiple time-
related parameters, e.g., time of sampling based on the clock of the sensor,
time of entry to the data stream, time of arrival to the stream processing
system and time of event object validity [8], which need to be understood
by the system to arrive at the desired outcome. An event model needs to be
able to distinguish between di↵erent kinds of timestamps.

6. Querying ability: An aspect that has been overlooked in, for instance, Event-
F is the usage of the model for supporting queries over event objects. Al-
though Event-F is logically sound and well-designed, it is not modelled par-
ticularly with querying in mind. Several structures in Event-F involve n-ary
relations in several layers, modelled as OWL classes, which contributes to
very long and complex query expressions. Although this may be an accept-
able price to pay for increased reasoning capabilities, we also raise the impor-
tance of being able to easily query the represented event objects, and being
able to formulate generic “query templates” for managing event objects.

In addition to these specific requirements, we have also tried to adhere to the gen-
eral characteristics of Content ODPs, as described in [7], which can be seen as a
list of desired features, including the provision of a reusable computational com-
ponent representing the ODP, making the ODP small and autonomous, enabling
inferencing on the ODP, and making it cognitively and linguistically relevant as
well as a representation of best practices (including to adhere to a commonly
agreed terminology, such as [14]).

4 Proposed Solution

4.1 Event Model in OWL

As a starting point for our proposed ODP model, we have taken the SSN on-
tology [12] and the Event-F ontology [18]. Event-F can be used together with
our proposed ODP to connect to more detailed or user-friendly descriptions of
the event itself, e.g., for reasoning purposes, when the rich axiomatization of
events from Event-F is desirable, or for describing the event in a more user-
oriented fashion. Both the SSN ontology and Event-F are based on DUL, and by
extending and aligning to both these models, our ODP also relies on the DUL
ontology. From our point of view, and in accordance with the terminology of [14],
the event object (Req. 1) is a central concept (see Figure 2), which is the sys-
tem representation, or record, of an event (real or system generated). An event
object can then be related to a “real” event, i.e., a dul:Event, which through
the alignment to the Event-F model, then has to be a documented event, i.e., a
dul:Event involved in some eventf:EventDocumentationSituation.

An event object can then be either a simple event object or a complex event

object, depending on if it abstracts (summarizes or represents) other, more low-
level, event objects or not. A complex event object is something that has some

Fig. 2: The core classes of the Event Processing ODP and their relations to
DUL concepts (using the UML-like notation of TopBraid Composer, where some
details have been omitted due to readability reasons).

“sub-event objects” (Req. 4). A special case of a complex event object is a
composite event object (Req. 3), which is a complex event object that is actually
made up of a set of other event objects, i.e., acting as its parts. As noted by [14]
a composite event object is always a complex event object, but every complex
event object is not necessarily a composite event object, if it only represents or
references other related event objects but does not include them as components.
Encapsulated and referenced event objects can be modelled using two separate
sets of properties, so that each type of relation can be treated independently.
The structure does not require OWL reasoning per se, but gives the opportunity
to reason over the structures, using transitivity and inverse properties.

Payload support (Req. 2) is provided through introducing classes for the
header and body of an event object, making it possible to distinguish between the
known parts of the information and the body, i.e., the payload that may not use
any known vocabulary. Nevertheless, we feel that this legacy from earlier event
processing systems may not be ideal to include in all RDF stream processing
systems, whereby we have modeled the pattern in such a way that it is an
optional feature. Event objects can be modelled directly, without header and
body parts distinguished, which is more in line with the modelling “freedom”
and simplicity of Linked Data and RDF graph data in general.

Multiple timestamps (Req. 5) are supported through a set of separate datatype
properties: hasEventObjectSamplingTime, hasEventObjectApplicationTime,
hasEventObjectSystemTime, and hasEventObjectExpirationTime, correspond-
ing to the time points when the event object was sampled (e.g., recorded by a
sensor), entered the data stream, arrived in the event processing system via the
stream, and any known end time for the event objects validity, respectively. Al-
though this does not solve the problem of di↵erent time references in general, at

least one can now explicitly say what time is actually recorded, and if needed,
record several timestamps for each object. An additional desirable feature would
be the ability to express which of the timestamps should be the default for time
window operations, however, we feel that this lies outside the scope of our cur-
rent pattern. Rather such capabilities should lie in a vocabulary for describing
RDF streams, or event processing systems, not event objects themselves.

Finally, event objects can be e↵ectively processed through SPARQL queries
(Req. 6). In particular, we have made sure that some of the most common queries
can be expressed in a generic manner, i.e., as “query patterns” (discussed in the
following section), to facilitate reuse and to make event processing as uniform
as possible between systems. More details on the modelling decisions and the
detailed structure of the ODP can be found in the annotations of the ODP model
itself, and in the pattern abstract that accompanies it [4].

4.2 Processing Events with SPARQL

Having an ODP for describing the event objects handled by an event processing
system is a (practical) contribution in itself, since such a model has not existed
before. However, for this contribution to be significant in the future it needs to
be practically usable and beneficial to a large class of systems. As also stated
in our list of requirements an important aspect of the work is to be able to
e↵ectively query the event data structured according to the model, which will
make it useful in a system setting. Ideally, the ODP presented above would come
with its set of generic query patterns that represent common operations on event
objects, which can be reused within any domain. In this section, we show a step
towards such generic query patterns, although we also point at some limitations
with the current model and SPARQL standard that restrain us from providing
a completely generalized solution.

The following example set of four event objects is used to demonstrate oper-
ations on composite complex event objects containing a header and a body and
having a capability to reference other event objects without encapsulating them:

:floodWarning0001 a ep:EventObject ;
ep:hasEventObjectHeader [

rdfs:label "Flood Warning composite event" ;
ep:hasEventObjectTime "2013-07-03T08:18:21"^^xsd:dateTime ;
ep:refersToEventObjectConstituent :weather0001 ;
ep:refersToEventObjectComponent :waterAlert0001 ;
floodex:forecast floodex:ImminentDanger ;

] ; #end of Header
ep:hasEventObjectBody [

rdfs:comment "Exemplifies a composite event." ;
] . #end of Body

:waterAlert0001 a ep:EventObject ;
ep:hasEventObjectHeader [

rdfs:label "Water-related alert composite" ;
ep:hasEventObjectTime "2013-07-03T08:17:21"^^xsd:dateTime ;
ep:refersToEventObjectComponent:waterLevel2341 ;
floodex:waterLevelChangeRate floodex:high ;

] ; #end of Header
ep:hasEventObjectBody [

rdfs:comment "Information external to our system." ;

foaf:mbox <mailto:contactrelevanttoanothersystem@example.org> ;
] .

:waterLevel2341 a ep:EventObject ;
ep:hasEventObjectHeader [

ssn:isProducedBy [
a ssn:SensingDevice ;
rdfs:label "Water Level Measurement" ;

] ;
ep:hasEventObjectTime "2013-07-03T08:17:15"^^xsd:dateTime ;
ssn:hasValue [

dul:hasRegionDataValue 22 ;
] ;

] .

:weather0001 a ep:EventObject ;
ep:hasEventObjectHeader [

rdfs:label "Weather forecast for London" ;
ep:hasEventObjectTime "2013-07-03T08:17:21"^^xsd:dateTime ;
ep:hasEventObjectAttributeValue floodex:rain ;

] ; #end of Header
ep:hasEventObjectBody [

...
] . #end of Body

The full example is available with the pattern and prefixes in the ODP portal.
The floodWarning is a composite event object, encapsulating a waterAlert.
The waterAlert is also composite, encapsulating a waterLevel measurement.
The floodWarning also refers to a weather event object, but the weather event
object is not encapsulated in the floodWarning. The challenge for querying is to
match the floodWarning composite event object (for any move, copy, delete or
other operation on the composite event object), with all levels of encapsulated
event objects, excluding referenced information not integral to the event object.

After the addition of property paths in version 1.1, SPARQL has some new
methods for supporting nested structures. Using the property path expression
(ep:hasEventObjectHeader / ep:refersToEventObjectComponent)*, an ar-
bitrary number of nested composite event objects can be supported. The refer-
enced event object weather0001 is not matched, as it is referred with ep:refers-
ToEventObjectConstituent.

Matching more levels of depth for the header and body in a generic way is
not as straightforward. Matching an arbitrary chain of unknown links would be
a very powerful tool, which in the world of linked data could eventually end up
matching that entire universe - not just the header and body triples we want. Us-
ing a property path of unspecified length with a known combination of predicates
(ep:hasEventObjectHeader and ep:refersToEventObjectComponent) can be
asserted safe in our controlled setting of an event object stream, where the pair
of predicates can be guaranteed only to refer to direct sub-event objects in the
same graph. Supporting an arbitrary number of levels of unknown predicates is,
however, much more challenging and potentially dangerous. SPARQL doesn’t
currently o↵er means to follow such a property path. The same functionality
would theoretically be available through negation, using a property path ex-
pression such as (! :foobar)*, where “:foobar” is a fabricated predicate, which
should not appear in the data stream. In addition to the dangers explained
above, tool support for this approach is uncertain.

In case of the header the support for more depth can always be achieved by
making the SPARQL query more explicit, because the structure of the header
is assumed to be known by our event processing application, but the structure
of the body is assumed to be unknown. One way to support deeper structures
is to restrict such structures to be linked only through blank nodes, since blank
nodes cannot point to nodes outside the current graph. Linking through blank
nodes allows more depth in the event object structure without setting an explicit
requirement to know the contents.

Using these tools we can write a query, which correctly constructs a copy of
the floodWarning0001 composite event object including the encapsulated event
objects waterAlert0001 and waterLevel2341 without prior knowledge of their
existence or contents:

CONSTRUCT { # Create a copy of the matched event object, with encapsulated event objects
?event a ep:EventObject ;

ep:hasEventObjectHeader ?header .
?header ?hp ?hv . # First level headers
?header2 ?hp2 ?hv2 . # Second level nested headers
?event ep:hasEventObjectBody ?body .
?body ?bp ?bv . # First level body

} WHERE { # Match an event object with all nested levels of encapsulated event objects
:floodWarning0001 (ep:hasEventObjectHeader /

ep:refersToEventObjectComponent)* ?event .
?event a ep:EventObject .
?event ep:hasEventObjectHeader ?header . # Mandatory header
OPTIONAL { ?header ?hp ?hv # Optional first-level headers

#Optional second-level nested headers, only through blank nodes
OPTIONAL { BIND (IF (isBlank(?hv), ?hv, 0) as ?header2)

?header2 ?hp2 ?hv2 } }
OPTIONAL {

?event ep:hasEventObjectBody ?body . # Optional body
OPTIONAL { ?body ?bp ?bv } } # Optional first-level body content

}

To keep the query compact the amount of nested levels in the header and the
body has been set to match our example. More nested levels can be added by
adding more nested OPTIONAL-clauses, checking that linking is taking place
specifically through blank nodes. To the best of our knowledge matching an
unspecified number of nested levels through blank nodes only is not possible
with SPARQL 1.1 without explicit knowledge of the predicates, in which case
the query would again need to be explicitly defined for each nesting level. Apart
from the explicit subject (:floodWarning0001) the example query is generic
and would work with a structurally compliant event object independent of the
content. In a real-world application the explicit subject could be replaced by
some other criteria to match the desired event object in an event object stream.

5 Discussion and Future Work

Our proposed model has been published as an ODP, which comes with several
advantages. For instance, both the SSN and Event-F ontologies may be perceived
as quite large and “heavy” to understand and use, while our small model only
contains a handful of classes and properties that can be grasped quite easily. It
can also be used independently of the DUL axiomatization, if this is not desirable

or compatible for a specific use case. On the other hand, the lack of upper level
axiomatization can be easily amended through our careful alignments (included
in the model as axioms), by simply adding the missing imports (SSN and Event-
F), if the upper level is needed for a particular use case.

A generic way of matching event objects using SPARQL 1.1 was demon-
strated, supporting:

– the distinction between events and event objects (Req. 1), if desired,
– inclusion of a header and an optional body (Req. 2), with unknown content,

in the event object structure,
– composite event objects encapsulating other event objects (Req. 3), poten-

tially over any number of nested layers (limited by the SPARQL implemen-
tation),

– referencing of other event objects without encapsulating them (Req. 4), and
– generation of query templates to process compliant event objects (Req. 6),

observing related restrictions.

Support for multiple timestamps (Req. 5) is built into the model, but selection
of the timestamp to use for a particular purpose was considered to be a stream-
specific parameter and outside the scope of this paper.

As a restriction to the generality of queries, knowledge of the maximum
number of nested levels of RDF triples supported within the header or body was
observed to be required a priori, with every level adding some complexity to the
query needed to match an event object. To avoid following links outside event
objects, nesting of the body should only be done using blank nodes. Deviations
of the format, such as allowing event objects both with and without explicit
header, or objects of other classes (such as ssn:SensorOutput) add complexity
to queries. The recommended approach would be to convert all event objects to
a uniform format upon entry to the event processing network. The specific con-
versions are outside the scope of this document, but due to the flexibility of RDF
most formats used for describing events can be converted to RDF representations
compliant with the presented model in a straightforward way.

On a more general note, currently available commercial complex event pro-
cessing tools13 use di↵erent means of defining the event processing network and
the agents within, apart from systems based on a common root. The introduction
of an event processing model meeting the requirements of complex event pro-
cessing enables tools based on Semantic Web technologies to address the same
application space. Compared to proprietary approaches, RDF and SPARQL have
the benefit of a specified definition language, paving the way for improved tool
compatibility. Integrated processing of event streams with static, linked and
open datasets in the cloud and the built-in reasoning capabilities of Semantic
Web tools are also strong benefits.

A longer-term target is to make semantic stream processing systems config-
urable to understand and process heterogeneous, layered event objects both on

13e.g. http://www.thetibcoblog.com/wp-content/uploads/2011/12/cep-market-
dec2011.png

live streams as well as recorded data. For recorded data, the systems will need
to follow the same stream parameters (e.g. time) to be used for both algebra and
relational operators. Descriptions of the operational semantics of flow processing
systems should be developed so that it is possible to know a priori, where results
of processing the same data using the same set of queries will be di↵erent.

To pave the way, harmonization of tools and specifications could be improved,
e.g., on the following aspects:

– Common event processing model (vocabulary). This paper makes a contri-
bution, but to be e↵ective on a broad scale, further community consensus
on the model is needed.

– Common stream description vocabulary, and publication mechanisms. In
addition to describing the event objects inside the stream, and in the event
processing system, streams themselves need to be described and published,
e.g., similar to other web services, in an agreed upon format.

– Representations and handling of time. Understanding of a common time
reference between systems using a recorded stream should be possible with
a reasonable amount of configuration rather than requiring reprogramming
of system components.

– Harmonized descriptions of the operational semantics of semantic flow pro-
cessing systems [1]

– Benchmarking of semantic flow processing systems. There should be tests
both for data stream management as well as layered event processing. Cor-
rect results, in light of operational semantics, should be defined so that
performance and correctness of operation can be compared.

6 Conclusions

In this paper we propose a novel Event Processing ODP, i.e., a vocabulary for
representing and reasoning over complex and composite event objects, which is
needed for further progress in the area of RDF stream processing. In addition to
the model itself, another contribution is the demonstration of generic query pat-
terns for event object management using SPARQL 1.1, which facilitates event
processing. The model is aligned to important standards, such as the SSN on-
tology, and compatible with other event models, such as Event-F, and it also
meets all the requirements for representing and processing event objects that
were discussed in Section 3.

Acknowledgments

This work was supported by European Commission through the SSRA (Smart
Space Research and Applications) activity of EIT ICT Labs14, and CENIIT at
Linköping University through the grant 12.10.

14http://eit.ictlabs.eu/ict-labs/thematic-action-lines/smart-spaces/

References

1. Aglio, D.D., Balduini, M., Valle, E.D.: On the need to include functional testing in
RDF stream engine benchmarks. In: 1st International Workshop On Benchmarking
RDF Systems (BeRSys 2013) Co-loc. with ESWC 2013. Montpellier, FR (2013)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues
in data stream systems. In: Proc. of the 21st ACM SIGMOD-SIGACT-SIGART
symp. on Principles of database systems - PODS ’02. ACM Press, New York, USA
(2002)

3. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment
for C-SPARQL queries. In: Proceedings of the 13th International Conference on
Extending Database Technology. p. 441. Lausanne, Switzerland (2010)

4. Blomqvist, E., Rinne, M.: The Event Processing ODP. In: Proceedings of
WOP2013 - Pattern track. CEUR Workshop Proceedings, CEUR-WS.org (2013)

5. Corcho, O., Garćıa-Castro, R.: Five challenges for the semantic sensor web. Se-
mantic Web 1(1), 121–125 (2010)

6. Etzion, O., Niblett, P., Luckham, D.: Event Processing in Action. Manning Pub-
lications (Jul 2010)

7. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Handbook on Ontologies,
2nd Ed. International Handbooks on Information Systems, Springer (2009)

8. Gutierrez, C., Hurtado, C., Vaisman, R.: Temporal RDF. In European Conference
on The Semantic Web (ECSW 2005) pp. 93—107 (2005)

9. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. IEEE
Transactions on Knowledge and Data Engineering 19(2), 207–218 (Feb 2007)

10. Komazec, S., Cerri, D., Fensel, D.: Sparkwave : Continuous Schema-Enhanced
Pattern Matching over RDF Data Streams. In: Proceedings of the 6th ACM Inter-
national Conference on Distributed Event-Based Systems. pp. 58–68. ACM (2012)

11. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and linked data. In: ISWC’11.
pp. 370–388. Springer-Verlag Berlin (Oct 2011)

12. Lefort, L., Henson, C., Taylor, K.: Semantic Sensor Network XG Final Report
(2011), http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

13. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, 1 edn. (2002)

14. Luckham, D., Schulte, R.: Event Processing Glossary Version 2.0 (2011), http://
www.complexevents.com/2011/08/23/event-processing-glossary-version-2-0/

15. Rinne, M., Abdullah, H., Törmä, S., Nuutila, E.: Processing Heterogeneous RDF
Events with Standing SPARQL Update Rules. In: Meersman, R., Dillon, T. (eds.)
OTM 2012 Conferences, Part II. pp. 793–802. Springer-Verlag (2012)

16. Rinne, M., Törmä, S., Nuutila, E.: SPARQL-Based Applications for RDF-Encoded
Sensor Data. In: 5th International Workshop on Semantic Sensor Networks (2012)

17. Scherp, A., Franz, T., Saatho↵, C., Staab, S.: F – A Model of Events based on the
Foundational Ontology DOLCE + DnS Ultralite. In: International Conference on
Knowledge Capturing (K-CAP). Redondo Beach, CA, USA (2009)

18. Scherp, A., Papadopoulos, S., Kritikos, A., Schwagereit, F., Saatho↵,
C., Franz, T., Schmeiss, D., Staab, S., Schenk, S., Bonifacio, M.:
D5.2.1 Prototypical Knowledge Management Methodology (2009),
http://www.weknowit.eu/sites/default/files/D5.2.1.pdf

19. Taylor, K., Leidinger, L.: Ontology-Driven Complex Event Processing in Hetero-
geneous Sensor Networks. In: Proc. of the 8th Extended Semantic Web Conference
(ESWC2011). pp. 285–299. Springer Berlin Heidelberg (2011)

⇤

>

Towards Diagrammatic Ontology Patterns

Gem Stapleton1, John Howse1, Kerry Taylor2, Aidan Delaney1, Jim Burton1,
and Peter Chapman1

1 University of Brighton, UK, www.ontologyengineering.org
{g.e.stapleton,john.howse,a.j.delaney,j.burton,p.chapman}@brighton.ac.uk

2 CSIRO Computational Informatics and Australian National University, Australia
kerry.taylor@csiro.au

Abstract. It has long been recognized that patterns can be a useful and
important tool when building models. This is reflected by their adoption
in the practice of ontology and software engineering. Similarly, visual
representations of information are often seen as beneficial with, for ex-
ample, software engineering making use of the suite of diagrammatic
notations forming the UML. Likewise, ontology engineering has seen the
development of a variety of different visualizations for classes and prop-
erties. This paper combines these two strands of work, making visual
(diagrammatic) patterns available to ontology engineers.

1 Introduction

This paper ties together two strands of research: ontology engineering using
patterns and ontology visualization. Major benefits of using patterns include
the simplification of the modelling process and the provision of a consistent
approach to specifying commonly occurring constructions. Patterns give ontol-
ogy engineers convenient access to these constructions. Similarly to the design
patterns of object-oriented software development [3], they provide a common
language for analyzing and sharing reusable, composable design abstractions.
The visual ontology engineering patterns we present in this paper are lower-level
than a typical design pattern from software development but fulfil the same role
and may serve as building blocks for more complex patterns. The aim of visual-
ization is similar to that of patterns, in the sense that visualizations are intended
to aid ontology engineering. Visualizations (such as OWLViz [5], OntoGraf [1]
and CMap [4]) can bring about benefits by revealing information that could
be unapparent when using traditional notations. The main contribution of this
paper is a set of diagrammatic patterns for ontology engineering, defined using
concept diagrams [7]. Section 2 an introduction to concept diagrams, focusing
on the aspects needed for this paper. Section 3 defines patterns for commonly
occurring constraints and section 4 applies the patterns.

2 Concept Diagrams for Ontology Modelling

This section provides an introduction to concept diagrams, designed as part of
the Ontology Engineering with Diagrams project (www.ontologyengineering.org).

Fig. 1. A concept diagram Fig. 2. Multiple boundary rectangles

Readers interested in the full notation and its formalization should see [7]. Con-
cept diagrams represent classes using closed curves and properties using arrows
which can be solid or dashed. The spatial relationships between the closed curves
and the sources and targets of arrows convey semantic information.

Fig. 1 asserts that the class B is subsumed by A and both A and B are
disjoint from C. The spatial properties of inclusion and exclusion correspond
to the semantic properties of set inclusion and disjointness. The solid arrow P
asserts that individuals in A are only related to elements in C: the target of the
arrow is the set of things to which the elements in A are related and this set is
subsumed by C. The solid arrow R−, where R− is the inverse of R, asserts that
all things are, between them, related to exactly the individuals in C under R−;
the source of this arrow is the boundary rectangle which represents the set of all
things, often denoted ⊤. Lastly, the dashed arrow provides partial information
about property Q: under Q, the individuals in B are, between them, related to
at least the elements in C. Under some circumstances, we may not wish to assert
disjointness and subsumption relationships. Concept diagrams make this readily
achievable, whilst avoiding clutter, by using multiple rectangles. Fig. 2 visualizes
the same information as Fig. 1 except for the disjointness of C with A and B.
Spatial relationships only convey information within a single rectangle.

3 Diagrammatic Patterns for Common Constructions

We now demonstrate how to express nine commonly occurring axioms using
patterns, contrasting with Description Logic (DL). Common constraints that
are imposed on classes are subsumption (subset), disjointness and equivalence.
To express that one class is subsumed by another class, concept diagrams use
curve containment, reflected in our first pattern; to express class subsumption
in DL, one asserts C2 ⊑ C1. Similarly, concept diagrams use curve disjointness
(i.e. non-overlapping curves) to express class disjointness, captured in DL by
C1 ⊓ C2 ⊑ ⊥.

Pattern 1: Class Subsumption Class C1 subsumes class C2, Fig. 3.

Pattern 2: Class Disjointness Classes C1 and C2 are disjoint, Fig. 4.
Pattern 2 has an obvious generalization to (concisely) assert that n classes

are pairwise disjoint (that is, any pair of the n classes are disjoint). Using DL,
one axiom is required for each pair of classes to capture this disjointness infor-
mation: C1 ⊓ C2 ⊑ ⊥,...,C1 ⊓ Cn ⊑ ⊥, ..., Cn−1 ⊓ Cn ⊑ ⊥; OWL has a more
succinct representation: DisjointClasses(C1, ...,Cn). In the diagram below, the

Fig. 3. Pattern 1: Class Subsumption Fig. 4. Pattern 2: Class Disjointness

Fig. 5. Pattern 3: General Class Disjointness Fig. 6. Pattern 4: Class Equivalence

Fig. 7. Pattern 5: All Values From Fig. 8. Pattern 6: Some Values From

Fig. 9. Pattern 7: Domain Fig. 10. Pattern 8: Range Fig. 11. Pattern 9: D & R

ellipsis indicates the presence of a further n − 3 circles labelled in the obvious
fashion.

Pattern 3: General Class Disjointness C1, ..,Cn are pairwise disjoint, Fig. 5.
Ontology engineers often want to express that two classes are equivalent. As

with the other patterns, there are many semantically equivalent, but syntacti-
cally different, concept diagrams that express class equivalence. The following
pattern employs two overlaying (completely concurrent) curves.

Pattern 4: Class Equivalence Classes C1 and C2 are equivalent, Fig. 6.
In DL, Class Equivalence can be expressed by C1 ≡ C2. Again, the Class

Equivalence pattern has an obvious generalization to the n-class case: to express
that n classes are equivalent draw n overlaying curves. The number of DL axioms
to express many classes are all equivalent to each other increases rapidly, whereas
only a single diagram is needed, omitted for space reasons. A common property
restriction is to enforce ‘All Values From’ and ‘Some Values From’ constraints.

Pattern 5: All Values From All individuals in class C1 have all values, under
property P, from class C2, Fig. 7

The arrow in the above diagram formally asserts that the image of the prop-
erty P (considering P as a binary relation), when its domain is restricted to C1, is
a subset of C2. In other words, the only things that individuals in C1 are related
to, under P, must be in C2. The use of multiple bounding boxes ensures that no
unintended disjointness information between classes is asserted. In DL, the All
Values From pattern is captured by C1 ⊑ ∀P.C2. We also present a pattern for
‘Some Values From’, expressed in DL by C1 ⊑ ∃P.C2.

Pattern 6: Some Values From Individuals in class C1 have at least one value,
under property P, from class C2, Fig. 8.

The above diagram makes use of the inverse of property P. To justify the
correctness of the Some Values From pattern, consider an individual, c1, in the
class C1. The pattern must ensure that c1 has a value, c2, from C2 under property
P. Well, c1 has such a value, c2, if and only if c2 has the value c1 under P−.
Equivalently, the image of P− when its domain is restricted to C2 includes at
least all of the individuals in C1, captured by the dashed arrow.

Our last three patterns concern domains and ranges of properties. Firstly,
consider the domain, D, of property P. The domain of P is D if and only if the
range of the inverse, P−, of P is D.

Pattern 7: Domain of a Property The domain of property P is D, Fig. 9.
The corresponding DL formalization of this pattern is ∀P.⊤ ⊑ D; the con-

struction ∀P.⊤ builds the pre-image of the property P. The Domain of a Property
pattern employs the same style of construction: the arrow builds the pre-image
of P. In DL, the range is typically defined by ⊤ ⊑ ∀P.R. The range can also
be defined in DL by constructing the pre-image of the inverse, P−, of P and
asserting that this pre-image is subsumed by R: ∀P−.⊤ ⊑ R. Our Range of a
Property pattern constructs the image of P, using an arrow, and asserts that
this image is subsumed by the range, R.

Pattern 8: Range of a Property The range of property P is R, Fig. 10.

Pattern 9: Domain and Range of a Property The domain and range of
property P are D and R respectively, Fig. 11.

4 Applying the Patterns

We demonstrate the application of the patterns to the Semantic Sensor Networks
(SSN) Ontology [2] as a case study. The examples represent just a small frag-
ment of that ontology, but have been chosen to illustrate the application of the
patterns above. The SSN ontology, the class MeasurementCapability is subsumed
by Property and there are four pairwise disjoint classes: Sensor, Stimulus, Prop-
erty, and Sensing. SensorInput is equivalent to Stimulus. The Class Subsumption,
General Class Disjointness, and Class Equivalence patterns yield the diagrams in
Figs 12, 13 and 14 respectively. Regarding property restrictions, the SSN ontol-
ogy includes the constraint that sensors detect only stimuli. The property detects
relates individuals in the Sensor class only to individuals in the Stimulus class.
This property restriction is an All Values From constraint and the correspond-
ing diagram is in Fig. 15. The SSN ontology also makes plentiful use of Some
Values From property restrictions. One example is that sensors implement some
sensing. The property implements relates individuals in the Sensor class to some
individual(s) in the Sensing class. The Some Values From diagrammatic pattern
thus gives rise to Fig. 16. Lastly, we demonstrate instances of the Domain of
a Property, Range of a Property, and the Domain and Range of a Property
patterns. To do so, we make use of a further two classes in the SSN ontology:

Fig. 12. Subsumption Fig. 13. General Disjointness Fig. 14. Equivalence

Fig. 15. All Val. From Fig. 16. Some Val. From Fig. 17. D & R

Situation and Event. There is a property, includesEvent, with domain Situation
and range Event shown in Fig. 17.

5 Conclusion

We have presented nine diagrammatic patterns for defining constraints that oc-
cur frequently in ontology engineering. These patterns are all formal, since con-
cept diagrams have a fully defined syntax and semantics [7]. There are various
avenues for significant future work. A particular goal is to provide tool sup-
port for ontology engineering using concept diagrams. This will treat concept
diagrams as ‘first-class’ citizens in the model development process, rather than
purely as a visualization of an ontology. We envisage producing a tool that allows
the diagrammatic patterns to be accessed. A big challenge is to ensure that the
resulting drawn (concrete) diagram has an effective layout. This will build on
the now substantial body of work that solves Euler diagram layout problems [6].

References

1. OntoGraf. http://protegewiki.stanford.edu/wiki/OntoGraf, accessed July 2013.
2. M. Compton et al. The SSN ontology of the semantic sensor network incubator

group. Web Semantics: Science, Services and Agents on the World Wide Web,
17(0):25–3, 2012.

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

4. P. Hayes, T. Eskridge, M. Mehrotra, D. Bobrovnikoff, T. Reichherzer, and R. Saave-
dra. Coe: Tools for collaborative ontology development and reuse. In Knowledge
Capture Conference, 2005.

5. M. Horridge. Owlviz. www.co-ode.org/downloads/owlviz/, accessed June 2009.
6. G. Stapleton, J. Flower, P. Rodgers, and J. Howse. Automatically drawing Euler

diagrams with circles. Journal of Visual Languages and Computing, 23:163–193,
2012.

7. G. Stapleton, J. Howse, P. Chapman, A. Delaney, J. Burton, and I. Oliver. For-
malizing concept diagrams. In Visual Languages and Computing. KSI, 2013.

The Event Processing ODP

Eva Blomqvist1 and Mikko Rinne2

1 Linköping University, 581 83 Linköping, Sweden
eva.blomqvist@liu.se

2 Department of Computer Science and Engineering,
Aalto University, School of Science, Finland

mikko.rinne@aalto.fi

Abstract. In this abstract we present a model for representing heteroge-
neous event objects in RDF, building on pre-existing work and focusing
on structural aspects, which have not been addressed before, such as
composite event objects encapsulating other event objects. The model
extends the SSN and Event-F ontologies, and is available for download
in the ODP portal.

1 Introduction

Layered processing of heterogeneous events [2] with Semantic Web tools [4] sets
new requirements to the event models to be used. For example, higher-level com-
posite event objects may encapsulate the lower-level event objects, which trig-
gered the composite abstraction. By defining a comprehensive and structured
model for representing event objects, this work addresses current challenges, as
discussed in [1], and constitutes a novel contribution in event processing based on
Semantic Web technologies. The proposed Content ODP extends current event
models to incorporate aspects of (complex) event processing, and additionally
facilitates the use of generic SPARQL patterns for event object data manage-
ment. For a detailed discussion of the requirements underlying the proposed
ODP and related work that has been considered, see [5]. Our proposed Event
Processing ODP is available in the ODP Portal3. The ODP is very general, and
therefore applicable to any domain where event processing is to be performed. As
with any Content ODP, if needed it can be specialized to include more domain-
specific classes and properties suiting that domain, by importing the ODP and
adding subclasses, subproperties, and additional domain-dependent axioms in
the importing ontology (or ODP).

2 Structure of the Event Processing ODP

An important standardisation e↵ort has been the Semantic Sensor Network
(SSN) ontology4, by the W3C Semantic Sensor Network Incubator group. It is

3http://ontologydesignpatterns.org/wiki/Submissions:EventProcessing
4http://purl.oclc.org/NET/ssnx/ssn

important that an event processing ODP is fully aligned with the SSN ontology,
merely extending it with new concepts. Another important e↵ort is the Event-
F ontology5, describing di↵erent aspects of events in the real world. However,
what we describe are records of events (information about events in a system)
rather than the event itself, c.f. SensorOutput of the SSN ontology. Neverthe-
less, Event-F can be used together with our ODP to connect to descriptions of
the event itself, e.g., for exploiting the axiomatization of Event-F. Both the SSN
ontology and Event-F are based on DOLCE Ultra Light 6 (DUL). By extending,
and aligning to, both of these models, our ODP is also aligned to DUL. Another
alignment between the two ontologies has already been made in the SPITFIRE
project, producing an extended ontology7 for describing sensor contexts as well
as energy and network requirements, but this extension still lacks the necessary
classes and properties for describing complex events, which we add through this
ODP.

In the terminology of [3], the event object is the system representation, or
record, of an event (real or system generated). An event object can be either a
simple event object or a complex event object, depending on if it abstracts (sum-
marizes or represents) other, more low-level, event objects or not. Additionally,
a special case of a complex event object is a composite event object, which is a
complex event object that is actually made up of a set of other event objects, i.e.,
acting as its parts. A composite event object is always a complex event object,
but every complex event object is not necessarily a composite event object. A
complex event object can be structurally equivalent with a simple event object,
having only the semantic di↵erence of representing other event objects in the
network.

In the proposed ODP (core classes and properties illustrated in Fig. 1) we
have modelled the EventObject class as a subclass of the dul:InformationObject
(similarly as the ssn:SensorOutput). We have aligned our EventObject class to
the SSN ontology, by expressing that ssn:SensorOutput is equivalent to Sen-
sorOutput in the local namespace, which in turn is a subclass of EventObject.
The reason for introducing a new SensorOutput class is to make the ODP more
self-contained, but still make the alignment explicit (even without importing
the SSN ontology). A SensorOutput is normally a SimpleEventObject, how-
ever, when considering more complex sensors, such as human sensors entering
information into a system, they can be directly entered into the system as com-
plex event objects. SimpleEventObject may also consist of other kinds of event
objects than a SensorOutput, e.g., simulated event objects produced inside a
system.

To relate event objects to each other, we introduce a set of object properties
(hasSubEventObject and hasDirectSubEventObject, and their inverses). The
object properties are modelled in a way that allows us to keep both a hierarchical
sub-event object structure through a non-transitive property (hasDirectSubEvent-

5http://west.uni-koblenz.de/koblenz/fb4/AGStaab/Research/ontologies/events/model.owl
6http://www.loa-cnr.it/ontologies/DUL.owl
7http://spitfire-project.eu/ontology/ns/

Fig. 1: The core classes of the Event Processing ODP.

Object) but (using a reasoner) also allows for directly retrieving all sub-event
objects through its transitive superproperty (hasSubEventObject). The prop-
erties are aligned to DUL, i.e., sub-properties of dul:hasConstituent (and
dul:isConstituentOf). These properties allow us to express event abstraction
on the side of the event objects, while a similar structure exists on the side of ac-
tual events in DUL, i.e., directly for the dul:Event class using dul:hasConsti-
tuent and dul:isConstituentOf. These two parallel structures do not nec-
essarily need to mirror each other, which is actually the main motivation for
separating them. For instance, consider a music festival night as an event that
occurs in the real world. Intuitively we may, for instance, describe this event as
a set of concerts by di↵erent artists that are held in sequence on the same stage,
which could be modelled using Event-F, the dul:Event class and its associated
properties for mereological breakdown. However, a system representation of this
event, i.e., the event objects, may very well display a completely di↵erent con-
tent and structural breakdown. For instance, we may use sound level sensors to
detect that there is some activity on the stage, and make readings every minute,
then the music festival night is actually represented by a “loud period” event
object in the system, which consists of sub-events that are the individual sound
level readings, together with some mechanism detecting that what is heard is
actually music. The latter breakdown would then use the properties of the Event
Processing ODP, to express the breakdown of the event objects from the system
viewpoint. In addition, we also model event objects that are partitioned into
components, i.e., whose parts are other event objects. This is modelled in a sim-
ilar manner, i.e., again with a property structure parallel to Event-F, but this
time exploiting the dul:hasPart and dul:hasComponent properties.

Since the notion of event object header and event object body is a promi-
nent part of some systems (for a more detailed discussion on the aspect, see
[5]), it is important to include in our model, but at the same time accommo-

date systems where this is not present. We include the concepts EventObject-
Body and EventObjectHeader in the ODP (as dul:InformationObject sub-
classes), as well as object properties for relating an EventObject to its header
and body, and further expressing the content of the header and body. For in-
stance, if a header is used, the relation to other event objects (componency
or constituency) can be expressed through a property of the header instead
(refersToEventObjectComponent and refersToEventObjectConstituent re-
spectively). By exploiting OWL property chains, this is then equivalent to di-
rectly stating the relation for an individual of EventObject.

The actual information content of an EventObject, whether organized into a
header and body or not, can then be expressed through properties, such as ha-
sEventObjectAttributeValue (subproperty of dul:hasRegion) and hasEven-
tObjectAttributeDataValue (subproperty of dul:hasDataValue), or through
arbitrary properties that the application case requires. To model di↵erent time-
stamps of the EventObject, there are a set of subproperties of hasEventObjec-
tAttributeDataValue (in turn subproperty of dul:hasDataValue), grouped
under a property called hasEventObjectTime, i.e., the following four OWL
datatype properties: hasEventObjectSamplingTime, hasEventObjectApplica-
tionTime, hasEventObjectSystemTime, and hasEventObjectExpirationTime,
corresponding to the time points when the event object was sampled (e.g.,
recorded by a sensor), entered the data stream, arrived in the event processing
system via the stream, and any known end time for the event objects validity,
respectively. The alignment to Event-F is constructed through a restriction on
the EventObject class, expressing that any EventObject describes some “real”
event (dul:Event), which then according to the Event-F model has to be a docu-
mented event, i.e., a dul:Event involved in some eventf:EventDocumentation-
Situation.

3 Example of Usage

As an example usage of the ODP, we may have sensors measuring the water
level and flow in di↵erent parts of a network of rivers and lakes. That informa-
tion combined with a weather forecast for rain could be used to derive a flood
warning, which would be a complex event object. An RDF file containing an in-
stantiation of the ODP, realizing this small example scenario can be found in the
ODP portal8. In this example, a flood warning is an instance of EventObject,
which is a composite event object, encapsulating another EventObject, which is
a water alert. The water alert, in turn is also composite, encapsulating a water
level measurement. The flood warning also refers to a weather event object, but
the weather event object is merely referenced (rather than encapsulated). If the
flood warning did not encapsulate the triggering event objects, it would still be
a complex event object but not a composite event object. Each of the EventOb-
ject instances have some data attached, and most of them use the header/body

8http://www.ontologydesignpatterns.org/cp/examples/eventprocessing/eventexample.owl

structure described previously. In addition, the example shows how external vo-
cabularies can easily be used for expressing EventObject instances and data.
For example, the weather data uses the meteo vocabulary9, and to illustrate
the alignment to the SSN ontology the water level measurement EventObject
is modelled entirely using classes and properties from the SSN ontology.

4 Conclusions

We propose a novel Event Processing ODP, i.e., a vocabulary for representing
and reasoning over complex and composite event objects, which is needed for
further progress in the area of RDF stream processing. The model is aligned
to important standards, such as the SSN ontology, and compatible with other
event models, such as Event-F, and it is particularly designed so as to be flexible
enough to accommodate di↵erent event object structures, yet generic enough to
allow for expressing generic queries for management of the event objects. For a
complete discussion of benefits and relations to the underlying requirements, see
the accompanying full paper [5].

Acknowledgments

This work was partially supported by European Commission through the SSRA
(Smart Space Research and Applications) activity of EIT ICT Labs10, and
CENIIT at Linköping University through the grant 12.10.

References

1. Corcho, O., Garćıa-Castro, R.: Five challenges for the semantic sensor web. Semantic
Web 1(1), 121–125 (2010)

2. Etzion, O., Niblett, P., Luckham, D.: Event Processing in Action. Manning Publi-
cations (Jul 2010)

3. Luckham, D., Schulte, R.: Event Processing Glossary Version 2.0 (2011), http://
www.complexevents.com/2011/08/23/event-processing-glossary-version-2-0/

4. Rinne, M., Abdullah, H., Törmä, S., Nuutila, E.: Processing Heterogeneous RDF
Events with Standing SPARQL Update Rules. In: Meersman, R., Dillon, T. (eds.)
OTM 2012 Conferences, Part II. pp. 793–802. Springer-Verlag (2012)

5. Rinne, M., Blomqvist, E., Keskisärkkä, R., Nuutila, E.: Event Processing in RDF.
In: Proceedings of WOP2013 - Research paper track. CEUR Workshop Proceedings,
CEUR-WS.org (2013)

9http://inamidst.com/sw/ont/meteo
10http://eit.ictlabs.eu/ict-labs/thematic-action-lines/smart-spaces/

The Object with States Ontology Design Pattern

Raúl Garcı́a-Castro and Asunción Gómez-Pérez

Ontology Engineering Group, Center for Open Middleware
Universidad Politécnica de Madrid, Spain

{rgarcia,asun}@fi.upm.es

Abstract. This paper describes the Object with States content ontology design
pattern that allows modeling the di↵erent states of an object and the restrictions
on such object for its di↵erent states. It also presents an example of applying the
pattern in a concrete use case in the ALM iStack ontology.

1 Introduction

An object can have di↵erent states over time for which di↵erent restrictions apply. Ex-
amples of objects with di↵erent states can be persons (which can be single, then married
to another person and later become divorced or a widower) or research papers (which
can be submitted for publication and after a round of reviews they can be accepted or
rejected).

The goal of the Object with States content ontology design pattern described in this
paper is to allow modeling the di↵erent states of an object and the restrictions on such
object for its di↵erent states.

It is out of the scope of this pattern to model other information about object states
such as: the time intervals in which an object is in a concrete state, transitions between
states, or relationships or dependencies between states.

2 The Object with States Ontology Design Pattern

The Object with States ontology design pattern is a content pattern that aims to satisfy
the following ontology requirements:

– Objects must have a unique state.
– Object states must belong to a single collection of non-duplicate elements (i.e., to

a set).

Figure 1 depicts the Object with States pattern, which is available online as a reusable
OWL ontology1. As can be seen, the pattern contains three classes, one for represent-
ing objects, another for representing object states, and a third one for representing sets
of states. Besides, it contains object properties for relating objects and states (which
are subproperties of those defined in the Situation pattern2) and for relating states and

1 http://delicias.dia.fi.upm.es/ontologies/ObjectWithStates.owl
2 http://ontologydesignpatterns.org/wiki/Submissions:Situation

State Object
hasState exactly 1

isStateOf
StateSet

xsd:integer col:Collection

set:Set

set:size

situ:Situation owl:Thing

situ:hasSetting

situ:isSettingFor

col:hasMember

col:isMemberOf exactly 1

Fig. 1. The Object with states pattern.

sets of states (reused from the CollectionEntity pattern3) and a datatype property for
defining the size of a set of states (reused from the Set pattern4).

Taking into account some fictitious classes and properties, which serve as an ex-
ample of how to instantiate the pattern, the following ontology requirements can be
satisfied with the pattern:

– The possible object states are: StateA, StateB and StateC.
– An object can have three di↵erent states.
– Objects in StateA must have at least one value for property property1.
– Objects in StateB must have at most one value for property property2.
– Objects in StateC must have exactly one value for property property3.

The following steps must be performed for instantiating the pattern (figure 2 presents
a fictitious instantiation of it):

1. Represent all the possible states of the object as instances of the State class using
the Value Partition pattern [1].

2. Define the set of states, which includes all the states, and its size.
3. Define classes to represent the object in each of the states.
4. Apply state-specific restrictions to these classes.
5. Define the Object class as a disjoint union of these classes.

Clearly, in the case when an ontology developer just needs to describe the state of an
object, only the first of these steps is needed and an object description should just link
to the state of the object. Alternatively, the di↵erent states could be modeled as literals
but that is not recommended because it hinders extensibility; e.g., modeling them as
individuals enables using these states in complex class descriptions as in our case.

One advantage of the pattern is that it allows to explicitly define the restrictions
that an object must held in each of its states, instead of relying on documentation or
software behavior to discover them. Furthermore, it allows simplifying the use of the
ontology by hiding the disjoint union of state-specific object classes to end users, so
they just have to deal with the hasState property and the State instances, while keeping
the whole ontology for other purposes (e.g., data validation).

3 http://ontologydesignpatterns.org/wiki/Submissions:CollectionEntity
4 http://ontologydesignpatterns.org/wiki/Submissions:Set

<Restriction>(p1)
<Restriction>(p2)
…

<Restriction>(p1)
<Restriction>(p2)
…

<Restriction>(p1)
<Restriction>(p2)
…

State Object
hasState exactly 1

ObjectStateA

ObjectStateB

ObjectStateC

StateA

StateB

StateC

DisjointUnionOf
ObjectOneOf
DifferentIndividuals

p1

p2

p3

hasState value

hasState value

hasState value

isStateOf
StateSet

ObjectStateSet

col:isMemberOf value

xsd:integer col:Collection

set:Set

set:size

col:hasMember

col:hasMember

col:hasMember
“3”^^xsd:integer

set:size

situ:Situation owl:Thing

situ:hasSetting

situ:isSettingFor

col:hasMember

col:isMemberOf exactly 1

Fig. 2. A fictitious instantiation of the Object with states pattern.

Furthermore, regarding reasoning, the pattern allows checking the consistency of
objects according to their states and classifying objects into their corresponding state
by means of the hasState property (e.g., an object with the hasState property with a
value of StateB can be automatically classified as an instance of ObjectStateB).

Even if it is not its primary intended use, the pattern does not disallow to define
multiple states for a single object (e.g., a person can have a state of single or married
and another state of child, adult, or senior). To instantiate the pattern to that end, the
members of each state set should be defined in a subclass of State (which would define
the value partition) and the classes for the object in each state should be defined in a
separate disjoint union of classes.

3 Application of the Pattern

The Object with States ontology design pattern has been applied in the development of
the ALM iStack ontology5, which allows describing entities for software Application
Lifecycle Management.

Software defects are one of the main concepts in that ontology. Defects have a con-
crete lifecycle, shown in figure 3, and in each of its states a defect has a set of required
properties. Once a defect is registered into the ALM iStack platform it must have a cer-
tain status (usually the status will be New upon defect creation) and must satisfy a set of
restrictions. In this case, a New defect must be assigned to some contributor and an In-
progress defect must have a priority. These restrictions are propagated to the following
states in the lifecycle.

As mentioned in the previous section, the class for registered defects and its sub-
classes do not need to be explicitly used when interchanging data between the di↵er-

5 http://delicias.dia.fi.upm.es/ontologies/alm-istack.owl

New

InProgress

WorksForMe

Closed

Reproducible?

oslc_cm:status
dc:title
dc:creator
dc:contributor
oslc_asset:relatedAsset

oslc_cm:status
dc:title
dc:creator
dc:contributor
oslc_asset:relatedAsset
hasPriority

Yes

No

Fig. 3. The lifecycle of a defect.

ent components of the ALM iStack platform, i.e., components can simply talk about
defects. These classes have been defined to explicitly specify the restrictions in each
defect state and are mainly intended to be used for data validation.

Figure 4 depicts the subset of the ALM iStack ontology that is used to describe the
di↵erent states of a defect. As can be seen, all those restrictions that are shared by a
group of classes have been defined in the higher class in the hierarchy.

Version

foaf:Person

DefectStatus

Defect

oslc_cm:status exactly 1

xsd:string

DefectPriority

oslc_asset:relatedAsset min 1

OSLC Core+ dc:creator min 1

dc:title min 1
OSLC Asset+

NewDefect
status = New

WorksForMeDefect
status = WorksForMe InProgressDefect

status = InProgress
ClosedDefect

status = Closed dc:contributor min 1
hasPriority min 1

DisjointUnionOf

RegisteredDefect

New

WorksForMe

InProgress

Closed

ObjectOneOf
DifferentIndividuals

Fig. 4. The Object with states pattern applied in the ALM iStack ontology.

Acknowledgements

The authors are partially supported by the ALM iStack project of the Center for Open
Middleware.

References

1. Rector, A.: Representing Specified Values in OWL: “value partitions” and “value sets”. W3C
Working Group Note 17 May 2005. http://www.w3.org/TR/swbp-specified-values/

License Linked Data Resources Pattern ⋆

Vı́ctor Rodŕıguez-Doncel, Mari Carmen Suárez-Figueroa, Asunción
Gómez-Pérez, and Maŕıa Poveda-Villalón

Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
{vrodriguez,mcsuarez,asun,mpoveda}@fi.upm.es

Abstract. Linked Data resources can be referenced by rights expres-
sions or access control policies. Based on the common model found in
six existing rights expression languages and revolving around the n-ary
relation pattern, the License Linked Data Resources pattern is presented
as a solution to describe existing licenses and ad-hoc rights expressions
alike and valid for open and not open scenarios.

Keywords: Ontology design patterns, Linked Data, rights expressions

1 Introduction

Linked Data (LD) assets (RDF triples, graphs, datasets, mappings...) can be
object of protection by the intellectual property (IP) law, the database law or
its access or publication be restricted by other legal reasons (personal data pro-
tection, security reasons, etc.) [1]. Publishing a rights expression along with the
digital asset, allows the rightsholder waiving some or all of the IP and database
rights (leaving the work in the public domain), permitting some operations if
certain conditions are satisfied (like giving attribution to the author) or simply
reminding the audience that some rights are reserved. Additionally, LD resources
can be conditionally available after the evaluation of access control policies [2],
expressing who can act what actions under which circumstances.

After the comparison in [3] of six important rights expressions and policy lan-
guages (ODRL, MPEG-21 REL, XACML, ccREL, MPEG-21 MVCO andWAC),
enough commonalities were found to extract a common underlying model, which
could satisfy all of them. Based on that model, this poster paper describes a con-
tent ontology design pattern, named License Linked Data Resources (LLDR), to
model licensing issues over Linked Data resources.

2 Pattern description

2.1 Intent and requirements

The intent of the content pattern Licence Linked Data Resources is to represent
the relation that exists among a rights expression, an action, an agent, a LD

⋆ This research is supported by the Spanish Ministry of Science and Innovation through
a Juan de la Cierva fellowship and the project BabelData (TIN2010-17550).

2 Authors Suppressed Due to Excessive Length

resource and a condition. In particular, the core idea of the pattern is to model:
a rights expression which allows/prohibits/obliges to make an Action (Right) to
an Agent over a LD resource under a condition.

The LLDR pattern is commited to satisfy the following requirements:

– To keep the structure present in other Rights Expression Languages
– To be able to represent existing known licenses (Creative Commons licenses...)
– To support database rights: extraction and re-utilization
– To support privacy law (personal data handling) and the right to access
– To support IP law rights: reproduction, distribution, and transformation
– To support these right declarations: unconditionally waiving rights, restating

that some rights are reserved, and licensing rights subject to conditions
– To support existing licensing practices for RDF resources
– To support these business models: open data business models, non open data

business models, and hybrid models.

lldr:RightsExpression

cc:Requirement

cc:Permission

cc:Prohibition

lddr:LinkedDataRight

cc:Reproduction

cc:Distribution

cc:DerivativeWorks

acl:Access

lddr:Extraction

lddr:Reutilization

foaf:Agent
lldr:hasSubject

lldr:LinkedDataResource

rdf:Statement

void:Dataset

void:Linkset

lldr:hasObject

lldr:hasRight

cc:requires

cc:License lldr:Contract

dcterms:license

Fig. 1. License Linked Data Resource Pattern

2.2 Solution Description

The most convenient way to represent the information described before is to
use the so-called n-ary relation pattern, which addresses these situations: “(a) a
binary relationship that really needs a further argument; (b) two binary relation-
ships that always go together and should be represented as one n-ary relation;
and (c) a relationship that is really amongst several things” ([4]). One of the
proposed patterns for representing n-ary relations consists of introducing a new
class for the relation and links to all the participants in the relation. Indeed, the
LLDR content pattern is inspired on the third consideration shown in the de-
scription of n-ary relations from the W3C Semantic Web Best Practices Group

License Linked Data Resources Pattern 3

Prefix Namespace

void http://www.w3.org/TR/void/
cc http://creativecommons.org/ns#
foaf http://xmlns.com/foaf/0.1/
acl http://www.w3.org/ns/auth/acl
gr http://purl.org/goodrelations/v1
dcterms http://purl.org/dc/terms/

Table 1. Prefixes and namespaces

in [4]. Fig. 1 shows the LLDR pattern, where the core elements of the n-ary
relation are grayed, Table 1 shows the namespace of some used vocabularies.

All the relations revolve around the lldr:RightsExpression element, this
class being the qualified relation1. This class has the direct relations with the
lldr:LinkedDataResource (a superclass declared to embrace the LD information
units of rdf:Statement, void:Dataset and void:Linksets), the lldr:LinkedData-

Right, the cc:Requirement and foaf:Agent. Prohibitions, permissions and re-
quirements are rights expressions themselves. The LinkedDataRights is a su-
perclass representing the applicable rights to Linked Data resources: IP rights
(cc:Reproduction, cc:Distribution and cc:DerivativeWorks), database rights
(lldr:Extraction and lldr:Reutilization) and the mere access (acl:Access).

Rights expressions appear naturally in groups and not separately. Common
licenses and typical authorizations are actually aggregations of atomic rights
expressions. For this reason, cc:License and lldr:Contract are both subclasses
and containers of rights expressions. The aggregation relationship can be repre-
sented in OWL using a partOf-whole relation pattern , and consequently a partOf

object property has been declared. As a final requirement, resources must be di-
rectly linkable to licenses, as this is a common practice already in use (through
a dcterms:license or a cc:license property), and in which case the rights ex-
pression does not need to include a specific resource.

3 Pattern Usage Example

In the following examples, classes are represented with boxes, relations with
arrows and individuals with ellipses. Fig. 2 represents how a RDF dataset is
attributed a known license. This example is currently in use by the Linked Data
community (albeit not massively). Fig. 3 represents how the right of extraction
(copying a database) is waived exclusively to myAgent. Fig. 4 represents how the
access to an important reificated statement (the forecast for the stock market
price of Google) is offered for 100 e, using the GoodRelations vocabulary.

1 http://patterns.dataincubator.org/book/qualified-relation.html

4 Authors Suppressed Due to Excessive Length

dcterms:license
myRDFDataset http://creativecommons.org/publicdomain/zero/1.0/

void:Dataset
a

Fig. 2. Attributing a known license to an RDF dataset

myRDFDataset

myDeonticExpression

lldr:hasObject

lldr:extraction
lldr:hasRight

lldr:hasSubject
myAgent

lldr:RightsExpression

a

foaf:Agent

lldr:Extraction

void:Dataset
a

a

a

Fig. 3. Waiving a right on a dataset for a friend

_:myStatement

rdf:Statement
a

gr:PriceSpecification

cc:requires
myPrice

a

hasCurrencyValue
100

EURhasCurrency

lldr:hasRight
acl:Accessrdf:subject

rdf:predicate
GOOG

ex:EstimatedStockPrice

myOffer
lldr:hasObject

Fig. 4. Offering the access to an important RDF statement

4 Summary and Outlook

The content pattern Licence Linked Data Resources (LLDR) provides a mech-
anism to represent rights expressions to be applied for Linked Data resources.
Having been recently published2, the immediate goal is declaring its relation-
ships with the ODRLv2 ontology and studying the compatibility with the key
elements of other relevant vocabularies like LiMO, L4LOD or ODRS3.

References

1. Rodŕıguez-Doncel, V., Gómez-Pérez, A., and Mihindukulasooriya, N.: Rights dec-
laration in Linked Data. in Proc. of the 3rd Int. Workshop on Consuming Linked
Data. (2013)

2. Costabello, L., Villata, S., Rocha, O. R. and Gandon, F. Access Control for HTTP
Operations on Linked Data. In The Semantic Web: Semantics and Big Data (pp.
185-199). Springer Berlin Heidelberg (2013)

3. Rodŕıguez-Doncel, V., Suárez-Figueroa, M. C., Gómez-Pérez, A., and Poveda, M.:
Licensing Patterns for Linked Data. in Proc. of the 4th Int. Workshop on Ontology
Patterns (to appear) (2013)

4. Noy, N., Rector, A., Hayes, P., and Welty, C.: Defining n-ary relations on the se-
mantic web. W3C Working Group Note (2006)

2 http://oeg-dev.dia.fi.upm.es/licensius/static/lldr.html
3 http://data.opendataday.it/LiMo, http://ns.inria.fr/l4lod/v2/l4lod v2.htm and
http://schema.theodi.org/odrs/ respectively

Abstracting Transport to an Ontology Design
Pattern for the Geosciences

Brandon Whitehead1, Benjamin Adams1, Mark Schildhauer2, Charles
Vardeman3, Werner Kuhn4, Adam Shepard5, and Krishna Sinha6

1 Centre for eResearch, University of Auckland
2 National Center for Ecological Analysis and Synthesis, UCSB
3 Center for Research Computing, University of Notre Dame

4 University of Münster
5 Woods Hole Oceanographic Institution

6 Virginia Polytechnic Institute and State University

Abstract. A core concept in geoscience/physical science research is the
concept of transport. We present an ontology design pattern for the no-
tion of transport in the geosciences using natural language coupled with a
concept map. The top level concepts of the Transport Pattern are trans-

port entity, transport mechanism, and transport event. These concepts
are described in detail, and a brief example is provided to illustrate the
usefulness of the pattern.

1 Introduction & Related Work

The term transport is used to describe a variety of phenomena from di↵erent con-
texts, and occurring across varying spatial scales. In the field of transportation,
transport primarily refers to the movement of people or goods within an infras-
tructure such as a road or airline network. In physical and chemical systems,
transport refers to the movement of molecules or other physical matter, energy,
or momentum, from one system to another. In computer networking, packets
of digital information are transported. We also talk about humans transporting
thoughts, ideas, and opinions through communication. In all these cases, there is
movement of some entity via a transport mechanism from one place to another.

The Semantic Transport Ontology Design Pattern (ODP) is designed as a
basic, extensible foundation for modelling transport concepts and relations in
an ontology [4, 7]. In the geosciences, transport is a prevalent concept. Within
the popular Semantic Web for Earth and Environmental Terminology (SWEET)
ontology7 [8], for example, there are at least 22 di↵erent concepts that reference
“transport” in some form. By using it as a template for describing the relations
between the mechanisms and entities involved in transport events, the Semantic

Transport ODP can enrich descriptions of scientific data sets to aid in their
interoperability, and re-use; as well as for data mining.

7 http://sweet.jpl.nasa.gov/ontology/

The Semantic Transport ODP is designed to be compatible with other ODPs
generated during the GeoVoCamp8 series of workshops. Previous workshops fo-
cused on a range of geo-spatial topics from cartographic map scaling [2] to se-
mantic trajectories [5]. Of particular note, the Semantic Transport ODP can
operate in tandem with the the Semantic Trajectory pattern [5] as the former
describes the entity and energy of transport, and the latter describes the path
along which the transport occurred.

The Semantic Transport pattern is also conceptually related to the proposed
Move ontology design pattern9 that is derived from the CIDOC model [3]. The
Semantic Transport pattern, however, decouples the source energy from the en-
tity being displaced while capturing their interdependence.

2 Transport Pattern

In this section we present the core elements of the Semantic Transport pattern,
and describe how it can be extended to cover two di↵erent types of transport:
active and passive. We focus on applying the Semantic Transport ODP in the
context of physical systems, though it may also be useful for other domains, e.g.
describing cultural transmission.

2.1 Core elements

The Semantic Transport pattern consists of three core concepts: Event, Entity,
and Mechanism (see Manchester OWL syntax following this paragraph). The
TransportEvent acts as the top level concept for the pattern. A TransportEvent

describes a specific transport phenomenon, as movement of some mass or en-
ergy (measurable entity) from one location to another, based on a common and
persistent frame of reference. Induction of the mass or energy movement can
arise from the transported entity itself, or from external sources. The Trans-

portEvent thus has two main parts, TransportEntity and TransportMechanism.
The TransportEntity concept represents the identity of the circumscribed por-
tion of energy or mass that is moved. The TransportMechanism concept captures
the nature of the source that acts upon the TransportEntity, and thus induces a
TransportEvent.

Class: TransportEvent

TransportEvent SubClassOf owl:Thing

TransportEntity SubClassOf partOf some TransportEvent

TransportMechanim SubClassOf partOf some TransportEvent

Class: TransportMechanim

TransportMechanim SubClassOf owl:Thing

TransportMechanim SubClassOf partOf some TransportEvent

8 http://vocamp.org/wiki/GeoVoCampSB2013
9 http://ontologydesignpatterns.org/wiki/Submissions:Move

Class: TransportEntity

TransportEntity SubClassOf owl:Thing

TransportEntity SubClassOf partOf some TransportEvent

The TransportEvent has one top level property, the referenceFrame (see
Manchester OWL syntax following this paragraph). The referenceFrame pro-
vides context to the pattern by specifying spatial and temporal qualities of any
associated observations via the specification of time and location information
associated with the TransportEvent. As time and location can be fixed or rela-
tive, abstracting the property types serves to facilitate semantic interoperability
between disparate data entities.

ObjectProperty: referenceFrame

referenceFrame Domain TransportEvent

referenceFrame Range TransportEvent

It is worth noting that even if the transported entities were to return somehow
to their exact place of departure, they still participated in a TransportEvent, even
if their initial and final locations result in no net change in location.

2.2 Extending the Transport Pattern

Figure 1 illustrates the Semantic Transport pattern along with a few logical ex-
tensions to illustrate how the pattern might be used. The pattern constructs are
depicted in figure 1 using black text in translucent shapes. Further, all classes
in the figure are represented using an oval, and each square box delineates a
property. In most cases there will be interest in a more specific description of
the event. These additional aspects are accommodated by extending the pattern
through subclassing of the existing TransportMechanism and TransportEntity

concepts, while adding properties to the referenceFrame (Figure 1). These ad-
ditional pragmatic components are included in figure 1. Class symbols with red
text are examples of the nomenclature that may be used as a TransportMecha-

nism. Sub-properties with blue text illustrate examples of modules that may be
described as part of the constructs comprising the referenceFrame.

The TransportMechanism can be usefully subclassed into specialised topics,
such as in the case of involving disjoint classes such as PassiveTransport and
ActiveTransport. Classic examples of PassiveTransport include, e.g. di↵usion or
osmosis, while ActiveTransport would include, e.g. ATP pumps or air travel [1].

The referenceFrame is a non-trivial property. Geoscience phenomena often
exhibit unique statistical signatures as mechanical, chemical, and biological pro-
cesses work in tandem, or asynchronously, through time as they tend toward
equilibrium [6]. This property is significant in that it serves to preserve the spa-
tiotemporal information necessary to maintain a consistent granularity of context
throughout the pattern.

Fig. 1. Transport Pattern extended. Each class in the figure is represented by an oval,
and each square box delineates a property. The Semantic Transport pattern constructs
are depicted using black text in translucent shapes. Classes using red text are logi-
cal subclasses, while sub-properties are styled using blue text. Three equivalent class
relations are represented on the right of the figure, each one illustrating how the refer-

enceFrame can connect to other established schemas.

Further, an observation (as it relates to the referenceFrame in figure 1) is
considered semantically equivalent to other well established geoscience explica-
tions, namely the observation entities associated with the Sensor Observation
Service10 (SOS) and the Geography Markup Language11 (GML), as well as the
concept of a “fix” in the Semantic Trajectory pattern [5].

Of course, further subclassing will likely be necessary for this pattern to
connect, and be useful, to much of the disparate data available to geoscientists.
The current framework is complete and extendable. By creating logical semantic
equivalences to constructs already used throughout the domain, the Semantic

Transport pattern can be a powerful module when mining and filtering large
data stores.

3 Summary and Future Work

In this paper we presented an ontology design pattern to describe transport phe-
nomena. The core Semantic Transport ODP is deliberately simplified to essential
elements, to be applicable to a wide range of use cases in the physical sciences.
We described how the Transport pattern can be extended for Active and Passive
transport and illustrate briefly how it might be used to interoperate over large
disparate geoscience data.

10 http://www.opengeospatial.org/standards/sos
11 http://www.opengeospatial.org/standards/gml

Next steps will involve how the ODP can be filled out to describe data for a
variety of use cases, as well as application and usability testing. An important
future extension to the pattern for application to the physical sciences will in-
clude explicating the relationship between concepts such as system and energy

input (in terms of entropy of the system).

References

1. Berg, H.C.: Random walks in biology. Princeton University Press (1993)
2. Carral, D., Scheider, S., Janowicz, K., Vardeman, C., Krisnadhi, A., Hitzler, P.:

An ontology design pattern for cartographic map scaling. In: Cimiano, P., Corcho,
O., Presutti, V., Hollink, L., Rudolph, S. (eds.) The Semantic Web: Semantics and
Big Data, Lecture Notes in Computer Science, vol. 7882, pp. 76–93. Springer Berlin
Heidelberg (Jan 2013)

3. Doerr, M.: The cidoc conceptual reference module: an ontological approach to se-
mantic interoperability of metadata. AI magazine 24(3), 75 (2003)

4. Gangemi, A.: Ontology design patterns for semantic web content. In: The Semantic
Web - ISWC 2005. Lecture Notes in Computer Science, vol. 3729. Springer (2005)

5. Hu, Y., Janowicz, K., Carral, D., Scheider, S., Kuhn, W., Berg-Cross, G., Hitzler,
P., Dean, M.: A geo-ontology design pattern for semantic trajectories. In: COSIT
2013. Springer (2013)

6. Kastens, K., Manduca, C., Cervato, C., Frodeman, R., Goodwin, C., Liben, L.,
Mogk, D., Spangler, T., Stillings, N., Titus, S.: How geoscientists think and learn.
Eos. Trans. AGU 90(31), 265–266 (2009)

7. Presutti, V., Gangemi, A.: Content ontology design patterns as practical building
blocks for web ontologies. In: Li, Q., Spaccapietra, S., Yu, E.S.K., Olivé, A. (eds.)
ER. Lecture Notes in Computer Science, vol. 5231, pp. 128–141. Springer (2008)

8. Raskin, R.G., Pan, M.J.: Knowledge representation in the semantic web for earth
and environmental terminology (SWEET). Computers & Geosciences 31(9), 1119–
1125 (2005)

