
Linköping Studies in Science and Technology

Licentiate Thesis No. 1606

Towards an Ontology Design Pattern
Quality Model

by

Karl Hammar

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2013

This is a Swedish Licentiate’s Thesis

Swedish postgraduate education leads to a doctor’s degree and/or a licentiate’s degree.
A doctor’s degree comprises 240 ECTS credits (4 year of full-time studies).

A licentiate’s degree comprises 120 ECTS credits.

Copyright c© 2013 Karl Hammar

ISBN 978-91-7519-570-4
ISSN 0280–7971

Printed by LiU Tryck 2013

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93370

Towards an Ontology Design Pattern Quality
Model

by

Karl Hammar

September 2013
ISBN 978-91-7519-570-4

Linköping Studies in Science and Technology
Licentiate Thesis No. 1606

ISSN 0280–7971
LiU–Tek–Lic–2013:40

ABSTRACT

The use of semantic technologies and Semantic Web ontologies in particular have enabled
many recent developments in information integration, search engines, and reasoning over
formalised knowledge. Ontology Design Patterns have been proposed to be useful in sim-
plifying the development of Semantic Web ontologies by codifying and reusing modelling
best practices.

This thesis investigates the quality of Ontology Design Patterns. The main contribution of
the thesis is a theoretically grounded and partially empirically evaluated quality model for
such patterns including a set of quality characteristics, indicators, measurement methods
and recommendations. The quality model is based on established theory on information
system quality, conceptual model quality, and ontology evaluation. It has been tested in
a case study setting and in two experiments.

The main findings of this thesis are that the quality of Ontology Design Patterns can
be identified, formalised and measured, and furthermore, that these qualities interact
in such a way that ontology engineers using patterns need to make tradeoffs regarding
which qualities they wish to prioritise. The developed model may aid them in making
these choices.

This work has been supported by Jönköping University.

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Acknowledgements

There are several individuals and organizations that have enabled and sup-
ported this research project in different ways, to which I extend my deepest
gratitude.

The supervision team consisted of Kurt Sandkuhl,Vladimir Tarasov,
Eva Blomqvist, andHenrik Eriksson. This large and geographically dis-
tributed team have complemented one another splendidly throughout the
process and have when needed provided guidance regarding everything from
research methods and writing style to academic social protocol and how to
arrange workshops and other events. I’ve especially appreciated their hands-
off approach which has enabled me to explore different directions and learn
from many mistakes.

My colleagues at the Department of Computer and Electrical Engineer-
ing at Jönköping University have made the last couple of years working
in research not only interesting but also fun. Christer Thörn and Ulf
Seigerroth are however worthy of particular mention in that they have not
only been great coworkers but have also contributed directly to the success
of this work, the former by reviewing and commenting, and the latter by
keeping bosses off my back and ensuring I’ve had time to get it done.

Fredrik R. Krohnman has provided encouragement and many good
discussions, keeping up my interest in computer technologies and research,
and motivating me to continue on the academic path.

A special thank you goes to my wife Jenny, who has supported me
through good and bad, and has had to put up with many a late night spent
working, without any complaints. I love you.

Karl Hammar
Jönköping, June 2013

v

vi

Contents

1 Introduction 1
1.1 Motivating Factors . 1
1.2 Research Questions . 3
1.3 Contributions . 4
1.4 Thesis Outline . 5

2 Ontologies and Ontology Design Patterns 7
2.1 Knowledge Modelling and Ontologies 7

2.1.1 Data, Information, and Knowledge 7
2.1.2 Terminological and Assertional Knowledge 9
2.1.3 Ontology Components 10
2.1.4 RDF, RDFS, and OWL 13

2.2 Ontology Applications . 16
2.2.1 Ontology Types . 17
2.2.2 Linked Data . 18
2.2.3 Semantic Search . 20
2.2.4 Reasoning Tasks . 22

2.3 Ontology Development . 25
2.3.1 METHONTOLOGY 25
2.3.2 On-To-Knowledge . 26
2.3.3 DILIGENT . 27
2.3.4 Ontology Development 101 28

2.4 Ontology Design Patterns . 29
2.4.1 ODP Typologies . 32
2.4.2 ODP-based Ontology Construction 34

2.5 The State of ODP Research 38
2.5.1 Results . 39
2.5.2 Analysis and Discussion 40

3 Evaluation and Quality Frameworks 45
3.1 Related Quality Frameworks 45

3.1.1 MAPPER . 45
3.1.2 Conceptual Model Quality 46
3.1.3 Entity Relationship Model Quality 48

vii

Contents

3.1.4 Information System Quality 50
3.1.5 Pattern Quality . 53

3.2 Ontology Evaluation . 54
3.2.1 O2 and oQual . 54
3.2.2 ONTOMETRIC . 55
3.2.3 OntoClean . 56
3.2.4 Terminological Cycle Effects 58
3.2.5 ODP Documentation Template Effects 58

4 Research Method 59
4.1 A Perspective on Methods in the Computing Disciplines . . . 59

4.1.1 Systematic Literature Review 61
4.1.2 Case Studies . 63
4.1.3 Interviews . 64
4.1.4 Experimentation . 65

4.2 Description of the Research Process 66
4.2.1 ODP Literature Study 66
4.2.2 Initial Quality Model Development 71
4.2.3 Knowledge Fusion Case Study 75
4.2.4 Learnability and Usability Evaluations 78
4.2.5 Performance Indicator Evaluation 81

5 Initial Quality Model 85
5.1 Quality Metamodel Development 85
5.2 Quality Model Development 87

5.2.1 ISO 25010 Adaptation 88
5.2.2 Thörn’s Qualities . 90
5.2.3 Reuse of ER Model Quality Research 91
5.2.4 Reuse of Established Ontology Quality Research . . . 93

5.3 Empirical Pre-studies . 95
5.3.1 ODP Documentation Structure Interviews 96
5.3.2 ODP Usage Experiment and Survey 97

5.4 The Developed Initial Quality Model 98
5.4.1 Quality Characteristics 98
5.4.2 Indicators and Effects 100

6 Quality Model Evaluations 107
6.1 The Knowledge Fusion Case Study 107

6.1.1 Case Characterisation 107
6.1.2 Data . 109
6.1.3 Findings . 110

6.2 Learnability and Usability Evaluations 114
6.2.1 Results . 115
6.2.2 Findings . 117

6.3 Performance Indicator Evaluation 119
6.3.1 Literature Study . 119

viii

Contents

6.3.2 Indicator Variance in ODP Repositories 122
6.3.3 Results . 128

7 Refined ODP Quality Model 129
7.1 Metamodel . 129
7.2 Quality Characteristics . 129
7.3 Indicators and Effects . 132

7.3.1 Updated Indicators . 133
7.3.2 New Indicators . 136

8 Conclusions and Future Work 139
8.1 Summary of Contributions . 139
8.2 Research Questions Revisited 141
8.3 Future Work . 142

Bibliography 145

List of Figures 157

List of Tables 159

ix

Contents

x

Chapter 1

Introduction

This licentiate thesis concerns the development of a quality model for On-
tology Design Patterns, with a goal towards simplifying selection and use of
such patterns for non-expert ontology engineers. In the following sections
the background and motivation for the licentiate project are discussed, the
research questions introduced, contributions of the work summarised, and
structure of the remainder of the thesis briefly described.

1.1 Motivating Factors

The work presented in this thesis falls within the Information Logistics re-
search area, which is concerned with various types of problems pertaining to
information provision and information flow. To name but a few: in the aca-
demic domain, where researchers seeking to find unexplored areas for study
need structured information about what kind of research is being done and
where; in product development, where keeping track of different sets of pos-
sibly conflicting requirements is necessary to avoid costly product failures;
and in disaster management and recovery, where the need for rapid and cor-
rect information on which to base decisions is crucial in preventing injuries
or even saving lives.

In order to explore and solve information logistics problems three differ-
ent perspectives are commonly employed [1]:

• The information demand perspective, in which researchers study what
individual or group has need of which information, in which presenta-
tion format, in a certain context or situation. This can involve factors
such as the task for which information is to be used, the effect of ge-
ographical location on information demand, needs of proper timing
of information delivery to avoid information congestion/overload, and
many other things.

1

Chapter 1. Introduction

• The information content perspective, in which focus is on the informa-
tion content that is to satisfy said information demand, and how one
goes about finding, sorting, matching, and aggregating this content.

• The information distribution perspective, in which the considerations
involve how the information is to be delivered to the place (physical
or logical) where it is to be used or consumed.

These three perspectives are of course interrelated in many ways; for
instance information demand governs many aspects of information content
and distribution, whereas information distribution factors may limit infor-
mation content and vice versa. In all three types of research ontologies can
be, and have been, employed as tools.

One of the most commonly used definitions of the term ontology within
the information sciences is attributed to Studer et al., who write that an
ontology is a “formal, explicit specification of a shared conceptualisation” [2,
p. 25]. In layman’s terms, it is a commonly agreed upon (shared) model
of a particular domain of discourse (conceptualisation) that is specific and
clear enough that it can be interpreted by a computer (formal, explicit).

Such ontologies allow organisations to formally define how they view their
information, in turn enabling harmonisation of information systems across
the organisation. Engineers can build systems using ontologies as specifi-
cations, or, in other cases, ontologies can be directly applied as concrete
artefacts in systems defining schemas or formats of information. Returning
to the three perspectives on information logistics, one can say that in these
usages, ontologies define the structure of information content according to
system requirements representing a real world information demand. The
information harmonisation that they enable, in turn, supports information
distribution, also governed by said information demand.

Ontology languages have several technical advantages over other types
of data or knowledge representation languages - they are flexible and eas-
ily accommodate heterogeneous data, they are platform and programming-
language independent, and being based on formal logics they can be com-
puted on by reasoning software, allowing for the inference of new knowledge
based on that which is already known. This computability capability can
also help ensure the consistency and quality of information encoded using on-
tology languages. Examples of different types of ontology use in information
logistics range from competence modelling [3] to requirements management
[4] to general knowledge fusion architectures [5].

Ontology engineering is the discipline or trade of developing ontologies.
Performing this trade well and developing suitable ontologies for different
purposes has in the past required having both a thorough understanding of
the domains under study, and a solid understanding of how these domains
are best represented in terms of the logic axioms that make up ontolo-
gies. The ontology engineer has had to be both subject matter expert and
modelling expert. However, over the years the knowledge modelling and

2

1.2. Research Questions

subsequently the Semantic Web research communities have put much ef-
fort into developing tools, techniques, and methods for simplifying ontology
engineering, often with the expressed goal of making this work easy and
intuitive enough that a domain expert may perform it with some measure
of efficiency and correctness.

One such technique, proposed independently by Blomqvist and Sandkuhl
[6] and Gangemi [7], is the reuse of established best practice in the form of
Ontology Design Patterns (often abbreviated ODPs). Since their introduc-
tion in 2005, such patterns have received quite a bit of research attention,
and a community has formed1 based on the developments of these ideas as
explored within the NeOn project [8]. Pattern workshops have been held at
the largest academic Semantic Web and Knowledge Modelling conferences,
and a number of Ontology Design Patterns have been published.

There are several proposed types of Ontology Design Patterns being
studied, concerning everything from naming standards to reasoning proce-
dures [8]. Of these pattern types, Content ODPs in particular have received
significant attention. Such patterns package commonly recurring features
as small ontology building blocks, to be imported and reused by Ontology
Engineers in development. Content patterns are believed to aid in ontology
engineering in two ways – firstly, by reducing the amount of modelling work
needed for implementing common features, pattern usage ought to lower
the cost in terms of time and resources for ontology engineering projects.
Secondly, by promoting the encoding and reuse of best practice solutions to
common modelling problems, pattern usage ought to lead to better ontolo-
gies displaying fewer modelling errors and inconsistencies. The validity of
the former assumption has to the author’s best knowledge not been estab-
lished, but the second is supported by some empirical evidence [9].

However, as the author has previously shown [10] (summarised in Sec-
tion 2.5), the published work on Ontology Design Patterns is lacking in some
aspects. While many patterns have been presented and while patterns are
being used in various system development projects, there are few papers
documenting and evaluating the effects of using these patterns for differ-
ent purposes. Less work still has been done on the structure and design of
patterns themselves, and consequently, little is known about what qualities
or properties of patterns are beneficial in ontology engineering tasks, and
inversely, what properties are not helpful or are possibly even harmful in
such tasks.

1.2 Research Questions

This thesis aims to remedy the aforementioned lack of established knowledge
on the structure and quality of Ontology Design Patterns. To guide in this

1http://www.ontologydesignpatterns.org

3

Chapter 1. Introduction

endeavour and to provide delimitations to an otherwise very open-ended
enquiry, the following research questions have been established:

1. Which quality characteristics of Content Ontology Design Patterns can
be differentiated, and through what indicators can they be measured
and observed?

2. How do the quality characteristics of Content Ontology Design Pat-
terns interact and affect one another?

As can be inferred from the research questions, only Content Ontol-
ogy Design Patterns are the subject of study of this licentiate project. In
Section 2.4.1 the interested reader may learn about the NeOn typology of
Ontology Design Patterns and the other types of ODPs that have been pro-
posed. While these other types of patterns, intended for tasks such as logical
reasoning or concept alignment, are indeed interesting and worthy of study,
it is the author’s opinion that they differ too much from the more common
content patterns in both structure and usage to be studied under the same
conditions. Consequently, in the remainder of this thesis (unless stated oth-
erwise) the terms Ontology Patterns or Ontology Design Patterns both refer
to Content Ontology Design Patterns per the NeOn definition.

1.3 Contributions

To aid in answering the research questions, the author has developed a
quality model for Ontology Design Patterns. Such a model, in addition to
providing a framework within which the research questions are studied and
answered, aids ontology engineers in selecting patterns suitable for reuse in
modelling for particular cases. It also illustrates trade-offs that ontology en-
gineers may need to make, when developing or formalising Ontology Design
Patterns that they find reappearing in the course of their ontology devel-
opment work. Furthermore, it provides a well-founded basis for researchers
wishing to further explore issues of Ontology Design Pattern quality and
usage. This ODP quality model provides the following contributions:

• A conceptual understanding of quality, as it relates to Ontology Design
Patterns.

• A set of Ontology Design Pattern quality characteristics, capturing
the different relevant perspectives on ODP quality.

• Indicators and methods for quantifying and measuring ODP quality
characteristics.

• Recommendations on suitable values for said indicators, or aspects to
consider when measuring them.

4

1.4. Thesis Outline

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 introduces basic concepts with which the reader may wish
to familiarise themselves, including semantic technologies, description
logics, ontology engineering methods, and Ontology Design Patterns.

• Chapter 3 introduces relevant and reusable existing works in quality
models and quality frameworks for other types of data models, con-
ceptual models, and information systems.

• Chapter 4 discusses issues of method in computer and information
systems research, and gives an overview of how these methods have
been applied in this thesis in order to answer the research questions.

• Chapter 5 presents an initial Ontology Design Pattern quality model,
derived from literature study and small-scale pre-studies.

• Chapter 6 describes three studies evaluating and testing the initial
ODP quality model.

• Chapter 7 presents a refined Ontology Design Pattern quality model,
updated based on performed evaluation work.

• Chapter 8 summarises the contributions of this thesis, revisits the
research questions, and reflects upon directions for future work.

5

Chapter 1. Introduction

6

Chapter 2

Ontologies and Ontology
Design Patterns

The following chapter is intended for the reader who is new to the Semantic
Web, ontologies, and knowledge-based systems. It provides an overview of
concepts, technologies and research in the field, with a special focus on topics
relevant to the work presented in this thesis.

2.1 Knowledge Modelling and Ontologies

Even though some of the technical standards for using ontologies on the
Semantic Web are fairly recently developed, the use of ontologies for struc-
turing information has a long tradition in the knowledge modelling and ar-
tificial intelligence fields. In this section some general knowledge modelling
and ontology basics are first introduced, and the modern day standards of
RDF, RDFS, and OWL are then briefly described.

2.1.1 Data, Information, and Knowledge

As explained in Chapter 1, this thesis is concerned with the application of
Ontology Design Patterns for reuse in development of ontologies for infor-
mation logistics purposes. Ontologies were in said chapter also mentioned as
knowledge representation artefacts. While the words knowledge and infor-
mation may appear synonymous to the layman, in knowledge management
and information logistics research these two terms are often considered con-
ceptually different, and a brief discussion on their definitions is therefore
warranted.

A commonly used model of the relationship between data, information,
and knowledge in these fields is the Knowledge Hierarchy, or Knowledge
Pyramid, as defined by Ackoff [11] and described by Bellinger et al. [12]. By

7

Chapter 2. Ontologies and Ontology Design Patterns

Data

Information

Knowledge

Understanding

Wisdom

Figure 2.1: Ackoff’s Knowledge Hierarchy

this model, displayed in Figure 2.1, several different levels of understanding
of phenomena are defined:

• Data – Raw facts, with no greater meaning or connection to other
facts. A spreadsheet holding cells of numbers, with no context, rela-
tion, or labelling to signify meaning, is data.

• Information – Data given meaning by some connection to other data.
Commonly exemplified by a relational database that through foreign
keys link different data rows into coherent information.

• Knowledge – Information collected and structured in such a way as
to be appropriate or useful for some human purpose.

• Understanding – An understanding implies being able to analyse the
underlying factors and principles behind some particular information
or knowledge, and being able to extend and generate new knowledge
based upon this.

• Wisdom – The highest level of consciousness, involving deeper anal-
ysis and probing of phenomena.

Treating the highest two levels of this model, understanding and wis-
dom, are at the time of writing outside of the realm of the computationally
feasible, even had we known how to go about it conceptually, and we shall
therefore leave them aside.

8

2.1. Knowledge Modelling and Ontologies

As indicated by the model, these levels build on and refine one another,
such that without data, we have no information, and without information,
no knowledge. Furthermore, as also indicated by the model, a relatively
large amount of data can be required in order to infer a relatively modest
amount of information or knowledge.

There are competing schools of thought concerning the meaning of the
knowledge level in this model. There are scholars who put forward the
opinion that knowledge is something which can only exist internalised in
the human mind, and that it cannot be stored in some artificial construct
such as a computer system. Examples include Tsoukas and Vladimirou
[13] and Stacey [14], who argue that in order for knowledge to be useful in
guiding human action (as per the above definition), a context is required
that a computer cannot provide.

Another perspective is that of Newell [15], who reasons that knowledge
certainly can be modelled and represented in a computer system and acted
upon by software, in a fully automated deterministic manner. In the latter
perspective, the dividing line between information and knowledge is slightly
fuzzier, but essentially comes down to a matter of intent and use of infor-
mation. In this thesis and in his research, the author sides with the latter
perspective. Data is considered simple raw facts without context; informa-
tion is data that is linked to provide a greater understanding; knowledge is
information that is reasoned with by either a human or a machine, in order
to perform some task. As we will see in the following sections, ontologies
are well suited for use in such reasoning tasks.

2.1.2 Terminological and Assertional Knowledge

In knowledge representation tasks it is often useful to distinguish between
two types of knowledge with differing characteristics and uses. There is
terminological knowledge, which describes concepts and properties in the
general case but without specifying individual instances of such concepts or
properties. For instance, the sentences “all cars have three or more wheels”,
or “voltage is an attribute that describes batteries” are both typical examples
of such terminological knowledge. When these concepts and properties are
then used to describe instances of things, we speak of assertional knowledge.
Examples of assertional knowledge include “my Audi A4 is a car”, or “this
D-battery puts out 1.5 volts” [16].

In any computer system dealing with information or knowledge this dis-
tinction between the general (a database schema, a vocabulary, a class def-
inition) and the specific (database rows, RDF instance data, instantiated
objects) is made. The former are used to structure operations on and pre-
sentations of the latter. The word conceptualisation is sometimes used as a
synonym for the terminological knowledge of a certain domain. In Gruber’s
words:

9

Chapter 2. Ontologies and Ontology Design Patterns

“A body of formally represented knowledge is based on a con-
ceptualization: the objects, concepts, and other entities that are
presumed to exist in some area of interest and the relationships
that hold them. A conceptualization is an abstract, simplified
view of the world that we wish to represent for some purpose.
Every knowledge base, knowledge-based system, or knowledge-
level agent is committed to some conceptualization, explicitly or
implicitly.” Gruber [17, p. 1]

The line demarcating terminological from assertional knowledge is often
context and use dependent. For instance, had the car example given ear-
lier instead read “an Audi is a car”, then the usage context would define
which way the term Audi should be modelled: as an individual car manufac-
turer (i.e., assertional knowledge), or as a classification of all car instances
matching a certain manufacturer (i.e., terminological knowledge).

Revisiting Studer et al.’s [2] ontology definition from Section 1.1 (a for-
mal, explicit specification of a shared conceptualisation) the value of on-
tologies in software engineering may now be more apparent. By grouping
together all the relevant terminological knowledge describing a certain area
in a formal machine processable way, an ontology provides a vocabulary with
which data within this area can be organised, queried for, and operated upon
in an unambiguous, structured way, by humans or software programs.

2.1.3 Ontology Components

Different ontology languages support different types of features, and even
to the degree that they share features, often use different terminology for
describing them. In this thesis, the author uses the Semantic Web stack of
languages and standards, as described in Section 2.1.4. Within these lan-
guages, the basic building blocks are classes, properties, and individuals.
The following sections describe these building blocks in brief. Figures 2.2
and 2.3 are used to graphically illustrate the concepts. In these figures,
rectangles denote classes, rounded rectangles denote properties, ellipses de-
note individuals, and diamonds denote simple data values. The prefixes
associated with some concepts in the figures indicate which namespace the
concepts are defined in, that is, whether they belong to the RDF, RDFS, or
OWL standards (these standards are introduced in Section 2.1.4).

Classes

Classes are a way of grouping together things that are similar in some re-
spects, such that individuals can be asserted to belong to them. Depending
on which type of ontology language is employed, classes can be viewed as
extensional (i.e., sets that are defined by their constituent individuals) or
as intensional, (i.e., with a defined meaning independent of any member
individuals). In the latter case, one might assert that the class Car has the

10

2.1. Knowledge Modelling and Ontologies

owl:Thing

Course Person

teachesectsCredits
owl:Datatype

Property
owl:Object
Property

xsd:
float

rdfs:range

rdf:type

rdfs:domain

owl:subClassOf owl:subClassOf

rdfs:range rdfs:domain

rdf:type

Figure 2.2: Course ontology example

Person Course

TCHR_JoDo
_34221

CRS_Prog_1
01

7.5

rdf:type rdf:type

teaches ectsCredits

Programming 101

rdfs:label

John Doe

rdfs:label

Figure 2.3: Course data expressed using the ontology in Figure 2.2

11

Chapter 2. Ontologies and Ontology Design Patterns

intentional definition “a four-wheeled vehicle with an internal combustion
engine”. This definition then holds true no matter whether there are zero
or one million individuals asserted to be cars. In the OWL language, the
class concept is defined as being intensional, as per the latter perspective.
One of the main tasks of a reasoner software is to sort individuals into classes
based on the properties that they exhibit and the intensional definitions of
the classes [18, 19].

Classes can be related to one another through equivalence or subsump-
tion relations, such that a certain class can be defined as being a subclass
of another class, or as being extensionally equivalent to it. The notion of
subclasses and subsumption is closely related to the view of a class as a
set of individuals, in that the individuals belonging to a subclass by defini-
tion are a subset of the individuals belonging to the superclass. Sub- and
super-classing is transitive, such that if a superclass A has a subclass B,
and B in turn has a subclass C, then it holds that C is also a subclass of
A, transitively. In many languages there exist a defined top class (called
Thing, Top, or something similar) which all other classes are subclasses of
and which, consequently, all individuals are members of. In Figure 2.2 the
classes Course and Person are defined to be direct subclasses of the top-level
class Thing [18, 19].

In other knowledge modelling languages classes are known varyingly as
concepts, types, categories, etc. In this thesis the terms class and concept
are used interchangeably.

Properties

Properties (or relations as they are also known) define the links that can
hold between two individuals of different classes or between an individual
and a data value. They are, together with the class subsumption hierarchy,
the main way of defining the semantics of the domain of discourse.

Some languages, including OWL, differentiate between properties that
relate individuals to data values (datatype properties) and properties that
hold between two individuals (object properties) [19]. Other languages, such
as Protégé-Frames, do not distinguish between the two types of properties,
but treat both as simple slots on a class definition that can be filled out by an
individual or a data value. In both formalisms, properties are defined to hold
over some domain(s) (i.e., be applicable to certain classes) and have some
range(s) (i.e., are satisfied by links to some other classes, or data types). In
Figure 2.2, the properties ectsCredits and teaches are defined. The former
is a datatype property with the domain Course and range float. The latter
is an object property with the domain Person and range Course [20].

Individuals

Individuals are the basic entities in an ontology-backed knowledge base, and
represent some individual fact or resource. While they are most often treated

12

2.1. Knowledge Modelling and Ontologies

and modelled as part of the assertional knowledge part of such a knowledge
base rather than the terminological knowledge, there are some cases when
it makes sense to refer to individuals in an ontology. One such case is
when defining classes extensionally, i.e., by an explicit listing of member
individuals. Another is when defining classes based on value restrictions,
that is, saying that a class consists of all individuals that have some relation
R to a specific defined individual. Individuals are sometimes, in other works
and in the following text, referred to as instances or objects. In Figure 2.3
two individuals are defined to exist, are labelled in a human-readable manner
(John Doe and Programming 101), are stated to belong to the relevant
classes, and to be connected via the teaches property such that John Doe
teaches Programming 101. Furthermore, it is stated that Programming 101
covers 7.5 ECTS credits, via the ectsCredits property.

2.1.4 RDF, RDFS, and OWL

In the 1980s and 90s there were for a long time multiple competing and
non-interoperable knowledge representation formats and knowledge bases,
representing different directions of research taking place at research groups
and systems vendors. Then, in 2001, Tim Berners-Lee et al. published the
article calling for development of a new Semantic Web [21], via which hu-
mans and computers alike could find, consume, and reason over published
knowledge. What Berners-Lee saw was that this vision of the future Web
could never come to fruition unless decentralised and open knowledge rep-
resentation systems were developed, systems in which no single node should
be required to hold all knowledge, but where knowledge could be merged
from different systems knowing parts of the truth. For such a process to
work, interoperability standards were obviously required, and the W3C set
about developing such standards over the course of the following decade.
The existing RDF data model was used as a foundation, and was developed
further along with the SPARLQL, RDFS, OWL, and RIF standards, among
others. Figure 2.4 gives an overview of the structure of the Semantic Web
stack as it stands today. The following section gives an introduction to some
of the layers of the stack.

RDF

The Resource Description Framework (RDF) standard was originally re-
leased as a W3C Recommendation in 1999, and was updated in 2004. The
RDF standard consists of two major components: a data model and lan-
guage for representing distributed data on the Web, and syntax standards
for expressing, exporting, and parsing said data model and language [23].

The RDF data model is based on graphs, as opposed to the tuples that
underlie traditional relational data models. Under RDF, a data graph is
constructed by the union of a number of three part assertions called triples.

13

Chapter 2. Ontologies and Ontology Design Patterns

Identifiers: URI Character set: UNICODE

Syntax: XML

Data interchange: RDF

Syntax: TTL

Querying: SPARQL

Taxonomies: RDFS

Ontologies: OWL Rules: RIF

Unifying logic

Proof

Trust

C
ryptography

User interface and applications

Figure 2.4: The Semantic Web layer cake (adapted from [22])

A triple consists of a subject, a predicate, and an object, in which the sub-
ject is an entity about which some data is expressed, the predicate can be
seen as the typing of the related data, and the object is the actual related
data relevant to the subject. For example, Listing 2.1 shows in a simplified
syntax four triples extracted from the graph displayed in Figure 2.3. Pro-
gramming 101 and John Doe are subjects, type, ectsCredits, and teaches are
predicates, and Course, 7.5, Person, and Programming 101 are objects.

Listing 2.1: RDF triples example

Programming_101 rdf:type Course

Programming_101 rdfs:label ‘‘Programming 101’’

Programming_101 ectsCredits 7.5

John_Doe rdf:type Person

John_Doe rdfs:label ‘‘John Doe ’’

John_Doe teaches Programming_101

As illustrated in this example and in Figure 2.3 subjects and objects
make up the nodes in the RDF graph, and predicates make up the edges
linking the nodes together. We can also see that there are two types of
nodes in such a graph: resources (entities such as Course and John Doe)
and literals (data values, including floating point values such as 7.5, strings
such as “John Doe”, or other XML schema datatypes). Predicates are in
fact also resources, enabling them to act as subjects or objects (i.e., nodes)
when needed for meta-modelling purposes. RDF also defines a particular

14

2.1. Knowledge Modelling and Ontologies

predicate, rdf:type, which implies a type relationship between the two re-
sources that are linked via it. However, the semantics of typing in pure
RDF is rather vague, and one has to go to higher-order languages such as
RDFS and OWL to model class extensions as discussed in Section 2.1.3.

All resources are in RDF referenced using URIs (not shown in the ex-
ample), enabling global lookup of distributed knowledge via HTTP, FTP,
or other distribution mechanisms supported by the URI standard. In order
to simplify modelling, namespaces are used to group related content. This
also provides an easy extension mechanism to RDF, which is used by RDFS,
OWL, and other standards, covered in the following sections.

The RDF syntax standards describe how these triples are serialised into
files. There are currently two main standards for this task, XML/RDF and
Turtle. The former standard was defined at the time RDF was developed,
and works on the principle of embedding RDF structures in XML. This
provides interoperability with existing XML-based infrastructure and tools,
but generates rather complicated files that are difficult to parse and under-
stand by human readers. The latter standard is newer and takes a different
approach, by providing a set of convenient short-hands for writing down a
large number of triples in simple text files. At the time of writing both of
these standards are supported by most tools and programming frameworks
in use. In this thesis, to the extent that RDF data is shown, the Turtle
format will be used due to its superior readability.

RDFS and OWL

The RDF Schema (RDFS) standard, defined along with the second gen-
eration of RDF in 2004, defines a number of classes and properties that
extend the base RDF vocabulary and provides support for more expressive
knowledge modelling semantics. Some of the key additions in RDFS include
[24]:

• rdfs:class – defines the concept of a class to which resources may
belong, strengthening the definition of the RDF type predicate.

• rdfs:subClassOf – defines that a certain class is subsumed by a su-
perclass, and that consequently, all instances of the subclass are also
instances of the superclass

• rdfs:domain – defines a class of instances that may act as subjects
to a certain predicate.

• rdfs:range – defines a class of instances that may act as objects to a
certain predicate.

Using the RDFs vocabulary it is possible to model complex data struc-
tures, including basic ontologies. The language allows for some reasoning
and inferencing, based on domains and ranges of employed properties, or

15

Chapter 2. Ontologies and Ontology Design Patterns

subclass and subproperty assertions. As pointed out by Lacy in [25], the
RDFS language does however have some restrictions in expressivity that
prevents it from being able to express richer ontologies. For instance, RDFS
provides no way of expressing limitations on property cardinalities, or class
extension equivalences. The Web Ontology Language (OWL) was devel-
oped simultaneously with RDFS in order to provide better support for such
higher expressiveness. Some key features of OWL include [26]:

• class and property equivalences – defining that two classes or two
properties are synonymous, such that all instances of one are also in-
stances of the other. This is a key feature in implementing integration
between distributed ontologies where classes or properties are defined
by different URIs at different knowledge sources, but are in fact se-
mantically equivalent.

• sameAs and differentFrom – defines individual equivalence or dis-
jointness. As with the above point, this is important in integrating
distributed datasets where individuals may have different URIs but in
fact refer to the same information.

• disjointWith – defines class disjointness, i.e., that two defined classes
may not have any joint individuals.

• inverse, transitive, and functional properties – in OWL, a great
deal can be said about the semantics of properties that is not possible
to express in RDFS. Transitive properties in particular are important
in modelling classification trees, where descendant nodes many steps
down the tree can be inferred to be related to higher nodes via them.

• property cardinality restrictions – delimits the number of times
a predicate may occur for a given subject, such that for instance a
car can be defined to have a maximum of four wheels, or a parent a
minimum of one child.

Since its original release, OWL has seen widespread adoption as an on-
tology engineering language in the research community and industry alike.
A number of new features (keys, property chains, datatype restrictions, etc.)
were added to the standard when it was updated in 2009 [27].

2.2 Ontology Applications

As previously touched upon, ontologies are of use in various tasks related
to the organisation and distribution of information. The following section
describes different types of ontologies, and exemplifies how ontologies are
being used for some different purposes. The usage areas exemplified have
been selected because of the potential benefit that ODP usage could bring
to them – they all concern situations where modelling and management

16

2.2. Ontology Applications

Top-level ontology

Application ontology

Task ontologyDomain ontology

Figure 2.5: Guarino’s ontology classification hierarchy [28]

of knowledge could be performed by domain experts rather than ontology
engineers. In publishing Linked Data, or applying Semantic Search engines,
these domain experts have an understanding of what types of gains could
be had by integrating, reusing, or searching over their information, that
an ontology engineer would not necessarily have. In deploying different
types of reasoning systems, whether it be for purposes of Complex Event
Processing, profile matching, or ubiquitous computing, system users and
administrators being able to themselves develop the ontologies that govern
system behaviour, would be superior to handing off such configuration tasks
to an ontology engineer.

2.2.1 Ontology Types

When classifying or structuring ontologies, one common approach is to or-
ganise them by intended usage domain, such that biomedical ontologies are
differentiated and studied separately from for instance business process mod-
elling ontologies or library ontologies. This is likely the result of differing
academic disciplines picking up ontology modelling for different purposes.
When dealing with reuse and patterns, such a view on ontology classification
can be counterproductive. After all, a pattern is supposed to be a reusable
component, ideally reusable across domain boundaries.

The categorisation presented by Guarino in [28] and displayed in Fig-
ure 2.5 is of another kind, differentiating between ontologies based on their
level of generality. The intuition underlying this hierarchy is that it can be
difficult to reconcile existing ontologies from a bottom-up perspective, but
that certain top-level concepts are general enough that they can be agreed
upon regardless of domain. Thus, the top-level ontologies in the model cover

17

Chapter 2. Ontologies and Ontology Design Patterns

very general things such as space, time, tangible or intangible objects, and
so on, independent of any particular use case or usage domain. These top-
level ontologies can then be used as a foundation to construct either domain
or task ontologies. The former are ontologies specialised to cover a given
domain (banking or the academia, for instance) irrespective of what task
one wishes to use the ontologies for. The latter are ontologies specified for a
generic task (such as content annotation or situation recognition) irrespec-
tive of usage domain. Finally, application ontologies are developed to help
solve a particular tasks within particular domains, and therefore often reuse
and build upon both domain and task ontologies. This perspective on ontol-
ogy classification has seen significant adoption in the research community.

2.2.2 Linked Data

There are vast amounts of data stored at both government institutions and
private corporations, which could be published on the Web for citizens or
customers to access, query, and work with. However, simply publishing that
data online brings less benefit than if a a few more steps are taken. The goal
of the Linked Data community (originally a W3C project) is to promote the
publication of data that follows these Linked Data principles, as outlined by
Berners-Lee [29]:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL)

4. Include links to other URIs, so that they can discover more things.

Datasets published according to these principles can easily be integrated
with other linked datasets on the Web, helping users query across the to-
tality of the available data (which in the Semantic Web vision is the whole
Web). Several organisations and institutions have recognised that by al-
lowing users and customers get access to data in this manner, those users
can help in constructing innovative analyses, visualisations, and interpre-
tations of the data that the host organisations could not themselves have
produced. Furthermore, to the extent that the host organisations are gov-
ernment agencies, there are political and philosophical points to be made
that data produced using tax-payers’ funds should be made available to said
tax-payers.

While ontologies are not strictly speaking required in order to develop
and publish linked data, they are essential to doing so in an efficient and
interoperable manner. By sharing ground definitions regarding the structure
of data, each linked data provider does not have to individually construct
schemas for their data, but instead existing ontologies can be used. As

18

2.2. Ontology Applications

an example of this, the FOAF ontology1 is almost exclusively used when
publishing data about individuals or organisations.

DBPedia2 is probably the most influential linked data source on the
Web. It consists of structured data sourced from Wikipedia, in particular
from its article infoboxes, which are known to follow a certain structure and
schema, and are therefore easy to extract data from. Due to the impressive
size and coverage of Wikipedia, a great deal of real world entities (just
short of four million at the time of writing) are covered by DBPedia and
consequently, have assigned DBPedia URIs. These URIs are very often used
for interlinking purposes by other linked data providers who wish to enable
lookup of related information from their data. As a result, DBPedia has
become a foundational element to the Web of Data, as illustrated by the
Linking Open Data diagram3, in which DBPedia is positioned at the center.
The DBPedia ontology mirrors the structure of the infoboxes on Wikipedia,
and contains some 350 classes and more than 1700 properties.

A particularly important Linked Data player, both in terms of the num-
ber of datasets published and in terms of public awareness impact, is the
United States government, through its Data.gov initiative4. This website
gathers the datasets published by the US federal government agencies, over
4700 at the time of writing, of which some 2500 are considered high-value
(that is, usable for improvement suggestions regarding agencies’ operations,
accountability, and responsibility). Furthermore, some 1300 tools (of which
500 classes as high-value ones) to make use of these datasets are published
via the site, covering everything from airline on-time arrival data to FDA
recalls to USGS geospatial data. Unfortunately the Data.gov datasets are
only to a limited degree expressed as RDF, and in few cases linked to exist-
ing linked data sources. Ding et al. have been instrumental in overcoming
this divide by helping interlink government data to public linked open data
sources such as DBPedia [30, 31].

A pedagogical example of ontology integration to support linked data
publication and consumption is that provided by the Semantic Web Dog
Food Corpus5. This site gathers metadata about Semantic Web conferences.
The ontology used to structure this dataset is a combination of FOAF,
SWRC6, SIOC7, and Dublin Core8. Its ontology structure can be seen as a
partial validation of the Guarino [28] ontology hierarchy mentioned in 2.2.1,
in that none of these domain or task ontologies on their own provide an
appropriate vocabulary for structuring Semantic Web conference metadata,
but when combined into an application ontology, the task can be solved.

1Friend-Of-A-Friend, http://www.foaf-project.org
2http://dbpedia.org
3http://lod-cloud.net/
4http://www.data.gov
5http://data.semanticweb.org
6Semantic Web for Research Communities, http://ontoware.org/swrc/
7Semantically-Interlinked Online Communities, http://sioc-project.org
8http://dublincore.org

19

Chapter 2. Ontologies and Ontology Design Patterns

2.2.3 Semantic Search

A common problem in information logistics is finding the correct information
needed for performing some task or fulfilling some role. The two main
options open to a modern day knowledge worker are all too often to either
step by step search through some file server directory structure and try to
find a folder or filename that looks reasonable, or to run a full text search
using some document management system, often returning hundreds of hits.
Neither of these two approaches allow the knowledge worker to query over
the information content of the documents in question. Semantic search
methods, as described below, aim to solve this problem in different ways.

Semantic fact search

One of the earlier and very influential papers on semantic search, [32] by
Guha et al., proposes a new type of search by which users may search over
the Semantic Web to find knowledge triples related to a particular entity or
concept. The authors exemplify the utility of such a search by augmenting
existing Google searches with facts about the recognised entities from the
search results. As suitable querying languages did not exist at the time of
the paper’s writing, the authors develop their own API for querying remote
servers for RDF data via SOAP. Their GetData() call queries a server for
all resources matching a submitted RDF subject and predicate combina-
tion. In order to look up the initial subject URI to query for from a given
search string, a lookup via the TAP knowledge base is performed. This
basic approach to semantic fact search, i.e., first finding a canonical URI
corresponding to a search string, and then querying known knowledge bases
to aggregate more RDF triples involving this URI, is still in use in modern
solutions, though it is now more common to use SPARQL as query language
and DBPedia-based entity names. Sometimes these systems present the data
gathered alongside documents found using traditional search methods, and
sometimes they return RDF triples exclusively.

Uren et al. discuss approaches and methods for semantic search exten-
sively in [33]. They classify three different types of queries over semantic
facts, which they name the search for entities, searches for relations, and
parametrised searches. Entity search is the search for more information re-
garding some RDF resource, as exemplified by the search method developed
by Guha et al., mentioned above. This is the simplest type of semantic
query. Relation-based search looks to find the path connecting two RDF
resources, i.e., how two known concepts or individuals are connected in a
dataset. Parametrised search, finally, is used when the user has a clear and
formally defined need for knowledge that is consistent with the ontology
by which the data is expressed. This enables the user to create templates
(including parameters) that can be applied to an RDF graph in order to
“stamp out” those parts of the RDF graph that are consistent with the
parametrised search query. For instance, a query could be constructed ask-

20

2.2. Ontology Applications

ing for the CEOs of all companies that are in the telecom sector and that has
some office in Asian countries, and the result would be a set of subgraphs
of the original dataset that match these conditions. Parametrised queries
provide a great expressivity, but they can be difficult to build intuitive and
usable user interfaces for, because of their complexity and the many form
fields or logic expressions required for constructing such a query.

Text-based search with annotations

The most common usage of semantic search engines is in enriching search
results across document repositories or the Web by using semantic annota-
tions. In this method, the documents over which the search is executed are
indexed not only by their textual content, but by the semantic meaning of
parts of that content. An example of this type of search is the method pre-
sented by Kyriakov et al. in [34]. In their solution, primarily geared towards
business news content, individual news articles are crawled and annotated
using various information extraction methods for entity and property recog-
nition, such that indexes over these documents include not only the docu-
ment content but also extracted individuals, and the annotations matching
documents to those individuals. This method allows users of their system
to query for both instance data extracted from the news articles, and for
news articles that mention particular instance data. Combining these two
types of searches yields a method where users can first search for the facts
that they are interested in (as in the aforementioned semantic fact search
approaches), and then bring up the documents related to those facts. The
KIM platform developed by the authors has been released as a dual licensed
software product released by OntoText9.

While the KIM platform provides good functionalities for searching, it
is like many other semantic search softwares, somewhat lacking in terms
of usability and intuitiveness. Many of these systems have interfaces that
assume that users are already familiar with graph shaped data, ontologies,
and Semantic Web technologies. In [35] Lei et al. attempt to develop a
system that hides much of the logic formalisms behind a simple Google-like
search interface. This interface makes use of a controlled natural language
to help formalise user queries into SeRQL queries on the backend, such
that users can pose queries in pseudo-english (with certain restrictions) as
opposed to themselves creating a formal query. Their engine then uses
the generated queries to return results from a knowledge base of metadata
extracted from a web portal. The returned facts include pointers to the
source document that this metadata was originally extracted from, allowing
the user to get access to documents as opposed to only semantic facts.

Both of the systems described in [34] and [35] make use of information
extraction techniques to retrieve metadata from published documents. Such
extraction can be simplified significantly if the source documents comply

9http://www.ontotext.com/kim

21

Chapter 2. Ontologies and Ontology Design Patterns

with some metadata structure to begin with. The schema.org10 vocabulary
is an attempt to standardise such a metadata structure, by providing a set
of simple vocabularies for web content. This initiative is backed by some of
the major search engines on the Web, including Google, Bing, and Yahoo.
While the vocabularies provided through schema.org are not detailed enough
to fit all purposes, they provide a good starting point for developing web
site template and content from which supports semantic search features.

Hybrid search

An exciting recent development in semantic search is the use of hybrid search
techniques, as exemplified by Bhagdev et al. in [36] and [37]. In these tech-
niques, traditional search methods and semantic search methods are com-
bined to provide better results. For instance, if only part of a user-entered
query is suitable for use in a semantic search, that part of the query can be
processed by a semantic search system, and the remainder of the query be
processed using traditional keyword search methods. The final results are
then computed by joining the two result sets. This enables context-based
keyword search, such that for example, documents containing the phrase
“salary” are returned provided that the documents’ metadata asserts that
they concern an individual who is classified as an instance of the class “Pro-
fessor” and who has an employment at a particular university.

2.2.4 Reasoning Tasks

The description logic foundations of Semantic Web ontologies makes them
suitable for a variety of uses where the logic consequences of a certain set of
data or knowledge needs to be computed. This type of computation is most
often performed using a Semantic Web reasoning engine, typically capable
of a number of reasoning tasks including consistency checking, subsumption
calculation (i.e., which classes subsume one another in the inheritance hier-
archy), individual realisation (calculate which classes an individual belongs
to), and concept satisfiability (whether a certain class is defined in such a
way as to allow individuals to exist). Additionally, system- or case-specific
logic is often added in application code or rules, to enforce or test for par-
ticular relations and facts when the base ontology language does not suffice.
The following sections illustrates some such advanced usages of ontologies
and semantic technology.

Complex Event Processing

Complex Event Processing (CEP) is a set of methods for scanning through
time-indexed data in order to detect patterns signifying the presence of
particular events or situations that are of interest. The idea is initially in-
troduced by Luckham and Frasca in [38]. In their approach, patterns based

10http://schema.org/

22

2.2. Ontology Applications

on temporal or causal links between events are defined and formalised into
mapping rules. When executed over incoming time-indexed data streams,
these patterns connect lower level basic events to form higher level complex
events. The approach is exemplified by a factory scenario, where the events
concern communication with automated production machinery and map-
pings can be made between low-level network communication events and
higher level workflow events such as “begin process” or “setup machine”.
Other possible usages of CEP exist in a variety of areas, from improving
operational efficiency in healthcare [39] to dynamic adaption of business
process models [40].

As indicated by Anicic et al. in [41] traditional CEP approaches how-
ever have some drawbacks, particularly in terms of recognising events using
background knowledge. Only those relations between events and entities
which are made explicit in the input data stream can be used for detec-
tion and correlation purposes. In order to overcome these limitations, [41]
suggests the use of Semantic Complex Event Processing (SCEP), in which
background knowledge is encoded into knowledge bases that are accessed by
a rules engine to support CEP. Apart from enabling reasoning over domain
and background knowledge, this also enables detection of more complex
situations, recommendations, event classification, clustering, filtering, etc.

Another approach to enabling semantic processing of time-indexed data
is proposed by Barbieri et al. in [42] and further developed in [43] and [44].
Their contribution is twofold – to begin with they propose an extension
of the SPARQL query language commonly used to query knowledge bases,
enabling continuous querying over timestamped RDF graphs using config-
urable sliding windows. They also develop support for reasoning over such
such sliding windows, including dropping both facts and inferred knowledge
once the window has passed (greatly reducing the computational power re-
quired to calculate inferences). Based on these approaches it is possible to
construct SCEP systems using only semantic technologies.

Profile Matching

An interesting type of task made simpler by semantic technologies and on-
tologies is profile matching for different purposes. By developing a profile
representing user needs, interests, capabilities, or other relevant informa-
tion, and then at runtime matching that profile to associated data, it be-
comes significantly easier to provide the correct user with the correct data or
task. While this type of work can be performed using traditional technolo-
gies, reasoning engines and ontology-backed knowledge bases are particularly
suitable options, given their focus on classification operations as discussed
earlier.

One example of this type of profile matching is the approach used by
Tarasov [45] for competence profile management. Tarasov defines a formal
logic vocabulary for modelling competence profiles, including concepts such
as competencies, roles, processes, tasks, etc. He then defines which types

23

Chapter 2. Ontologies and Ontology Design Patterns

of operations this vocabulary and accompanying software needs to be able
to perform, in order to support competence management in an enterprise.
The logic vocabulary proposed is directly translatable into description logic
concepts, and form the basis for a developed OWL ontology, while the oper-
ations required are translatable into SPARQL queries across said ontology.
The developed system can be used to check that workers are of a sufficient
competency for their tasks, to find suitable workers for new tasks, or to
generate an aggregate overview of the competencies of an organisation.

Another example of profile matching is in matching of information to
an interested party, as exemplified by Billig et al. in [46]. In this approach
an ontology is constructed, covering the concepts which occur within the
organisation or domain of study. Each user of the system is associated
with a profile representing the concepts from said ontology which they are
interested in. When a document is entered into the system, an information
extraction system extracts which concepts are mentioned in the document,
and the system then attempts to find the user profile with the least semantic
difference to said document.

Ubiquitous computing

Berners-Lee’s original vision for the Semantic Web [21] exemplifies the usage
of a meaningful machine-interpretable Web through a ubiquitous comput-
ing scenario, where two parties schedule a set of activities based on re-
source availability and contextual restrictions, all through handheld or car-
integrated devices operating with a large degree of autonomy and what we
might for lack of a better word call intelligence. The paper lays out how a
Semantic Web using ontologies can be used by such agent systems to help
make human life more convenient, by removing tedious data lookup and
integration work. Not only that, but by using inferencing engines and dis-
tributed knowledge bases, such systems could also help humans make better
choices based on asserted or inferred information that they would otherwise
not have easy access to.

Several systems have been developed that try to fulfil this vision, see for
instance [47] and [48]. These types of systems generally model two (some-
times overlapping) areas: a usage domain and a usage context. The former
concerns the types of operations and/or data that the ubiquitous computing
system needs to support, such as scheduling appointments, monitoring envi-
ronmental factors, supporting particular business processes, etc. The latter
concerns the contexts in which the operations take place and in which the
system needs to be able to support activities. In both of these types of mod-
elling the use of ontologies allows for harmonisation of the formats in which
data and knowledge are exchanged between interacting systems. Inferring
the presence of a certain usage context and what consequences this usage
context has on an ongoing activity is a typical use of a semantic reasoner.

24

2.3. Ontology Development

2.3 Ontology Development

A variety of different methods and practices for ontology engineering have
been developed in academia. While this thesis does not have enough room to
cover and discuss all of them, a subset of commonly mentioned and discussed
methods have been selected for presentation below. It is important to note
that nearly all of these methods require that ontologies are created either
by experienced ontology engineers on their own, or by ontology engineers
and domain experts in cooperation. Few of them support domain experts
developing Semantic Web ontologies on their own, which as we will see in
the next chapter is one of the motivations behind the development of ODPs.

In all of the presented methods, requirements engineering plays an im-
portant role. In an ontology engineering context, requirements are often for-
malised into competency questions (often abbreviated CQs). Competency
questions are introduced by Gruninger and Fox [49] as a set of problems
that the logic axioms of an ontology must be able to represent and solve.
In [49] a number of such competency questions are given as examples, in-
cluding planning questions (“what sequences of acitivites must be completed
to achieve some goal?” [49, p. 5]) and temporal projection (“given a set of
actions that occur at different points in the future, what are the properties of
resources and acitivites at arbitrary points in time?” [49, Ibid.]). For sim-
ple communicative purposes such questions are often presented in natural
language format, but according to the Gruninger and Fox perspective, they
must be formalisable into machine interpretable and solvable problems. In
RDFS and OWL ontologies, competency questions are often formalised into
SPARQL queries, and are considered satisfied if said SPARQL query returns
the expected result when executed over the ontology in question.

2.3.1 METHONTOLOGY

The METHONTOLOGY methodology is presented by Férnandez et al. in
[50]. It is one of the earlier attempts to develop a development method
specifically for ontology engineering processes (prior methods often include
ontology engineering as a sub-discipline within knowledge management, con-
flating the ontology specific issues with other types of issues as knowledge
acquisition). Férnandez et al. suggest, based largely on the authors’ own
experiences of ontology engineering, an ontology lifecycle consisting of a
number of sequential work phases or stages : Specification, Conceptualisa-
tion, Formalisation, Integration, Implementation, and Maintenance. Sup-
porting these stages are a set of support activities: Planification, Acquiring
knowledge, Documenting, and Evaluating.

Implementing this general ontology lifecycle into an actual ontology de-
velopment methodology, the following concrete development activity steps
are proposed (and motivated by reference to empirical or theoretical sources):

25

Chapter 2. Ontologies and Ontology Design Patterns

1. Specification – In which a requirements specification for the ontology
project is developed, including details on intended usage, level of for-
mality, scope, etc.

2. Knowledge Acquisition – In which various sources of knowledge, in-
cluding experts, books, documents, figures, tables, etc. are studied to
gather the knowledge required to understand the domain and concepts
therein.

3. Conceptualisation – In this step the gathered domain knowledge is
structured in a glossary of concepts, instances, verbs, properties, etc.
METHONTOLOGY proposes a conceptual intermediate representa-
tion format suitable for comparison of different ontologies independent
of eventually used implementation language.

4. Integration – In order to speed up development, the reuse of exist-
ing ontologies and meta-ontologies (i.e., foundational vocabularies) is
recommended whenever possible.

5. Implementation – In this step, the results of the aforementioned steps
is codified into a formal language.

6. Evaluation – In which an ontology is validated against the original
requirements specification, and verified to be formally correct.

7. Documentation – Unlike previously listed activities, the documenta-
tion activity takes place throughout the whole lifecycle process, in
which a variety of documents detailing the work performed and the
functionality developed are created.

The steps defined are rather coarse-grained and give guidance on overall
activities that need to be performed in constructing an ontology. Fine-
grained and specific task or problem solving guidance is not included, but it
is rather assumed that the reader is familiar with the specifics of constructing
an ontology.

METHONTOLOGY does not explicitly define or differentiate between
the different roles involved in an ontology engineering project. In the text
describing the different steps, field experts are mentioned as being involved
in the knowledge acquisition step, but then only as sources of knowledge, not
active participants in the ontology engineering process itself. In this way the
method may prove helpful for ontologists looking to structure their work,
but it is likely less useful in terms of helping improve semantic technology
and ontology adoption among non-ontologists.

2.3.2 On-To-Knowledge

The On-To-Knowledge Methodology (OTKM) [51] is, similarly to METH-
ONTOLOGY, a methodology for for ontology engineering that covers the

26

2.3. Ontology Development

big steps, but leaves out the detailed specifics. OTKM is framed as covering
both ontology engineering and a larger perspective on knowledge manage-
ment and knowledge processes, but it heavily emphasises the ontology devel-
opment activities and tasks (in [51] denoted the Knowledge Meta Process).

The method prescribes a set of sequential phases: Kickoff, Refinement,
Evaluation, and Application and Evolution. These phases may be iterated
over cyclically in larger or longer-running projects, such that output from
an Application and Evolution phase may be input into a new Kickoff phase.

OTKM requires collaboration between domain experts and ontology en-
gineers in the Kickoff phase, where an ontology requirements specification
document (ORSD) and an initial semi-formal model is developed, and where
representatives of both groups need to sign off on these artefacts sufficiently
covering all requirements. In the subsequent Refinement phase an ontology
engineer on their own formalises the initial semi-formal model into a real
ontology, without aid of a domain expert. Once the ontology engineer is
satisfied with the developed ontology fulfilling requirements, the phase is fi-
nalised and the Evaluation phase begins. In evaluation, both technical and
user-focused aspects of the knowledge based system in which the ontology
is used, are evaluated. The former aspects are assumed to be evaluated
by an ontology or software engineer ([51] leaves this question unanswered
but it is a reasonable assumption to make), while the latter are to be evalu-
ated together with end-users, from the perspective of whether the developed
solution is as good or better than already existing solutions. Finally, the
Application and Evolution phase concerns the deployment of said knowledge
based system, and the organisation challenges associated with maintenance
responsibilities.

It is interesting to note that in this methodology also, the role of the
domain expert is rather limited. It is assumed that a dedicated ontology
engineer will perform the knowledge modelling tasks, with input from the
domain experts early in the process (when formalising requirements), but
later involvement of said domain experts is limited.

2.3.3 DILIGENT

DILIGENT, by Pinto et al. [52, 53], is an abbreviation for Distributed,
Loosely-Controlled and Evolving Engineering of Ontologies, and is a method
aimed at guiding ontology engineering processes in a distributed Semantic
Web setting. The method emphasises decentralised work processes and on-
tology usage, domain expert involvement, ontology evolution management,
and fine-grained methodological guidance. Pinto et al. differentiate between
ontology engineers and knowledge engineers on the one hand, and ontology
users on the other. In their view, the core of an ontology needs to be created
by the former group of logic and knowledge experts (in cooperation with do-
main experts), but adaptations of the ontology are best performed by the
latter group, the users who have direct personal knowledge of the specific

27

Chapter 2. Ontologies and Ontology Design Patterns

uses to which the ontology will be put. These implemented user adaptations
may at times for maintenance and evolution reasons need to be back-ported
into the core ontology, and such integration work should, to ensure quality
and consistency, be performed by a control board of knowledge experts.

This distributed development process is formalised into five activities:
build, local adaptation, analysis, revision, and local update. In the build
phase, the ontology experts create the initial ontology. In the subsequent
local adaptation phase, ontology users are allowed to copy and update their
local variants on this ontology. In the analysis phase the central control
board analyse the local variants that have been developed, to find similarities
and candidate features for inclusion in the shared core. In the revision phase,
the core is updated according to this analysis. Finally, in the local update
phase, the updated core is pushed out to the ontology users, and their local
variants are updated to remain compatible and compliant with the new
version of the core. In order to support all of these steps a collaborative
ontology engineering environment is required to be used.

In evaluating this approach in two case studies, Pinto et al. [52, 53] find
the involvement of knowledge or ontology engineers throughout the devel-
opment process to be crucial. In analysing user and group interaction in on-
tology engineering using a collaborative ontology engineering environment,
they find that having an experienced moderator restricting and guiding user
discussion is beneficial to the process. In studying how ontology users work
in performing local adaptations, they note that these local adaptations al-
most exclusively deal with changes to the subsumption hierarchy. No new
relations were defined, and only a little instance assignment. They conclude
that users do not understand the logic structure or theory of an ontology:
“First of all our users did understand the ontology mainly as a classification
hierarchy or their documents” [53, p. 315]. They also note that reconciling
the local adaptations when attempting to build a new version of the core
is a task that needs to be performed by a knowledge engineer, and which
cannot be automated.

2.3.4 Ontology Development 101

The Ontology Development 101 guide by Noy and McGuinness [54] does
not present an ontology development methodology as such, but it is often
referred to and recommended as a good introduction to ontology engineering
for beginners, and it does provide a structured overview of required tasks
in an ontology engineering project. Updated to correspond to the OWL
terminology used in this thesis those required tasks are: Scoping, Reuse,
Term enumeration, Class hierarchy construction, Property elicitation, Prop-
erty definition, and Instance creation. Each step is explained and exempli-
fied. Additionally, a section of the document discusses commonly occurring
problems or issues associated with each step, to help the reader avoid the
most common pitfalls.

28

2.4. Ontology Design Patterns

The Ontology Development 101 guide is aimed at ontology users, domain
experts, and students. It does not take any prior knowledge of ontology
theory or practice for granted. It also gives very concrete and applicable
guidance on practical issues of ontology engineering, such as the difference
between subclassing and typing, or the difference between concepts and the
labels of said concepts. In this way it fills some pedagogical gaps that the
previously discussed methods (giving big-picture guidance aimed at people
who are already ontologists) do not cover. However, due to the limitations
in size of this guidance document it obviously cannot cover the entire set of
easy mistakes and bad or good practices. Additionally, due to the limita-
tion in scope (it is a general guideline, not a domain-specific one) difficult
modelling issues which are usage area-specific are not covered. Finally, the
guide is written to apply to the development of pre-Semantic Web frame-
based ontologies in systems like Protégé 2000, and it consequently does not
make use of the features (imports, resolvable URI references, namespaces,
etc.) that more recent ontology technology enables.

2.4 Ontology Design Patterns

As illustrated by the methods mentioned above, it is still the case that on-
tology development for the Semantic Web is mostly carried out by ontology
engineers and description logic experts, and the majority of tools and meth-
ods for this purpose are geared towards this category of developers, and not
domain experts. This state of affairs is problematic for two reasons. Firstly,
the additional knowledge elicitation and acquirement steps required when
the roles of domain expert and ontology engineer are separate slows down
the ontology development process in the individual case by requiring addi-
tional tasks to be performed. Secondly, ontology engineers are still most
commonly academics and researchers, and the industrial uptake of semantic
technologies is not as high as it could be. A higher degree of knowledge re-
garding these technologies and ontology engineering among non-academics
and domain experts could go a long way toward furthering adoption of se-
mantic technologies among practitioners.

Further, as the methods discussed also illustrate, established guidance
and methods in ontology engineering has focused on the big picture, i.e.,
which overall phases or large granularity tasks that need to be performed
in an ontology engineering task. With the exception of the Ontology Devel-
opment 101 guide, none of the discussed methods go down to the level of
detail of how to solve more concrete commonly occurring tricky modelling
issues. While several methods mention reuse of existing ontologies, none
give specific guidance regarding how such reuse is best achieved.

Ontology Design Patterns were introduced as potential solutions to these
types of issues at around the same time independently by Gangemi [7] and
Blomqvist and Sandkuhl [6]. The former define such patterns by way of a
number of characteristics that they display, including examples such as “[an

29

Chapter 2. Ontologies and Ontology Design Patterns

ODP] is a template to represent, and possibly solve, a modelling problem”
[7, p. 267] and “[an ODP] can/should be used to describe a ‘best practice’
of modelling” [7, p. 268]. The latter describes ODPs as generic descrip-
tions of recurring constructs in ontologies, which can be used to construct
components or modules of an ontology. Both approaches emphasise that
patterns, in order to be easily reusable, need to include not only textual
descriptions of the modelling issue or best practice, but also some formal
ontology language encoding of the proposed solution. The documentation
portion of the pattern should be structured and contain those fields or slots
that are required for finding and using the pattern. For an example of what
an Ontology Design Pattern description can look like, see Figure 2.6.

Gangemi [7] motivates the need for ODPs by noting how useful similar
constructs have been in practical cases where domain experts were involved,
both in terms of simplifying knowledge acquisition from these experts, and in
terms of enabling said experts to perform basic ontology engineering them-
selves. Blomqvist and Sandkuhl [6] on the other hand motivate the need for
patterns by referring to the potential for reuse that these bring, particularly
in automatic or semi-automatic ontology engineering scenarios. In subse-
quent work [8, 55, 56] these two sets of motivations for Ontology Design
Patterns have come together, such that at the time of writing, patterns are
motivated by perceived gains with regards to both reusability and guidance.
Additionally, as pointed out by Blomqvist in [55] communication benefits
can also be achieved by such patterns, in that having a shared vocabulary of
commonly occurring modelling problems and associated solutions can help
simplify ontology engineering in a team environment.

It is important to note that the issue of pattern quality is strongly con-
nected to the motivations of pattern use, which can, as shown above, vary. If
one considers reuse to be the main and only motivation for the development
and use of ODPs, then the associated ontology language encoding is likely to
be the main object of study, whereas if one considers guidance and commu-
nication to be more important motivations, then the pattern documentation
may be of greater importance. From a philosophical perspective it can be
argued that both of these parts of the pattern are actually just different
representations of an abstract phenomenon, the coupling of a problem and
solution, which exists as a purely mental construction or idea. In this the-
sis the philosophical debate is sidestepped, and Ontology Design Patterns
are taken to consist of both a documentation portion and a reusable code
module portion, and are taken to be intended for supporting reusability,
guidance, and communication.

Since their introduction, Ontology Design Patterns have been the subject
of some research and work, see for instance the deliverables of the EU FP6
NeOn Project11 [8, 57] and the work presented at instances of the Work-
shop on Ontology Patterns12 [58, 59, 60] at the International Semantic Web

11http://www.neon-project.org/
12http://ontologydesignpatterns.org/wiki/WOP:Main

30

2.4. Ontology Design Patterns

Name Context dependant information

Intent To model the case when some information is deemed especially
relevant for a particular role performing a particular action.

Competency
questions

What information is available that in some way deals with task X?
What documents are available that are relevant only for an
Astronomer (role) doing task Y?
I am a PhD Student (role). What documents are there that I could
be interested in, of any topic?

Solution
description

One or more roles are assigned to a person. The activities that
are performed in the target domain are modelled as Activity
instances. Both Role and Activity can be subclassed depending
on one’s needs. Roles and Activities are joined by context, for
instance ”Doctor doing diagnosis” or ”Medically unskilled person
doing diagnostics”. What Information instance is deemed relevant
for each context is decided by way of the
”informationIsRelevantInContext” property.

Reusable OWL
building block

http://www.infoeng.se/~karl/images/f/f5/
Context_Dependant_Information.owl

Consequences No known consequences.

Scenarios Medical doctors using different diagnostics manuals than non-
medically trained people when diagnosing illnesses.
Car mechanics using different guidelines when servicing exhaust
systems than brake pedals.

Context

Information

Role

Activity

context
Includes

Role
rdfs:domain rdfs:range

context
Includes
Activity

rdfs:domain

rdfs:range

information is
relevant in

context

rdfs:range

rdfs:domain

information
has location

xsd:
stringrdfs:rangerdfs:domain

Figure 2.6: Context Dependant Information ODP

31

Chapter 2. Ontologies and Ontology Design Patterns

Conference. There are to the author’s best knowledge no studies indicating
ontology engineering performance improvements in terms of time required
when using patterns, but results so far indicate that their usage can help
lower the number of modelling errors and inconsistencies in ontologies, and
that they are perceived as useful and helpful by non-expert users [9, 61].

2.4.1 ODP Typologies

The use and understanding of Ontology Design Patterns has been heavily
influenced by the work taking place in the NeOn Project, the results of which
include a pattern typology [8] shown in Figure 2.713, and the eXtreme De-
sign collaborative ontology development methods, based on pattern use [57].
The typology of patterns has been developed further within the Ontology-
DesignPatterns.org initiative and is used as a classification schema for this
initiative’s pattern repository. The typology is based on the uses to which
patterns are put, whether they represent best practice in reasoning, naming,
transformation, content modelling, etc. Certain categories of patterns are
in this view subcategories of one or several other categories. While the work
in this thesis concerns only Content ODPs, all of the top-level pattern cat-
egories from the NeOn typology are for completeness presented below with
brief descriptions of their purpose and structure.

• Content ODP – Content ODPs solve modelling issues regarding on-
tology content, either in the general domain or in one specific domain
of study. They provide solutions to problems that are known to be
difficult to model correctly, or problems which are known to occur
frequently and for which a conceptual harmonisation can be of use.

• Structural ODP – Structural ODPs are patterns that concern either
design problems regarding ontology language insufficiencies and limi-
tations or the overall structure and shape of an ontology. The former
class of patterns are known as Logical ODPs, and include for example
the nary relation ODP, which suggests a reification solution to the
problem that many ontology languages only support binary relations.
The latter class provide suggestions for the structure of an ontology
as a whole, and include examples such as Taxonomy or Modular Ar-
chitecture.

• Correspondence ODP – Correspondence ODPs deal with issues of
reengineering and alignment of ontologies. Patterns that deal with
the former consist of sets of transformation rules that can be applied
to change an existing model (either an ontology or a non-ontological
resource) into a new ontology. Patterns that deal with the latter are

13The figure shown here is based on an updated version of the typology as published
on the ODP community portal, http://ontologydesignpatterns.org, in which Mapping
patterns have been renamed Alignment patterns.

32

2.4. Ontology Design Patterns

LexicoSyntactic
ODP

Presentation
ODP

Naming ODP Annotation ODP

Reasoning ODP Content ODP
Correspondence

ODP
Structural ODP

Alignment ODP
Reengineering

ODP

Schema
Reengineering

ODP

Refactoring
ODP

Transformation
ODP

Logical Macro
ODP

Architectural
ODP

Ontology Design
Pattern

Logical ODP

Figure 2.7: NeOn ODP Typology [8]

written as a set of semantic relations between classes and individuals
in two different ontologies, in order to provide interoperability without
discarding the existing models.

• Reasoning ODP – Reasoning ODPs model particular tasks that a
reasoning engine could perform (such as subsumption hierarchy mate-
rialisation or restriction de-anonymising). The idea behind this type
of pattern is that it can be useful in ontology normalisation and stan-
dardisation. At the time of writing no reasoning patterns fitting the
above definition have been published, however, [62] presents a number
of task-based patterns for the Semantic Web employing reasoning and
ontologies, for instance Service selection and Semantic enrichment.

• Presentation ODP – Presentation ODPs are recommendations and
best practices on how to name, annotate, graphically illustrate, and
otherwise document ontologies in a way that promotes their learnabil-
ity and usability.

• Lexico-Syntactic ODP – Lexico-Syntactic ODPs are mappings of
language structures to ontology structures, intended to simplify On-
tology Learning tasks. Examples include traditional Hearst patterns
[63] mapped to ontology constructs.

While the NeOn view is influential and its accompanying typology is ref-
erenced frequently, it is neither universally accepted, nor the only perspec-
tive on the issue – for instance, Blomqvist [55] presents a different typology
based on the level of abstraction and granularity of the reusable solution.

33

Chapter 2. Ontologies and Ontology Design Patterns

According to this categorisation structure, shown in Figure 2.8, there are
four levels of ontology pattern abstraction that restrict the scope of the
pattern and the granularity of the constructs that it concerns: Application
patterns, Architecture patterns, Design patterns, and Syntactic patterns.

Application patterns concern the overall scope and purpose of an on-
tology with an application context, and describes how an ontology works
together with executable code to provide some set of functionalities. A
pattern on this level treats the ontology as a unit or a component in a
software system, but does not break the ontology apart further. Architec-
ture patterns do break apart the ontology further, and concern the internal
structure of the ontology and the modules that make it up. Patterns on
this level may include restrictions on design patterns or modules used in the
ontology. However they do not deal with specific low level modelling issues.
Those types of issues are instead dealt with in Design patterns (obviously,
Blomqvist [55] does here not use the term Ontology Design Pattern synony-
mously with its use in the NeOn typology and in the rest of this thesis).
Design patterns do deal with how to handle specific modelling challenges
concerning the logical structure of difficult-to-model content. Design pat-
terns work on the level of logical axioms and constructs, but do not delve
into syntactical or ontology language-specific issues. This last category of
problems is the domain of Syntactic patterns, which deal with the actual
serialised on-disk representation of an ontology, i.e., string and character
combinations.

2.4.2 ODP-based Ontology Construction

eXtreme Design (XD) is defined as “a family of methods and associated
tools, based on the application, exploitation, and definition of Ontology De-
sign Patterns (ODPs) for solving ontology development issues” [64, p. 83].
The method is influenced by the eXtreme Programming (XP) agile software
development method, and like it, emphasises incremental development and
continuous requirements management (as opposed to the more traditional
method of separating requirements engineering and development phases).
Like XP it also recommends pair development, test driven development,
refactoring, and a divide-and-conquer approach to problem-solving [65].

Conceptually, XD describes approaches for selecting patterns for reuse
based on the notions of problem space and solution space. The problem
space consists of the set of modelling problems (Local Use Case, LUC) that
an ontology engineer comes across in the course of a particular project. The
solution space is the set of reusable solutions to common problems, i.e.,
patterns. Included in each pattern is a description of the Generic Use Case
(GUC) in which it is applicable. By mapping LUC to GUC, the ontology
engineer finds appropriate patterns that solve the modelling problems that
occur in their problem space, as indicated in Figure 2.9 [64, 65].

34

2.4. Ontology Design Patterns

Ontology
Module

<owl:Ontology ...>
 ... </owl:Ontology>

<...> < >…< > </...>

<owl:...>…</...>

Ontology

Ontology
Module

Ontology
Module

Application
pattern

Complete
ontology

Ontology requirements and interface, possibly
described in a software architecture description
language.

Architecture
pattern

Complete
ontology

Overall ontology organisation
and parts, possibly described in
an ontology architecture
description language.

Part of the
ontology

 Ontology Module
An ontology part, e.g. module, and its over-
all organisation, possibly described in an
ontology architecture description language.

Design
pattern

Complete
ontology

Restrictions on the modelling of the
overall ontology, described through
an ontology modelling language.

Part of the
ontology

An ontology part solving a
specific modelling problem,
described through an ontology
modelling language.

Elements of the
ontology

Individual ontology element, described through an
ontology modelling language.

Syntactic
pattern

Complete
ontology

Pattern guiding the represen tation of a complete
ontology in an ontology representation language.

Part of the
ontology

Representation of parts of an ontology in
an ontology representation language.

Elements of the
ontology

Representation of individual element in
an ontology representation language.

Element
representation

Primitive patterns of the representation
language itself.

<owl:Class rdf:about="">
 <rdfs:subClassOf rdf:resource=""/>
</owl:Class>

<owl:Class>…</...>

<owl:Class>
 ... </owl:class>
 < >…< >
<owl:ObjectProperty> </...>

<owl:Class rdf:about=""> </owl:Class>

Concept

Concept

Concept Concept

Concept

Concept

Concept

Concept Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept Concept

Concept

Concept

Concept

Concept

Concept

Abstraction Granularity Illustration of level

Figure 2.8: Blomqvist’s ODP Typology [55]

The proposed selection method is appropriate for finding patterns that
satisfactorily solve a particular problem from a larger set of patterns. It
may also be possible to formalise and automate, provided that an appro-
priate logical vocabulary for describing LUCs and GUCs is developed. It
does however not guide the user in selecting, from a given set of functionally
appropriate patterns, the one that is best suited for use in their particular

35

Chapter 2. Ontologies and Ontology Design Patterns

Solution Space Problem Space

Ontology Design
Pattern

Generic Use
Case

Ontology Design
Pattern

Generic Use
Case

Generic Use
CasCasee

Ontology Design
Pattern

Generic Use
Case

Generic Use
CasCasee

Ontology Design
Pattern

Generic Use
CaseG i U

CasCasee
Generic Use Ontology Design

Pattern

Generic Use
Case

Casegn gg

e

Ontology Design
Pattern

Generic Use
Case

Local Use
CaseCase

Local Use
Case

sese
Local Use

Case

Local Use
Case

matches

matches

Figure 2.9: XD Pattern Selection Approach [64]

situation. The right choice then could depend on non-functional require-
ments on the ontology as a whole (expandability, performance, testability,
etc.), or it could depend on quality attributes of the pattern itself (how easy
is it to apply, how well is it documented, is there an example ontology using
it, etc.). An ODP quality model could in this scenario guide the developer
in selecting patterns to use that, apart from solving the functional require-
ments of their modelling problem, also has features and qualities that are
appropriate and helpful to them.

The XD method consists of a number of tasks, as illustrated in Fig-
ure 2.10. The first three tasks deal with establishing a project context (i.e.,
introducing initial terminology and obtaining an overview of the problem),
identifying a set of candidate ODP portals on the Web, and collecting initial
requirements in the form of a prioritised list of user stories (describing the
required functionality in layman’s terms). These steps are performed by
the whole XD team together with the customer, who is familiar with the
domain and has an understanding of the required functionalities of the re-
sulting ontology. The later steps of the process are performed in pairs of two
developers (these steps are in the figure enclosed in a grey box). They begin
by selecting the top prioritised user story that has not yet been handled, and
transform that story into a set of competency questions, contextual state-
ments, and reasoning requirements. Competency questions (introduced in
Section 2.3) can be understood as example questions that the resulting on-
tology should be able to answer, and may be written in natural language, or
in a more formal notation such as the SPARQL query language. Example
competency questions are included in Figure 2.6. Contextual statements
are general axioms that should hold within the modelled domain. Reason-
ing requirements are such requirements regarding reasoning capability of the
resulting ontology and/or system that are difficult to express in competency

36

2.4. Ontology Design Patterns

Project initiation
and scoping

Identify CODP
catalogues

Collect
requirement

stories

Select story

Elicit
requirements

Select set

Match and
select ODPs

Reuse and
integrate ODPs

Test module

Release module

Integrate partial
solutions,

evaluate, revise

Release new
version

All req:s
covered?

All stories
covered?

No

No

Yes

Figure 2.10: XD Workflow (adapted from [64])

question form. Customer involvement at this stage is required to ensure
that the user story has been properly understood and that the elicited com-
petency questions, contextual statements, and reasoning requirements are
correctly understood. The development pair then selects one or a small set
of interdependent competency questions for modelling [64, 65].

In the development process, a pattern matching the competency ques-
tions is selected by matching LUC to GUC as described earlier. There
may be multiple matching ODPs found, in which case the development pair
must select one based on their understanding of the problem domain and the
modelling consequences associated with each matched pattern. The selected
pattern is then adapted and integrated into the ontology module under de-
velopment (or, if this iteration covers the first requirements associated with
a given user story, a new module is created from it). The module is tested
against the selected requirements, to ensure that it covers them properly. If
that is the case, then the next set of requirements from the same user story
is selected, a pattern found, adapted, and integrated, and so on. Once all
requirements associated within one user story have been handled, the mod-
ule is released by the pair, and integrated with the ontology developed by
the other pairs in the development team. The integration may be performed
either by the development pair themselves, or by a specifically designated
integration pair [64, 65].

The XD method is supported by the XD Plugin for the Eclipse-based
NeOn Toolkit14, an ontology engineering development environment pro-
duced within the NeOn project. The XD Plugin provides a number of

14http://neon-toolkit.org/

37

Chapter 2. Ontologies and Ontology Design Patterns

components to this environment that simplifies pattern browsing, selection,
adaptation, and use. The browsing and selection components make use of
the ontologydesignpatterns.org pattern repository, and allows users to
browse the patterns in this repository, or search over them by competency
questions. The adaptation component contains a number of wizards that
allow for easier specialisation of generic patterns for use in specific projects.
The assistant component provides warnings and suggestions to modellers
based on known good or bad practices (i.e., patterns or anti-patterns). While
the eXtreme Design method can be executed using any ontology engineering
environment, the use of tooling such as the XD plugin can help streamline
the process.

Related deliverables of the NeOn project also prescribe ways of finding
or developing patterns [8], including reengineering from other data models,
specialisation/composition of existing patterns, extraction from reference
ontologies, and a method consisting of sequentially combining extraction,
specialisation, generalisation and expansion. However, the proposed meth-
ods of pattern generation/extraction are not described in any detail, and
they in particular leave out a discussion on the wanted or beneficial at-
tributes of patterns (while a set of pragmatic ODP features is presented in
[56], these features are quite general and do not provide measurable design
criteria). The choices of what type of pattern to create, what characteristics
to emphasise, how to compose and document the pattern, and so on, when
employing these methods are left to the pattern developer. In such ODP
development work, an ODP quality model would be useful in guiding the
developer in producing high-quality patterns.

2.5 The State of ODP Research

This section details a systematic literature survey over ODP research per-
formed at the start of this thesis project, the results of which motivated the
choice of thesis project topic. The survey had as stated goals to answer the
following questions:

1. What kind of research on ontology patterns is being performed?

2. How has research in the field developed over time?

3. Where is ontology pattern research performed?

4. How is research in ontology patterns being done?

For the purpose of this survey, the author studied conference and work-
shop proceedings of ISWC, ASWC and ESWC from 2005 to 2009. The pro-
ceedings were retrieved from various Internet databases including Springer-
Link15 and CEUR-WS16. A total of 2462 papers were retrieved, divided

15http://www.springerlink.com
16http://ceur-ws.org/

38

2.5. The State of ODP Research

Table 2.1: ODP papers by year

Year Conferences Workshops
2005 2 2
2006 2 2
2007 7 3
2008 1 4
2009 4 201

1 15 of which are from the Workshop
on Ontology Patterns.

Table 2.2: Institutes by paper count

Institute name Conference Workshop
ISTC-CNR 4 2
University of Economics, Prague 2 4
Universidad Politecnica de Madrid 1 5
University of Karlsruhe 0 4
Jönköping U. 3 0
Salzburg Research GmbH 2 1
University of Innsbruck 1 2
University of Manchester 1 2
University of Sheffield 1 2

into 861 conference papers and 1601 workshop papers. After performing
a full-text keyword search over this dataset, and removing false positives,
47 papers concerning Ontology Design Patterns were located; 16 conference
papers and 31 workshop papers. These 47 papers were classified by a num-
ber of different dimensions, including publication metadata, pattern usage,
research validation method, and the importance of ODPs in the papers.

The research presented here has previously been published in [10], which
the reader is referred to for fuller details. Method and methodology issues
associated with the literature survey are also presented in Section 4.2.1.

2.5.1 Results

The processes described above provided a large amount of data to analyse,
a subset of which is presented in this chapter. The complete dataset is too
large to include in full, but is available for download17.

Table 2.1 presents the number of papers in the dataset indexed by the
year they were published, the idea being that this might give an indication
as to whether research interest in the field is expanding. Table 2.2 lists
the research organisations most often listed as affiliations of authors in the
dataset (sorted by summarised publication count and alphabetically). The
full list is considerably longer at 49 entries in total, but is for brevity here
limited to organisations with three or more mentions.

Table 2.3 contains the results of the content classification process, that
is, the labels denoting categories of pattern-related research and the number

17http://purl.karlhammar.com/data/phl/wop2010/

39

Chapter 2. Ontologies and Ontology Design Patterns

Table 2.3: Classification of the reviewed papers’ connection to ODPs.

Classification Conferences Workshops
Anti-patterns 0 2
Evaluation 0 2
New pattern presented 3 12
Pattern creation methods 1 1
Pattern features 1 5
Pattern identification 0 2
Pattern languages 1 4
Pattern usage method 4 11
Pattern typology 0 3
Patterns used 8 6

Table 2.4: Validation levels of reviewed papers.

Source No validation Anecdote Example Empiricism
Conferences 3 2 5 6
Workshops 3 2 19 7

of papers tagged with each such label. The results are divided into columns
for conference papers and workshop papers.

Tables 2.4 and 2.5 present the results of the validation classification, i.e.,
how the findings presented in the papers were validated and, in the case of
empirical procedures being used for this purpose, how well the experiments
or case studies were described. Metrics from [66] are reused, according to
which empirical validations are graded based on how thoroughly the context
of the validation, the study design itself, and potential issues of validity or
generalisability are described. Table 2.6 presents the institution counts of
the papers in the dataset. Table 2.7, finally, shows the result of the ODP
importance classification, i.e., in what parts of the papers that the topic of
patterns were addressed.

2.5.2 Analysis and Discussion

The section below analyses the data resulting from the survey, attempting
to answer the questions set forth at the beginning of Section 2.5.

Table 2.5: Quality of empirical validations.

Quality indicator Weak Medium Strong
Conference papers
Context description 4 1 1
Study design description 0 3 3
Validity description 5 1 0
Workshop papers
Context description 5 2 0
Study design description 1 3 3
Validity description 6 1 0

40

2.5. The State of ODP Research

Table 2.6: Institution counts

Institutions Conferences Workshops
1 12 16
2 2 10
3 2 5

Table 2.7: ODP importance classification of reviewed papers.

Group Conferences Workshops Workshops (w/o WOP)
Title match 7 22 8
Abstract match 3 3 2
Body match 6 6 6

What kind of research on ontology patterns is being performed?

The results indicate that while patterns are used in various different ways
in research and new patterns are being presented, there is much less work
being done on how to formalise the creation and/or isolation of patterns.
This could indicate one of two things. It could indicate that the best ways of
creating and finding patterns have been established, and that there is thus
little need for more research to be done in those areas. However, due to the
youth of the field, this is believed to be less likely.

Instead, it is more likely that the results indicate a lack of sufficient
research in these areas. This situation could be problematic if it indicates
that the patterns that are used are not firmly grounded in theory or practice.
If one adds to this the fact that relatively little work is being done on pattern
evaluation, the overall impression is that patterns are being presented and
used as tools, but are not being sufficiently studied as artefacts of their own.

Another area that appears to be understudied is anti-patterns, “worst
practices” or common mistakes. This may be because finding such anti-
patterns necessitates empirical study, which as reported below appears to
be less common in the papers studied.

The distribution of research categories seems to be rather consistent
between the set of conference papers and the set of workshop papers, with
exception for the categories Patterns used and Pattern creation methods.
The latter could be a simple statistical anomaly (as mentioned, there are
few papers dealing with this topic, for which reason small discrepancies
stand out more). The former seems a bit more notable however, but no
explanation for this observation has yet been found.

How has research in the field developed over time?

There is a much larger number of papers matching the search criteria pub-
lished in 2009 than in 2005, in large part due to the first Workshop on
Ontology Patterns being held in 2009. If the WOP papers are removed,
there is still a growth in volume.

41

Chapter 2. Ontologies and Ontology Design Patterns

One interesting note in relation to the previous discussed research ques-
tion is that all of the work on pattern identification and pattern creation
methods that was found was published in 2009. Furthermore, the papers
dealing with pattern evaluation are all from 2008-2009, possibly indicating
that researchers have noticed these gaps in theory and are attempting to do
something about them.

Unfortunately both of these observations are based on so few papers and
such a short period of time that it would be very difficult to claim them as
a general trends or make predictions based on them.

Where is ontology pattern research performed?

The results indicate that ODP work is primarily taking place at European
institutions. Table 2.2 shows that all of the top nine institutions publishing
three or more papers are located in mainland Europe and the UK. However,
even if one includes all of the institutions that have two publications in the
dataset, one still does not find any non-european organisations. As a matter
of fact, out of a total of 49 institutions that had published, only four were
located outside of Europe. Out of these four, three were based in the USA
and one in New Zealand.

While the dataset is dominated by research originating at universities,
there are also a number of private corporations, research foundations, and
other types of non-university organisations that work in the field. Out of
the 49 institutions found, 17 were such non-university organisations (ap-
proximately 35 %). These proportions are slightly lower when taking into
account the number of publications per institution, with the non-university
organisations netting 31 % of all institutional mentions in the dataset.

How is research in ontology patterns being done?

Studying academic cooperation, one easily accessible metric is the number of
authors per paper. However, author counts on their own can be misleading.
In some academic cultures students’ advisors get authorship, while in others
they do not. Instead looking at both author counts and institution counts
gives a better indication of actual research cooperation.

Out of a total of 47 papers, 19 (just over 40 %) list more than one
affiliated institution and 7 (just under 15 %) list three institutions. These
figures, however, include papers written by only one author. Looking only
at the subset of 40 papers that were written by more than one author, the
figures are 47.5 % and 17.5 % respectively. No matter which way you slice
it, these numbers indicate a quite healthy degree of cooperation between
research institutions in the field.

Interestingly, there seems to be a difference between work published at
workshops and work published at the main conferences - of the former, 51.6
% are credited to single institutions, whereas of the latter, 75 % are. This
possibly indicates that the prestige and/or difficulty associated with the

42

2.5. The State of ODP Research

higher barrier of entry to full conferences cause researchers to keep such
papers “in-house” to a larger degree.

With regards to the validation and evaluation of ODP research, there
may be some work to be done. Nearly one third of the papers published
at full conferences contain no validation or only anecdotal validation of the
presented work. Another near-third validates the work via examples, but
provide no real-world testing to ensure validity. For workshop papers, a
smaller proportion of the papers have no validation or anecdotal validation,
but on the other hand, a much larger proportion validate only through
example. Of the papers that do contain empirical testing, it is uncommon
to see discussions on the limits of validity of said testing. This situation
may be somewhat problematic. Though not all types of research invite the
opportunity to perform experiments or case studies, nor actually require
them, quite a few papers in the dataset could have benefitted from a more
thorough testing procedure.

Finally, looking at how central ODPs are to the content of the papers, the
most common situation is actually that patterns are mentioned already in
the title (see Table 2.7), indicating that they are quite central to the papers.
This remains the case even when filtering out the WOP papers which nat-
urally skew the results. One possibility is that this indicates that Ontology
Design Patterns are primarily used within the ODP research community and
thus written about by people who consider them to be important enough to
warrant inclusion in the title.

43

Chapter 2. Ontologies and Ontology Design Patterns

44

Chapter 3

Evaluation and Quality
Frameworks

While this thesis represents a first attempt at understanding the quality of
Ontology Design Patterns, it is by no means unique in dealing with the devel-
opment of quality models for IT artefacts. There are many developed frame-
works and models for evaluating software and conceptual models. Given this
existing work in related fields, starting from an entirely clean slate when ap-
proaching the issue of ODP quality would be unwise. The model developed
in this thesis instead builds upon existing work in neighbouring fields, work
that is summarised in this chapter’s first two sections. The last section of
the chapter details some of the author’s earlier work in surveying the state
of ODP research, which initially motivated this thesis project.

3.1 Related Quality Frameworks

The following section presents and discusses existing approaches for evalu-
ating the quality of models, systems, and patterns, which are suitable for
reuse or consideration in the development of a quality model for Ontology
Design Patterns.

3.1.1 MAPPER

The MAPPER validation framework [67, 68] was developed within the MAP-
PER project, the overall goal of which was to develop model-based ap-
proaches to improving product and process engineering. The author’s prox-
imity to this project enabled access to project deliverables, including work on
the validation framework, which proved both influential and useful. Within
the MAPPER project, the validation framework served to help harmonise
communication regarding and evaluation of the different project artefacts, be
they objectives, processes, conceptual models, or other types of deliverables.

45

Chapter 3. Evaluation and Quality Frameworks

The framework is consequently rather complex, as it aims to cover a large
number of use cases and tasks related to evaluation. For this reason, while
key perspectives of this framework as presented below have influenced the
development of the ODP quality metamodel (presented in Section 5.1), the
entirety of the validation framework or its metamodel has not been adopted
outright, nor is it exhaustively covered here.

The MAPPER validation framework [67, 68] is represented as a visual
model in which different quality-related concepts are linked by relation-
ships. The typing of the concepts and the relations allowed between them
adheres to the MAPPER validation framework metamodel (illustrated in
Figure 3.1). In evaluating a particular objective, criterion, hypothesis, etc.,
this metamodel is instantiated and each metamodel concept “filled” with
one or more quality-related concepts. In the metamodel validation aspects
are based on validation criteria, which in turn are associated with mea-
surement methods. Per this perspective there is a differentiation between
those more general and not directly measurable quality aspects (exemplified
by “Resource use”) and the more tangible and directly measurable quality
criteria (exemplified by “Average POI length”). In following measurement
methods for these criteria (that is, in performing evaluations) certain ac-
tions are performed, actions that are affected by case context, and give rise
to results. The more general quality aspects can be refined in such a manner
that a hierarchy of quality aspects can be established. The metamodel also
indicates that development objectives refer to criteria, that is, that valida-
tion of artefacts cannot be seen as independent of intended artefact usage
objectives.

The most relevant perspectives from the MAPPER validation frame-
work [67, 68] metamodel that may apply also to an ODP quality metamodel
concern the differentiation between measurable criteria and immeasurable
general quality aspects, the possibility of nesting of different quality aspects
into a hierarchy, the idea that the metamodel is instantiated into a “filled
out” quality model when applied, and the importance of representing use
case and context in modelling artefact quality. These metamodel perspec-
tives are, as shown in Sections 3.1.2 and 3.1.4, compatible with other quality
models including the Thörn quality model for variability models [69] and ISO
25010 [70], which have supported this thesis.

3.1.2 Conceptual Model Quality

Ontologies are essentially models of the world, or at least, a domain of
discourse. Ontology design patterns can therefore be seen as small reusable
models of a particular recurring concept or set of concepts. It is therefore
reasonable to assume that existing conceptual model quality research is to
some degree transferrable to the field of Ontology Design Patterns.

The PhD thesis On the Quality of Feature Models [69] by Christer Thörn
deals extensively with how to study and ascertain the quality of conceptual

46

3.1. Related Quality Frameworks

Hypothesis Objective

Criterion Method

MeasureAction

Aspect

Perspective

ContextResult

is refined by

refers torefers to

is refined by includes is condition of

is used in

determines
is used in

is captured by

is expressed by

is applied inresults in

is used in

Figure 3.1: MAPPER validation framework metamodel [67, 68]

models. The artefacts studied in his thesis are feature models (or variabil-
ity models), that is, models for displaying dependencies and requirements
between different component parts or subsystems in a product, commonly
a software system. Such models are different from ontologies and Ontology
Design Patterns in certain respects, but similar to them in others. While
feature models do employ certain language semantics, these are relatively
simplistic and specific to feature modelling [71, 72]. The models are pri-
marily intended for supporting requirements engineering and design work,
as opposed to structuring large amounts of data or inferring knowledge us-
ing reasoning engines. Like ontologies however, feature models are artefacts
that are used collaboratively in performing engineering tasks. Like ontolo-
gies, they can grow very large and become difficult to overview, and like
ontologies they do employ a certain semantics, expressing a real world prob-
lem or case according to those semantics. Feature models have been used
for variability modelling in industry since many years, by users of vary-
ing technical background and skills [73, 74, 75]. Ontology Design Patterns
are intended to support users of varying technical background and skills in
conceptual modelling, a not entirely dissimilar task.

In [69] Thörn develops and presents a quality model containing six qual-
ity factors believed to be most relevant for feature models1:

1For brevity, the shortened definitions from [69] are shown.

47

Chapter 3. Evaluation and Quality Frameworks

• “Changeability – Ability to evolve the model while maintaining the uses
of previous versions.

• Reusability – Ability to reuse (parts of) the model when evolving or
developing other models.

• Formalness – Ability to manage the model in a formalised manner,
e.g. for machine management.

• Mobility – Ability to be moved, transferred and integrated with other
systems.

• Correctness – Correspondence (mapping) between the model and the
modelled artefacts.

• Usability – User-friendliness and ease of learning and communication
to new users.” [69, p. 152]

These quality factors were selected from an initially larger set of factors
and attributes based on evaluation in a thorough case study observing which
qualities practitioners prioritised in real world modelling cases. Each of the
quality factors is associated with a textual definition and a set of indicators
observed to affect the quality factor. While the quality factors are more
general in nature and possibly applicable to ODPs as well, the indicators
in this model are specific to feature models and unsuitable for reuse in an
ODP context.

Thörn’s quality model [69] does not define a generally applicable priori-
tisation of quality factors, nor a method for establishing such prioritisation
based on established context/case types – instead, in each feature model
development case, stakeholders are required to select which quality factors
are deemed most important in the given context, based on a method of
pair comparison. Several developmental principles are presented, intended
to guide feature model developers in constructing models adhering to the
defined prioritisation of quality factors.

3.1.3 Entity Relationship Model Quality

Entity Relationship (often abbreviated ER) models are a type of conceptual
models specifically used to model relational (i.e., tabular) datasets and the
relations between such datasets. While many types of conceptual models
(including to a certain degree the variability models discussed in the pre-
vious section) are intended as visualisations and communicative artefacts,
ER models are formalised to the degree that they can be used to gener-
ate database schemas. These models are in broad use in both industry
and academia, and are clearly found useful by practitioners. Consequently,
developed indicators for measuring ER model usage are likely to be well
grounded in empirical evidence, and therefore extra relevant for study and
possible inclusion in an ODP quality model.

48

3.1. Related Quality Frameworks

In [76] Genero et al. study a set of metrics believed to affect the learn-
ability and modifiability of ER models. This study was performed in a
small-scale experimental setting with 40 participant subjects. The partici-
pants were given a set of ER models that differed in the metrics being stud-
ied, and were tasked with first filling out a questionnaire to evaluate their
understanding of the ER model, and secondly, to modify the ER model in
accordance with a newly introduced set of additional requirements. In anal-
ysis, the incorrect responses and modifications were discarded, and the time
taken to respond to the questionnaire and to perform the model changes
was instead studied to ascertain the relative understandability and modifi-
ability of the ER models that exhibited different values for the metrics of
study. Genero et al. find a significant correlation between high values for
certain studied metrics and an increased understandability and learnability
time. While the metrics studied are specific to ER models, the approach
in evaluating understandability and modifiability is clearly applicable also
outside of this domain.

Moody and Shanks [77] discuss the issue of redundancy and simplicity,
arguing that a simpler model is proven to be more flexible, easier to imple-
ment, and easier to understand. They suggest that if the size of a model is
calculated from the number of entities and relationships in the model, the
simplest solution is the one that minimises this size. However, it is impor-
tant to note that the model must still be suitable for its intended purpose.
This mirrors the perspectives brought forward by Lindland et al. in [78]: a
high-quality model is constrained by both completeness and relevance cri-
teria, such that it should be as small as possible, yet not so small as to not
fulfil its purpose.

Moody and Shanks [77] also suggest that usability-related qualities be
ascertained by user evaluation and rating. While not detailed by the authors,
such a rating could in many cases be performed via questionnaire surveys
or interviews. Moody and Shanks emphasise the importance of capturing
opinions of several different stakeholders, with different perspectives. They
suggest that these perspectives are captured via rating by three categories
of users, depending on roles: business user rating, data administrator rating,
and application developer rating. The first category of user can verify that
the data model is consistent with business requirements; the second category
can verify that the model is compatible with and can be integrated with
existing data models in the enterprise; and the third category must be able
to verify that the data model can be implemented in system development.

In summary, while much of the work on quality metrics and indicators in
the ER field is specific to the features and structure of Entity Relationship
models, certain methods for evaluating practical work using these artefacts
(e.g. survey and interview methods for measuring usability, or measuring
the time required for performing work), and certain general quality indica-
tors (e.g., size, completeness) are likely to be suitable for reuse in studying
Ontology Design Pattern quality also.

49

Chapter 3. Evaluation and Quality Frameworks

3.1.4 Information System Quality

Ontologies are almost always used as components within an information sys-
tem. As such, research on software artefact quality is likely to be useful and
relevant in understanding the demands on an ontology from an information
system perspective. This field has seen considerable work going back to the
1970s [79, 80, 70]. While some of this work deals with technical measures
and metrics that is only relevant to executable code (branching points, func-
tion lengths, and so forth), there are also quality frameworks that include
more general aspects of quality in software systems. In particular, the ISO
standard 25010 [70] introduces quality models for software artefacts that are
reused in the latter portions of this thesis.

ISO 25010 defines two quality models supporting different uses and arte-
facts in a software engineering context, the Quality In Use Model, and the
Product Quality Model. The former model defines quality in terms of out-
comes of interaction with a complete information system by humans, organ-
isations, or other information systems. The latter model defines quality in
terms of characteristics of a particular software product or computer sys-
tem that includes a certain software. The two quality models are expressed
according to a framework that defines certain basic concepts, which is also
used in the related standards in the SQuaRE series (ISO 25000 through
25099). These definitions include among other things [70]:

• Software Quality Characteristic – Category of software quality at-
tributes that bears on software quality. Software quality characteris-
tics can be refined into multiple levels of sub-characteristics and finally
into software quality attributes.

• Quality Measure Element – Measure defined in terms of an attribute
and the measurement method for quantifying it, including optionally
the transformation by a mathematical function.

• Quality Measure – Measure that is defined as a measurement function
of two or more values of quality measure elements.

Per this view, the concepts of quality characteristic and quality mea-
sure are disjoint, though linked by quality attributes. Measures are as the
name implies measurable and quantifiable. Quality characteristics are more
abstract and general.

The Quality in Use model is displayed in Table 3.1. It consists of three
top level quality characteristics and eleven quality sub-characteristics. Each
of these top level and sub-characteristics are associated with textual descrip-
tions, written from a general usage perspective. For instance, efficiency is
defined as “resources expended in relation to the accuracy and completeness
with which users achieve goals” [70, p. 8]. These quality characteristics
are affected by and measure factors relating to both the individual software
product, the information system in which the product is part, the usage

50

3.1. Related Quality Frameworks

Table 3.1: ISO 25010 Quality In Use Model (adapted from [70])

Quality characteristic Subcharacteristic
Effectiveness

Effectiveness
Satisfaction

Usefulness
Trust
Pleasure
Comfort

Context coverage
Context completeness
Flexibility

Efficiency
Efficiency

Freedrom from risk
Economic risk mitigation
Health and safety risk mitigation
Environmental risk mitigation

environment of that information system, and the categories of users that
make use of the information system – in short, the Human-Computer Sys-
tem. There is consequently a certain degree of overlap between the quality
characteristics defined in this model and the quality characteristics of the
Product Quality Model, which focuses exclusively on the effects associated
with a software product and the computer system in which that software
product executes.

The Product Quality Model [70] is displayed in Table 3.2. It defines
a set of eight quality characteristics, each composed of two to six sub-
characteristics. These quality characteristics have definitions written from
a system or product perspective. For instance, the quality characteristic
availability is defined as degree to which a system, product or component is
operational and accessible when required for use. These types of definitions
are much narrower and more specific than those used in the Quality In Use
model. They are however still not on the level of granularity that they are
measurable by some defined metric. It is interesting to note that several of
the quality characteristics defined in the Quality In Use model, if reformu-
lated as requirements on a system rather than qualities of that system, would
be fulfilled by achieving “high marks” on the Product Quality Model quality
characteristics. For instance, high levels of reliability, security, and main-
tainability (all Product Quality Model characteristics) would help achieve
Economic risk mitigation (a Quality In Use characteristic). While ISO 25010
[70] as mentioned also defines the existence of concrete and quantitatively
measurable quality attributes contributing to these quality characteristics,
no specific instances of such quality attributes are introduced or formalised.

ISO 25010 [70] is a complete standard for IT software systems, which
is widely used in practice. Since, as mentioned, ontologies and ODPs are
used in such systems, is quite likely that parts of this standard will be
suitable for reuse and adaptation in modelling the quality of Ontology Design
Patterns. While the ISO 25010 Quality in Use model may be less suitable

51

Chapter 3. Evaluation and Quality Frameworks

Table 3.2: ISO 25010 Product Quality Model (adapted from [70])

Quality characteristic Subcharacteristic
Functional suitability

Functional completeness
Functional correctness
Functional appropriateness

Performance efficiency
Time behaviour
Resource utilisation
Capacity

Compatibility
Co-existence
Interoperatbility

Usability
Appropriateness recognisability
Learnability
Operability
User error protection
User interface aesthetics
Accessibility

Reliability
Maturity
Availability
Fault tolerance
Recoverability

Security
Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

Maintainability
Modularity
Reusability
Analysability
Modifiability
Testability

Portability
Adaptability
Installability
Replaceability

52

3.1. Related Quality Frameworks

for this purpose (as it concerns interactive information and software systems
of a different nature than ODPs, which are by comparison rather passive
components), the Product Quality Model holds many quality characteristics
that could apply to ODPs also, and is a strong candidate for reuse.

3.1.5 Pattern Quality

Ontology Design Patterns are of a sort of design patterns, that is, packaged
solutions to commonly occuring problems. In this, they share purpose (if
not domain) with other types of software design patterns, the most common
of which are object oriented design patterns. The author therefore initially
assumed that some quality indicators associated with such design patterns
could be possible to apply also to design patterns in the ontology domain.

The usefulness of object oriented design patterns in software engineering
have been shown many times, see for instance [81, 82, 83]. These patterns en-
code common best practices for how to solve particular types of tricky tasks
in the design and programming of software systems, and they have been
found to aid in producing flexible, maintainable, and extensible software.
However, there are less results relating to the quality of such patterns, how
to evaluate them, quality models for them, etc. The below section presents
some work in this area.

Prechelt et al. [84] report on two experiments in which the character-
istics of design pattern code implementations (in particular, the number of
pattern comment lines, PCL, associated with each such implementation) af-
fect the maintainability of software products in which the patterns are used.
Their experiments take place in a software engineering setting, with some
96 students as test subjects, tasked with performing software maintenance
work. They find that in this context, the more well documented and ex-
plicit that design pattern usage in software code is (i.e., the higher the PCL
value), the faster and better (in terms of rarity of errors made) maintenance
tasks are performed over that software code.

Hsueh et al. develop a quantitative method for evaluating the quality of
design patterns, in [85]. In their approach a pattern is considered to consist
of intents (i.e., requirements that the pattern aims to fulfil, each intent be-
ing classified as either functional or non-functional), of a proposed solution
structure that fulfils said intent (again, differentiating between functional
and non-functional solution structures), a quality focus indicator (defining
the relative importance of functional vs. nonfunctional requirements), and a
transformation function that maps a solution structure for functional intents
to a solution structure for nonfunctional intents, (i.e., a recommendation on
how to make a pattern solution not only fulfil formal functional requirements
but more quality-oriented non-functional requirements also). The approach
builds on the use of the QMOOD object-oriented design quality assessment
model by Bansiya and Davis [86], which is used to structure quality char-
acteristics and indicators. By modelling and mapping intents and solution

53

Chapter 3. Evaluation and Quality Frameworks

structures, Hsueh et al. [85] validate how well the proposed solution lives up
to the original pattern intent, both in terms of functional and non-functional
requirements.

From a formal viewpoint the method presented by Hsueh et al. [85] is
impressive. It is however very complex and therefore likely to be inaccessible
to practitioners. Furthermore, the method’s dependence on QMOOD means
its immediate applicability outside of the field of object-oriented software
design patterns is limited (even though the underlying idea for matching of
intents to structural solutions may in part be portable to other fields). The
results of Prechelt et al. [84] are likely to be of more use, in that they give
insights regarding the importance of documenting patterns extensively, that
may be relevant to the development of an ODP quality model.

3.2 Ontology Evaluation

One perspective on ODPs is to consider them as being simple, small, and
reusable modular ontologies. The following sections introduce work on on-
tology evaluation frameworks, methods, and indicators, that have been stud-
ied during and in several cases influenced development of the ODP quality
model. In addition to the ontology evaluation work introduced below, the
interested reader is referred to [87], in which Goméz-Peréz et al. summarise
and discuss several types of common taxonomical errors and anti-patterns
in ontologies.

3.2.1 O2 and oQual

A thorough study on the evaluation of of ontologies is performed by Gangemi
et al. in [88] and [89]. Their approach is based on two perspectives of on-
tologies, formalised into two meta-ontologies for understanding, classifying,
and selecting ontologies, O2 and oQual.

To begin with, the O2 meta-ontology views ontologies as semiotic ob-
jects, i.e., information objects with intended conceptualisations to be used
in particular communication settings. O2 holds concepts such as Rational
agent, Conceptualisation, Graph, and so on – representing the settings in
which ontologies are used, the users of said ontologies, their intended mean-
ing of the ontologies, the actual implementation (i.e., graph models), and so
on. This model also holds the concept QOOD, or Quality Oriented Ontology
Description, which is intended to capture the roles and tasks associated with
processes and elements of the ontology – in essence, a type of requirements
specification for part of, or a whole, ontology engineering project.

Based on the concepts in O2, three dimensions of quality or evaluation
are presented and discussed – structure, functionality, and usability. The
first kind of measures treat the ontology as a directed graph (which is con-
sistent with the RDF data model) and concern the structures present in this
a graph. This includes measures like subsumption hierarchy depth, breadth,

54

3.2. Ontology Evaluation

fan-out, cycle ratios, density, etc. The second kind of measures concern the
intended functionality of the ontology, and include such examples as pre-
cision, coverage, and accuracy, which are all measured against some set of
requirements over the ontology. The third kind of measures, finally, concern
the communication aspects of the ontology, i.e., how it is documented, an-
notated, and understood by users. This includes measures related to recog-
nition, efficiency, and interfacing. While the structural measures included in
[89] are presented using formal definitions (in many cases even mathematic
formulas) the functionality measures are less formally defined (giving some
specific indicators, but mostly general method suggestions), and usability
measures are even less defined (given almost entirely as examples or areas
for future development).

The oQual formal model for ontology validation (and its associated meta-
ontology) provides the bridge connecting the ontology engineering situation
and context (modelled according to O2) with the aforementioned measures,
enabling validation that a certain developed ontology is sufficient and ap-
propriate for the use for which it was developed. oQual includes concepts
like value spaces and parameters over ontology elements, ordering functions
for selecting parameters from different QOODs to prioritise, trade-offs that
may need to be made, etc.

3.2.2 ONTOMETRIC

ONTOMETRIC, introduced in [90], is an approach for formalising ontology
suitability for different tasks, heavily influenced by the Analytic Hierarchy
Process (AHP) [91], an established method for aiding decision-making when
dealing with multi-criteria problems. Per this method, a multi-criterion
problem is broken down into the different criteria that need to be met (some-
times including sub-criteria, organised in a so-called decision tree structure
or decision hierarchy). These criteria are sorted using a comparison matrix,
such that the “competing” criteria on each level of the decision hierarchy
are easily and intuitively compared pairwise, and the resulting prioritisation
used to calculate a weighting of the total set of criteria with respect to the
problem. When selecting between the available alternatives, the weighting
can be used to calculate a total suitability score for each option. In an
optimally performed AHP process, the alternative that receives the highest
suitability score represents the best alternative given the character of the
problem and the prioritisation of the criteria (in the case of ONTOMET-
RIC, the highest score would be associated with the most suitable ontology
for reuse).

In order to support this method, ONTOMETRIC [90] provides a set of
criteria for ontology suitability that can be used to populate an AHP deci-
sion hierarchy. These general criteria of ontology suitability are divided up
into five different dimensions, representing different aspects of an ontology
suitability problem: content, language, methodology, tool, and costs. In em-

55

Chapter 3. Evaluation and Quality Frameworks

ploying ONTOMETRIC, an ontology engineer will characterise the problem
that their ontology aims to solve by using these five dimensions as top-level
branches in their AHP decision hierarchy, and the individual ONTOMET-
RIC criteria as child nodes. The criteria will then be compared pairwise, a
weighting generated, and the alternatives compared based on this weighting.

For the intended usage (i.e., ontology selection guidance for ontology
engineers) ONTOMETRIC [90] seems very suitable. However, it does not
seem possible to reuse in developing an ODP quality model. The method
requires extensive ontology engineering knowledge to begin with, in order
to perform the weighting of the provided (very technical) criteria, which
are not in themselves associated with any predicted positive or negative
effects. ONTOMETRIC does not in itself suggest which criteria are useful
in which situations, it merely provides them as examples of things that can
be measured and prioritised by the user. Given that an ODP quality model
would need provide guidance for development, selection and use of Ontology
Design Patterns by laymen and experts alike, the ONTOMETRIC criteria
are unsuitable.

3.2.3 OntoClean

One of the most well-known methodologies for evaluating the conceptual
consistency of ontologies is OntoClean by Guarino and Welty [92, 93, 94].
OntoClean uses a logical framework including very general ground notions
and definitions from philosophy, believed to hold in any reasonable represen-
tation of the world, including an ontology model. The framework includes
the notions of rigidity, identity, and unity as characteristics applicable to
classes in an ontology, and a set of definitions regarding which taxonomic re-
lations may exist between classes that exhibit these different characteristics.
The listed characteristics are in OntoClean parlance denoted metaproper-
ties. Below these metaproperties are explained and exemplified (examples
are taken from [93] and [94]):

• Rigidity – Rigidity is related to essence. A class is considered essential
for some individual entity if the entity must logically be member of said
class at all times. Essence can be exemplified by the class HardThing,
which is essential for a hammer (every hammer always must be hard),
but not for a sponge (not every sponge must be hard all the time,
though some might be at some times). By this definition a class is
rigid if it is essential to all of its instances. The class Human can be
considered rigid, because every instance of it must be part of it at all
times – it is not possible to cease being a human and still exist. The
class Student can be considered anti-rigid, that is, being a student is a
non-essential for every student – all students can cease being students
and still exist. Semi-rigid classes finally, are those that are essential
to some instances, but not to others. As illustrated, HardThing is a
semi-rigid class, as it is essential to hammers but not sponges.

56

3.2. Ontology Evaluation

• Identity – A class exhibits some identity criterion if that criterion (i.e.,
a property) can be used for recognising whether individual entities are
the same or different. In database terms, this is a unique key for
said class. A distinction is made between classes that carry their own
identity criterion, and classes that inherit identity criteria from super-
classes.

• Unity – Unity concerns whether instances of a class are considered
whole entities. Consider the entity 5 cl of water, which can be part of
an ontology, but which cannot be said to be a whole object or entity of
its own, and contrast it to the entity Atlantic Ocean, which is clearly
a whole self-standing entity. In order to distinguish what is meant by
whole and what defines wholeness, a unity criterion is used, examples
of which include topology, morphology, functionality, etc. OntoClean
differentiates between three types of classes: those carrying unity (all
their entities are wholes sharing unity criteria), those carrying non-
unity (all entities are wholes, but possibly with different unity crite-
ria), and those carrying anti-unity (not all entities are required to be
wholes). By this definition the class Ocean would carry unity and
the class AmountOfWater would carry anti-unity. Non-unity can be
exemplified by the class LegalAgent, provided that its instances could
include both people and companies (which have different unity crite-
ria).

Given these definitions, a set of constraints on the subsumption hierarchy
are then defined [94]:

1. If a superclass is anti-rigid, then its subclasses must be anti-rigid.

2. If a superclass carries an identity criterion, then its subclasses must
carry the same criterion.

3. If a superclass carries a unity criterion, then its subclasses must carry
the same criterion.

4. If a superclass has anti-unity, then its subclasses must also have anti-
unity.

By annotating the classes in an ontology using the OntoClean metaprop-
erties and checking whether the above constraints hold, a developer can test
whether their ontology is conceptually and philosophically consistent with
regards to the notions of rigidity, identity and unity. It should be noted
that this is not a guarantee that the ontology is sound with respect to real
world phenomena or requirements. The methodology has been applied ben-
eficially in a number of projects [95, 96, 97, 98]. Plugins supporting the use
of OntoClean in different ontology engineering environments have also been
developed, including WebODE [99] and Protégé 20002.

2http://protege.stanford.edu/ontologies/ontoClean/ontoCleanOntology.html

57

Chapter 3. Evaluation and Quality Frameworks

3.2.4 Terminological Cycle Effects

In [100] Lefort et al. study the structures of ontologies, in particular those
structures that result from adhering to the W3C Semantic Web best prac-
tices workgroup recommendation for meronomy modelling, and the effect
of said structures of the computability of an ontology. Using a number of
different state-of-the-art reasoning engines they find that reasoner perfor-
mance over large ontologies to a large degree is dependent on the structure
of the Ontology Design Patterns within, and that in particular, the existence
of asserted or inferred terminological cycles is detrimental to performance.
Such terminological cycles occur when a concept occurs on both sides of
a description logic equivalency definition, i.e., when a concept is defined
wholly or partially in terms of itself. In meronomy this can easily occur in
a reasoner inferencing process if both of the inversely related hasPart and
isPartOf properties are used in class definition restrictions. Furthermore
Lefort et al. [100] note that the computational performance characteris-
tics of a reasoner-ontology pair is highly dependent on the description logic
language used.

3.2.5 ODP Documentation Template Effects

In their master thesis Lodhi and Ahmed [101] study and suggest improve-
ments to the presentation of ODPs, that is, how ODP documentation is
structured and displayed. They focus on three main issues: firstly, resolv-
ing which information in pattern documentation that is most important for
establishing an understanding of said patterns allowing the pattern to be
used, secondly, whether novice and expert pattern users differ with respect
to this question, and thirdly, how existing practice for presenting patterns
can be improved or complemented in light of this. The patterns and docu-
mentation templates studied are all taken from the NeOn Ontology Design
Patterns portal3. Lodhi and Ahmed [101] perform two online surveys, tar-
geting novice and expert users respectively. Both of these surveys indicate
that there are certain fields of ODP documentation that are by users con-
sidered particularly important in understanding a pattern, and that those
fields include the graphical representation of the pattern, pattern scenar-
ios (i.e., example usages), an OWL building block, competency questions,
etc. Fields which are not considered of as high importance in these regards
(though still relevant) include textual descriptions of ODP elements and
ODP domain classification.

3http://ontologydesignpatterns.org

58

Chapter 4

Research Method

One of the key differentiators between ad-hoc trial-and-error and a planned
research project is the selection and application of methods suitable to the
research task at hand. Throughout this licentiate project, several such meth-
ods have been employed. The following chapter introduces some methods
in the computing disciplines and details how these methods have been em-
ployed in gathering knowledge required to answer the established research
questions.

4.1 A Perspective on Methods in the Com-
puting Disciplines

Before entering into a discussion on method, it is relevant to frame the
work performed in this thesis in terms of the academic tradition to which
it adheres and the methods employed within said tradition. The follow-
ing section gives a brief introduction to the relevant disciplines and some
commonly used methods.

In academia, the development and use of computer and information sys-
tems are studied within a number of related academic disciplines, each of
which carries their own academic tradition with certain more or less accepted
perspectives on epistemology and philosophy of science, preferences with re-
gard to methods and methodological issues, and well known and oft-quoted
figurehead names. On a coarse grained level, the computer-related sciences
can be divided into three such disciplines (each of which can be subdivided
many times): Computer Science, Software Engineering, and Information
Systems [102] (while in some perspectives the latter two disciplines are con-
sidered to be sub-disciplines within Computer Science topic-wise, for the
purpose of method tradition enumeration it is sufficient to consider them
distinct).

59

Chapter 4. Research Method

Of these three, the work performed in this thesis aligns most closely
to Software Engineering: it concerns the utility and quality of IT artefacts
from which software systems are built (i.e., Ontology Design Patterns), from
both a technical and usage-oriented perspective. Consequently, the methods
described and discussed below are approached from a Software Engineering
perspective. As illustrated by Basili [103], research in Software Engineering
concerned with products, processes, or people is best performed using an
inductive as opposed to deductive approach, using either quantitative or
qualitative methods. For the benefit of the layman reader, these terms are
briefly explained below.

In the deductive paradigm, hypotheses are derived from a predictive
theory. These hypotheses are tested empirically, and if they are invalidated
by this testing, the theory is disproven. In this paradigm, the scholar applies
general theory to a specific case [103, 104]. The deductive paradigm is most
clearly exemplified by a physics experiment, in which a natural sciences
theory (for instance the Newtonian law of universal gravitation) is used to
develop a hypothesis (a falling object will accelerate towards the earth at
approximately 9,81 m/s2), which can be evaluated via experiment, possibly
disproving the original theory.

In the inductive paradigm on the other hand, individual empirical obser-
vations about some phenomenon are used as grounding for the postulation
of general laws and generalisations regarding said phenomenon [104]. The-
ories generated inductively are developed in an evolutionary manner, and
updated as more observations and experiments are made, supporting parts
of them and disproving other parts. In this perspective, a theory can be
viewed as a model of reality that the researcher through different means
tries to capture and understand [103].

In performing research within either of these two paradigms, the scholar
may employ quantitative or qualitative research, data-gathering, and anal-
ysis methods. In quantitative research, empirical investigation is performed
via (often large scale) numerical/statistical study and analysis of some phe-
nomena. The data gathered is most commonly structured and homogenous.
Examples include measuring the performance metrics of some software, us-
ing a survey form with graded questions (e.g., “How do you rate this feature
on a scale of 1-5”), or studying the prevalence of some characteristic in a
large population of entities. In these types of approaches, the scholar pre-
pares the data gathering activity, but does not intervene in the actual data
collection process, instead remaining the impartial observer [105]. Because
of this, there is little risk that the data is tainted by the researcher’s own
opinions or prejudices. However, this “hands-off approach” also means that
quantitative method approaches cannot easily be used for exploratory re-
search in a new field, in which the scholar adapts data gathering based on
what comes up in the process. Instead, a theory or hypothesis must be
established already [105].

Such quantitative methods can be contrasted by qualitative methods,

60

4.1. A Perspective on Methods in the Computing Disciplines

in which the emphasis is not on the volume of the gathered data, nor the
homogeneity and structure of it, but rather its depth and explanatory po-
tential. In employing these methods, the researcher studies the “hows” and
the “whys” of some phenomenon under study [106, 107]. Examples include
in-depth interviews with experts, observation studies within software engi-
neering projects, or usability evaluation of design prototypes. The emphasis
on depth of observations as opposed to volume makes qualitative results
difficult to generalise to a broader population, but for illuminating a single
case, or a set of cases, within a limited scope or domain, qualitative method
approaches can prove superior to more shallow quantitative studies [108].

In addition to the distinctions of deductive versus inductive knowledge
gathering and quantitative versus qualitative methods, methods can also
be grouped based on scope. Some method frameworks encode large and
overarching theories, making rather general recommendations including per-
spectives on philosophical ontology (not to be confused with Semantic Web
ontologies) and epistemology. Examples of this include Design Science and
the Pragmatist approaches. Other methods have a more narrow focus, rec-
ommending how to approach a certain problem in terms of selecting and
employing data gathering methods in order to answer research questions,
or how to work with, or study, concrete situations. This level can be ex-
emplified by research method approaches like case studies, action research
projects, ethnographies, etc. Finally, on the lowest and most detailed level,
we have concrete data collection methods, prescribing how to gather and
analyse data in practice, by using interviews, questionnaires, experimental
procedures, participant observation logs, etc.

In the following sections the different research methods employed in this
thesis are introduced and classified in terms of the above discussed dimen-
sions. Note that these classifications are somewhat simplified views of an of-
ten rather complex reality – in many categorisation schemes, research meth-
ods may fit into several different boxes, and many times researchers do not
even agree on what those boxes should be (see for instance the divergent
classifications used by [102] and [109]). The following presents the author’s
perspective on method issues, as relevant in the context of this thesis.

4.1.1 Systematic Literature Review

In order to gain an overview of a certain phenomenon, or of the state of
research concerning that phenomenon, systematic literature reviews can be
employed. By this method, a large number of research articles (ideally all
available relevant ones) are found, evaluated, interpreted, and summarised
in order to either answer some research question regarding the phenomenon
in question, or to learn what type of work has been done on researching said
phenomenon. Such a study can be very helpful in theory generation, or in
isolating so far unresolved research questions for further study. The method

61

Chapter 4. Research Method

is frequently used in healthcare, where the same phenomenon or class of
phenomena is often studied in the scope of different projects and research
groups each with their own publications [110].

An important difference between a systematic literature review and other
types of unstructured study of academic papers, is that the former employs
a highly structured and procedural approach to finding and analysing the
available literature. By being so formal in selecting papers to read, selection
bias (i.e., that researchers only read and use papers that they agree with)
is avoided. What it in practice means is that in each step of the literature
review, search parameters, analysis methods, and metadata extracted must
be defined before search, analysis or extraction takes place. In reporting the
review, these parameters and methods are, for the sake of transparency and
repeatability of the study, published alongside the results of the review itself.
Once the selection parameters and analysis methods have been selected, the
researcher’s role becomes to use their judgement and analysis skill to perform
whatever grouping, coding or analysis of articles is required, within these
confines.

Kitchenham [111] suggests a number of tasks to perform in such a system-
atic literature review, covering all steps of the process, from topic definition
and database search to analysis and documentation (the lattermost being
required for the results to be accepted in a peer review context). Kitchen-
ham also emphasises that this process may often require iterating over steps
and backtracking in the process. For instance, sometimes key parameters
for literature search need to be updated if the found volume of papers is
too low, or if the usefulness of the returned papers in answering the defined
research question is insufficient.

In terms of the aforementioned dimensions of method, systematic liter-
ature reviews occupy an interesting middle ground between qualitative and
quantitative methods. The systematic way in which they are performed
and the shared criteria by which all returned papers are evaluated are to an
extent quantitative and return rather homogenous data, while the analysis
process for each paper requires the use of human judgement and evaluation,
which is inherently qualitative. That the method has characteristics of both
traditions means that it, in order to be palatable for scholars on both sides
of the qualitative/quantitative fence, needs to be extensively documented
and structured, so as to be considered both transparent and trustworthy.

Another issue to note is that since a review does not in itself produce new
knowledge, but rather depends on what has been published before, employ-
ing this method requires that a sufficient volume of research has already been
published on the subject of study. Performing a systematic literature review
in a new or young research field is unlikely to yield rich results. Examples
of systematic literature reviews being employed in the Software Engineering
field includes Ivarsson & Gorschek’s review of technology transfer studies in
the Requirement Engineering Journal [66], and Schneider et al.’s review of
solutions to globalisation challenges in Software Engineering [112].

62

4.1. A Perspective on Methods in the Computing Disciplines

4.1.2 Case Studies

In the case study method, the researcher studies real world cases relevant
to the object of study, in that object’s natural context, with the goal of
developing a more thorough understanding of the object than may be had
in an artificial, or lab, situation. The term has sometimes been used sloppily
to refer to any research activity influenced or driven by a real world scenario
or example. Such usage is unfortunate, as it devalues the term and may give
rise to the perception that case study-based research lacks in structure and is
essentially just a subjective experience report. On the contrary, performing
an empirical case study in accordance with recommended practice requires
careful planning and consideration regarding which cases to select for study,
how to approach them, how to analyse them, and how to triangulate data
across multiple cases or multiple data gathering activities within a single
case, in order to obtain useful and trustworthy results [113]. Yin’s case
study definition succinctly summarises this last point:

1. A case study is an empirical enquiry that

• investigates a contemporary phenomenon in depth and
within its real-life context, especially when

• the boundaries between phenomenon and context are
not clearly evident. [114, p. 18]

2. The case study enquiry

• copes with the technically distinctive situation in which
there will be many more variables of interest than data
points, and as one result

• relies on multiple sources of evidence, with data needing
to converge in a triangulating fashion, and as another
result

• benefits from the prior development of theoretical propo-
sitions to guide data collection and analysis. [114, Ibid.]

Case studies are qualitative in nature, in that they focus on the deep
understanding of one or a few cases, rather than a more general under-
standing of a large number of occurrences of a phenomenon (though within
the context of the individual case it may sometimes be possible to apply
quantitative data gathering methods). It is important to note however that
case studies are not only employed when needing to understand the single
case. They can also be used to compare two different situations (i.e., cases)
that differ in ways in which the scholar is interested, to disprove existing
theory (a task for which a single case may be sufficient), or in exploratory
research as grounds for development of new theory [108, 114].

In developing and performing a case study, there are a number of steps
that need to be taken. The case(s) relevant to the research question need to

63

Chapter 4. Research Method

be identified, the scholar needs to gain access to these, to establish a suffi-
cient degree of trust with case participants, data collection activities need to
be planned and executed, the data analysed, and the results communicated
to the research community [114]. In the optimal situation the researcher has
access to many promising cases that can help illuminate the phenomenon
under study. It is the experience of the author however that this is seldom
the case.

As mentioned in the above definition, a case study depends on a variety
of different types of data regarding each case being gathered and analysed.
Since many of these activities tend to be qualitative and therefore at risk
of subjective researcher bias, the case study researcher aims to support any
assertions made by multiple data sources, such that for instance interview
material, observation logs, and document studies support one another and
point in the same direction regarding the aspect of the phenomenon under
study that a researcher assertion concerns. This is what is mentioned in the
definition as “data needing to converge in a triangulating fashion” [114, p.
18].

4.1.3 Interviews

Interview methods are often employed to gather data from stakeholders or
case participants familiar with the phenomenon of study, without necessarily
observing the phenomenon itself. In a software engineering context, such
interviews can be performed to for instance gain an understanding of how
an artefact is appreciated by users, or to elicit requirements on a system
or service. Sometimes interviews are used to follow up on an observational
study, in which the interview subject is asked to explain or motivate observed
behaviour, in order to establish a better understanding of the observations
made [115].

Interviews can be structured, semi-structured, or unstructured. In the
structured interview case, the interviewer has designed questions before-
hand, and ask the questions exactly as written, making no deviations from
the interview script. The resulting interview transcript and recorded an-
swers can then be analysed in a statistical/quantitative manner, much in
the same way as if the interviewee had filled out a questionnaire form. This
type of interview is suitable in the case that the researcher has a very clear
and specifically defined information need. In unstructured interviews on
the other hand, the data gathered is of a much more qualitative nature.
Here the interview questions are more open-ended and the interviewer and
interviewee can have a rather broad discussion. Such interviews are suit-
able for establishing a basic understanding of a new field, where the re-
searcher cannot know beforehand what type of knowledge they are looking
for. Semi-structured interviews finally, lie somewhere in between, in that
the interviewer has an interview script, but allows deviations from this to

64

4.1. A Perspective on Methods in the Computing Disciplines

occur if an interesting and potentially valuable topic of discussion comes up
[115, 116].

When working with data gathered via interviews, the interview record-
ings are first transcribed into text, before those text transcripts are analysed
in a documented and transparent manner using some established analysis
method. For instance, in analysing qualitative interview material, it is com-
mon to split the transcripts into thematic fragments, and tag those frag-
ments using keyword codes. Once the entirety of the material has been
coded in this manner, the researcher can easily review the material and
summarise the available interview material concerning a particular theme
or aspect of the phenomenon of study. In order to reduce the impact of any
individual researcher bias, these processes are often performed in parallel
by multiple researchers [117]. Consequently, this transcription and analysis
process can be very time-consuming, for which reason entirely unstructured
interviews are not common in practice – it is simply not cost-effective to
perform such analysis work without guiding the interview towards topics of
interest to the researcher [115].

4.1.4 Experimentation

A typical experiment in the natural sciences is characterised by the testing of
a hypothesis by studying the effect on a set of output parameters (dependent
variables) by changes to some input parameters (independent variables). In
a controlled experiment, the assignment of research subjects to experimen-
tal input conditions is randomised, and any environmental variables not
themselves being studied are kept identical between different groups of sub-
jects. Furthermore, such an experiment features at least one control group,
in which the research subjects are not subjected to changing independent
variables.

Basili [103] argues that the Software Engineering research community is
lacking in such experimental maturity and that it needs to establish meth-
ods for how to apply experimental procedure in practice. He suggests a
differentiation between evolutionary experiments, in which some model’s or
tool’s suitability as solution to a problem is evaluated for the purpose of
improving said solution, and revolutionary experiments, in which entirely
new solutions are developed. In both of these approaches experiments are
used not in order to test hypotheses in the classical deductive sense, but
to develop understanding by refinement, through an inductive process; by
developing better tools and models, the researcher develops better under-
standing of the underlying problem. Experiments of this nature may take
place in the lab or in the field, and the results may be descriptive (some
patterns in the data are found), correlational (correlations between inde-
pendent and dependent variables are observed), or cause-effect (a causal
relationship can be traced between independent and dependent variables).

65

Chapter 4. Research Method

Basili emphasises that in order for an activity to be considered an exper-
iment rather than an observational study or a simple development activity,
certain criteria need to be fulfilled. Firstly, there must be a goal of develop-
ing a new, deeper understanding of the underlying model or problem, that is,
there must be thorough evaluation, measurement and analysis taking place.
Secondly, there needs to be some defined treatment or researcher-controlled
variable identified. Aside from these restrictions, [103] does not define many
constraints on what may be considered an experiment or not – for instance,
there is by this understanding no requirement that data resulting from Soft-
ware Engineering experiments need necessarily to be quantitative in nature.
The author finds this perspective on what constitutes an experiment to map
very well to the realities of Software Engineering research, and has adopted
Basili’s perspective on experimentation in this thesis.

4.2 Description of the Research Process

The methods described in Section 4.1 have been employed in different parts
of this thesis work, as illustrated in the project overview displayed in Fig-
ure 4.1. In that figure, rectangles denote research activities, ellipses denote
artefacts resulting from said activities, and rounded rectangles indicate ex-
isting (reused) research work. The work performed in and the method issues
associated with the main research activities are introduced in the following
sections, while the results of said activities are presented in Section 2.5 and
Chapters 5 and 6.

4.2.1 ODP Literature Study

In the early phases of the thesis project an overview of the state of research
into Ontology Design Patterns was needed, in order to find which areas
of this research were underdeveloped and possible to do an interesting and
relevant licentiate project in. To this end, a systematic literature review was
planned and performed – as mentioned in Section 4.1.1, such a review can
be helpful in learning what type of work is being done on studying a certain
phenomenon or within a certain research field. Specifically, the purpose of
the literature review was to learn what kind of research on ODPs was being
performed, how the field has developed over time, where such research is
taking place, and how it is performed. The results of this literature review
are presented in Section 2.5.

The method used to perform the literature survey is illustrated in Fig-
ure 4.2. It consisted of first finding the relevant research papers (i.e., papers
that discuss ontology patterns), then classifying and sorting them based on
various metrics and measures in order to obtain the data needed to answer
the research questions. The method, the selection criteria, and the steps
to be taken in were defined beforehand and applied equally to all studied
papers, as required by the systematic literature review method discussed in

66

4.2. Description of the Research Process

Model foundations

ODP
Quality
Model

Initial quality
model

development

Research
Questions

ODP
literature

study

Knowledge
Fusion case

study

Analysis

Learnability &
usability

evaluations
Analysis

Performance
indicators
evaluation

Analysis

Ontology
Quality

Research

Thörn

MAPPER

ISO 25010

Evaluation step 1

Evaluation step 2

Evaluation step 3

ERM Quality
Research

Prestudies

Figure 4.1: Licentiate project method overview

67

Chapter 4. Research Method

Paper selection

DB retrieval

Keyword search

False positive removal

Metadata
extraction

Automatic

Manual

Data extraction

Content classification

False positive removal

Importance classification

Validation classification

Figure 4.2: ODP literature study overview.

Section 4.1.1. The following sections discuss each of these performed steps
in more detail.

Paper selection

The literature review covered the ISWC, ESWC, and ASWC conference
series from 2005 to 2009, and the associated workshops. The reasons for
these delimitations were three:

• The conferences in question are three of the most well-established and
prestigious Semantic Web conferences in the academia. Papers that
have been accepted to them are therefore likely to be of a high quality
and representative of the general direction in which the Semantic Web
research field is heading.

• The current interpretation of Ontology Design Patterns was intro-
duced in [7] and [6], both of which were published in 2005. This is
therefore a natural starting year for the survey. 2009 was selected as
the ending year for the simple reason that the 2010 conferences had
not all been held at the time the review was carried out.

• After initially performing the selection process detailed below with
only the main conference proceedings as source, it was found that
the number of papers returned were rather few. In order to gain more
data, the scope was widened to include the workshop proceedings also,
on the intuition that the workshops while being narrower in focus may
still be relevant markers of trends and directions in ontology pattern
research (see for instance the WOP1 workshops that deal specifically
with ontology patterns).

1Workshop on Ontology Patterns, http://ontologydesignpatterns.org/wiki/WOP:
Main

68

4.2. Description of the Research Process

The available publications from these conferences and workshops were
retrieved from the relevant publication databases. In order to find the sub-
set of papers dealing with ontology patterns, the downloaded papers were
subjected to a full-text search. All papers containing the phrases ontology
patterns or ontology word patterns (word denoting any one single word)
were selected for further analysis. Thereafter, in order to weed out false pos-
itives, papers mentioning patterns only in the reference list were removed
from the dataset.

Metadata Extraction

Four types of metadata was determined to be useful for the purpose of this
literature study: publication year, author provenance (research institution),
author count, and institution count. These pieces of information were re-
trieved from the dataset. The publication year was retrieved automatically
by way of database queries and web spidering scripts when downloading the
source material, whereas the research institutions and institution/author
counts were ascertained by studying the papers manually.

Research institutions were counted and ranked by the number of men-
tions they received in the headers of papers in the dataset. However, due to
time constraints, further study of the specific organisational structure of the
various institutions was not performed. Consequently, different departments
of the same university were counted as belonging to the same unit, as were
different branches of a company or other research organisation. This gives
a course-grained view of what universities and organisations are involved in
this type of research.

Data Extraction

While the metadata extracted could sufficiently answer some of the questions
motivating the literature review, some of the questions (in particular the
questions on what type of research is being done, and how it is being done)
required structured analysis of the actual contents of the research papers.
For this purpose the papers were categorised by ODP usage, by validation
method, and by how central they considered ODPs.

For the ODP usage classification, the papers were read and tagged with
one or more labels categorising how they related to or made use of ontology
patterns. Since it was not known beforehand what categories would best
describe the collected material, the labels used could not be decided ahead
of time. Instead, the labels were selected in an exploratory fashion as the
readings of the papers progressed. However, to ensure as unbiased a classi-
fication as possible, each label was paired with a definition covering papers
belonging to the category. The labels and definitions are listed in Table 4.1.
The papers were studied twice, once before and once after deciding upon
the categories. At the end of this tagging procedure the papers that were

69

Chapter 4. Research Method

Table 4.1: Content categories and definitions.

Category Definition
New pattern presentation The paper presents a new ontology pattern.
Pattern usage method The paper presents a new general approach or method of

using patterns to achieve some goal(s).
Pattern creation method The paper presents a new approach for isolating or cre-

ating Ontology Design Patterns (including re-engineering
from other knowledge representation forms).

Patterns used The paper describes a case where patterns have been used
for achieving some goal(s)

Evaluation The paper focuses on evaluating patterns or pattern us-
age/creation methods

Pattern typology The paper discusses or suggests different types or group-
ings of patterns.

Pattern features The paper discusses specific features of ontology patterns.
This includes features of not only the reusable reference
implementation, but also the documentation and meta-
data associated with it.

Pattern identification The paper deals with finding instances of patterns in an
existing ontology.

Pattern languages The paper discusses languages or formalisms for repre-
senting or displaying patterns.

Anti-patterns The paper concerns anti-patterns or worst practices.
Not relevant The paper is a false positive - it does not deal with on-

tology pattern research, but only mentions the term in
passing.

classified as belonging to the Not relevant category were pruned from the
dataset.

In order to survey how ontology pattern research is validated, two proce-
dures were followed. To begin with, the papers were categorised according
to in what manner validation or testing of the proposed ideas and theories
had been performed. For this purpose, the following four categories were
used:

• No validation – there is no mention of any validation of the ideas
presented.

• Anecdotal validation – the paper mentions that the research has
been validated by use in an experiment or in a project but it provides
no detail on how this validation was performed or its results.

• Validation by example – one or more examples are presented in the
text, validating the concepts presented in a theoretical manner.

• Empirical validation – some sort of experimental procedure or case
study has been performed.

Each paper was assigned to one validation category only. In the cases
where a paper matched more than one category, the category mapping to a
higher level of validation was selected, i.e., empiricism trumps example which
in turn trumps anecdote. Having categorised the papers by validation tech-
nique, a further study of validation quality was performed against the papers

70

4.2. Description of the Research Process

categorised as belonging to the Empirical validation group. For this study
some of the metrics and corresponding measurement criteria developed in
[66] were reused: Context description (grading how well a paper describes
the context, academic or industrial, in which empirical data gathering took
place), Study design description (grading how well a paper describes the
setup and method of the performed empirical validation), and Validity de-
scription (grading how well a paper describes validity issues and limits of
generalisability associated with the performed empirical validation).

In order to learn how important the use of or research into ontology
patterns is to each particular paper, it was studied in which section of the
paper that patterns were mentioned. The intuition was that this informa-
tion would give a crude indication as to whether ontology patterns were
considered an essential core part of the research (warranting inclusion in the
title or abstract) or not. Title inclusion indicates greater importance than
abstract inclusion, which in turn indicates greater importance than mere
inclusion in the body text. For this measure, terms such as “Knowledge
patterns”, “Semantic patterns”, or just plain “patterns” were also consid-
ered acceptable synonyms for ontology patterns, provided they were used in
a manner indicating a link to ontologies and the use of such patterns in an
ontology engineering context.

The results of applying this method are presented in Section 2.5. These
results led up to the research questions posed in Section 1.2.

4.2.2 Initial Quality Model Development

Rather than develop a quality model entirely from scratch, the author de-
cided early on to take as input and inspiration established work on simi-
lar models from neighbouring research fields, adapting these to fit the spe-
cific characteristics and uses of Ontology Design Patterns. This approach
grounds the proposed model in established theory and practice, and provides
a solid starting point for development.

Quality metamodel development

A large number of quality models have been proposed for various differ-
ent types of IT artefacts, as discussed in Chapter 3. These differ not only
in their content (i.e., which specific instances of qualities, indicators, at-
tributes, methods, or other concepts that they include and relate) but also
in their metamodel, that is, how they understand, conceptualise and repre-
sent quality as it relates to whichever type of artefact that they are intended
to support. Thus, establishing such a metamodel structure upon which to
build the ODP quality model was from the outset considered important both
in terms of structuring the problem and developing design and evaluation
methods, and in terms of communicating the results to the research and
practitioner communities.

71

Chapter 4. Research Method

The metamodel was developed iteratively and updated based on ob-
servations in pre-studies and prototype evaluations. Development of the
metamodel and the quality model with which it is populated was roughly
sequential in that the base of the metamodel was designed first and the
quality model second. However, minor shortcomings of the metamodel dis-
covered during the second half of the work were rectified and the metamodel
updated accordingly.

The design of the first iteration of the quality metamodel was influ-
enced by perspectives on how to model quality aspects originating from the
MAPPER project [67, 68], introduced in Section 3.1.1. In this project, a
metamodel is formalised which supports the development of a project result
validation framework. While the domain of study in MAPPER is different
than that studied in this thesis, the metamodel used is general enough to
capture broader understanding of quality concepts in different fields. The
result of the metamodel development work is presented in Section 5.1.

Quality model

While the MAPPER project framework influenced the thesis project meta-
model design, the artefacts evaluated by this framework were deemed far
too different from Ontology Design Patterns for the framework to be reused
for the actual quality model. Instead, inspiration was taken from software
quality models and conceptual model quality frameworks. Quality charac-
teristics and indicators were drawn from the ISO 25010 software quality
standard [70], from the PhD thesis “On the Quality of Feature Models” by
Christer Thörn [69], from a number of papers on conceptual models (in-
cluding UML and ER models), and from small scale pre-studies involving
master students at Jönköping University.

Development of the initial ODP quality model consisted of five main
steps:

1. Starting with the full set of quality characteristics defined in ISO
25010, specialise the quality definitions to apply particularly to On-
tology Design Patterns.

2. Remove any quality characteristics that do not apply to Ontology
Design Patterns.

3. Add quality characteristics and indicators defined in On the Quality
of Feature Models [69] that are relevant to ODPs and that are not
already present.

4. Add relevant quality characteristics and indicators from other related
literature that are not already present.

5. Add or modify quality characteristics and indicators based on small-
scale pre-studies.

72

4.2. Description of the Research Process

The first four steps were carried out sequentially. The studies and pro-
totype development mentioned in the fifth step were carried out in parallel
and throughout the development process, but the resulting characteristics
and indicators were not integrated with the other results until the end of
the process. Each of the steps is described briefly below, and the results
of these steps and their contribution to the initial ODP quality model are
detailed in Sections 5.2 (steps 1-4) and 5.3 (step 5).

The ISO 25010 [70] quality models are introduced in Section 3.1.4. Con-
ceptually, the quality framework used by these models is compatible with
the already developed metamodel, which simplified reuse and adaptation of
ISO 25010 for the purpose of developing an ODP quality model. The ISO
25010 standard introduces two quality models, the Quality In Use model,
and the Product Quality Model. The Quality In Use model was deemed
unsuitable for use within this project due to its emphasis on the quality
of a whole Human-Computer System, as opposed to a clearly delineated
IT artefact. The granularity of this perspective simply does not match the
granularity of Ontology Design Patterns, which are used as building blocks
in ontologies, which in turn are used as building blocks in software systems.
The Product Quality Model (hereafter PQM) was however considered suit-
able as a starting point for development, and was subsequently used as an
initial building block in the development of the ODP quality model.

The majority of the PQM quality characteristic definitions pertaining
to software were possible to specialise for Ontology Design Patterns eas-
ily, by replacing references to concepts like “software”, “system”, “require-
ments”, etc. with concepts specific to ODPs, including “patterns”, “ontol-
ogy”, “competency questions” and so on. Some required interpretation and
rephrasing to be transferrable, but only a few were entirely inapplicable to
use with ODPs.

The Thörn quality model for feature models [69] is presented in Sec-
tion 3.1.2. While such feature models are not built using an as expressive
formal language as Semantic Web ontologies and Ontology Design Patterns,
the two types of models share certain characteristics (see Section 3.1.2) and
intended usages suggesting that quality characteristics for one may be ap-
plicable for the other also. In developing the ODP quality model, quality
characteristics formalised by Thörn were mapped against the already reused
ISO 25010 quality characteristics [70]. Any quality characteristics that could
not be mapped in this way, i.e., that were unique to the Thörn quality model
were studied as potential candidates for inclusion in the ODP quality model.
While some of these candidates were not suitable for use in an Ontology De-
sign Pattern context, others were clearly understandable and useful, and
were added to the quality model.

At this stage of development the ODP quality model held only qual-
ity characteristics, i.e., abstract concerns or perspectives on ODP quality
not directly measurable themselves (Learnability, Reusability, etc.). In or-
der to make the model more usable by scholars and practitioners, a set of

73

Chapter 4. Research Method

measurable indicators believed to affect these quality characteristics were
developed, drawn primarily from existing literature on ontology quality
[88, 89, 100, 118] and ER model quality [76, 77, 78, 119].

Prestudies

In parallel with the above development, two small-scale prestudies with mas-
ter students were carried out, to develop an understanding of ODP usage,
and to provide input into developing the quality model. These studies helped
to provide some insight into possibly relevant quality characteristics and in-
dicators to focus attention on. However, they were not large enough or
methodologically rigorous enough to qualify as empirical evaluation of the
model itself – a partial such evaluation is instead presented in Chapter 6.
The two most influential prestudies are described briefly below.

During the early stages of development of the quality model, the author
had the opportunity to discuss with and interview a master student perform-
ing a master thesis project on semantic search, who employed patterns for
ontology development. The project in question involved two master students
and was run together with the Jönköping County Council (Jönköpings Läns
Landsting), within the context of the urology department at Ryhov County
Hospital. For their thesis project the students were tasked with designing
and developing a system for finding appropriate manuals and documents for
performing particular processes in healthcare, based on the role of the user
performing the search.

Early in the thesis project the students were provided with two Ontology
Design Patterns developed by the author2. One concerned how to model and
structure context-dependent information, and one concerned organisational
structures, the latter essentially being an encoding of the Organisational
Structure analysis pattern presented by Fowler in [120]. The students were
also provided links to the ODP portal3 with a suggestion to in particular
study some of the patterns therein: Action, AgentRole, ParticipantRole,
Role Task, Roles, Tagging, and TaskExecution. The students were not in-
structed on how to use and apply these patterns, but were simply provided
with them and told to use them if they so wished and if they found them ap-
plicable to their problem. The interview sessions were held half-way through
the project and towards the end of it, matching the conceptual design phase
and the implementation phase in terms of actual programming.

Of the two students taking part in the master thesis project, one was
interviewed on three occasions (the other did not decline to participate,
but was simply unavailable at the times selected). The interviews were
prepared with interview question manuscripts, but these manuscripts were
not strictly followed – instead, a probing and questioning approach was em-
ployed, with the manuscripts used to get back on track when required (i.e., a

2Available at http://purl.karlhammar.com/data/phl/master-thesis-project/
3http://ontologydesignpatterns.org

74

4.2. Description of the Research Process

semi-structured interview format was followed, as discussed in Section 4.1.3).
The results of these interviews fed into the design of the quality model in
terms of particular indicators for primarily usability-related qualities.

In the latter stages of development of the quality model, another small
scale experiment was performed in the context of an Information Logistics
course held within the master program in Information Engineering and Man-
agement at Jönköping University, in late 2011. In this course, a lab session
was arranged at which the participating master students were tasked with
developing an ontology for a particular purpose, and provided with patterns
to use in this development. This experimental lab session was optional, and
the students who preferred to do so were free to take another regular lab
exercise instead. However, due to the nature of the experimental setup,
the optional experiment lab exercise had relaxed grading requirements, es-
sentially a pass/fail grading based on presence during the lab session, and
consequently the majority of the students taking the course attended this
session rather than the ordinary one.

At the lab session the students were organised into randomised groups
of two students each. Half of the groups were then given a certain set of
five patterns, and half another set of five. These two sets differed in that
one of them contained patterns that were more abstract and general in
nature, whereas the other one contained patterns that were more concrete
and specific, in some cases derived from the more general ones4. Most of the
patterns provided came with textual descriptions and example OWL files,
while a few had only the example OWL file and no textual description. The
students’ task was then to model an ontology based on a provided scenario
in the domain of security and surveillance, in order to fulfil a set of provided
competency questions. Upon completing this task, the students handed
in the developed ontology and filled out a followup questionnaire on their
experiences of using Ontology Design Patterns for this purpose, and their
opinions on useful features of such patterns.

4.2.3 Knowledge Fusion Case Study

The Knowledge Fusion case study was set up with the intention of studying
the impact of some of the indicators of the developed quality model, particu-
larly with regard to indicators believed to affect usability and compatibility.
By having case participants work together as a group on solving problems
using Ontology Design Patterns, observations were made that tested the rel-
evance and perceived impact of some of the previously developed indicators
and qualities, and also allowed for the generation of new theory based on ob-
servations of how participants actually used ODPs. This approach made use
of the proximity to and participation within a real world project, a setting
which was not available to the author within the two other, more observa-
tional and quantitative evaluations of the quality model described later in

4Available at http://purl.karlhammar.com/data/phl/ilog-lab/

75

Chapter 4. Research Method

this chapter. The method employed in this study is described below, and
the results of the study are presented in Section 6.1.

The objectives of the case study evaluation were formalised into three
research questions:

1. How do users select and make use of ODPs?

2. What ODP characteristics do participants find helpful or harmful in
ODP use?

3. What effects of ODP use on ontology engineering performance and
resulting ontologies can be observed?

The case study method was selected for two reasons: firstly, its suitability
for studying real life phenomena away from an artificial or laboratory setting
(the phenomenon in this case being ODP use in ontology engineering for
knowledge modelling purposes), and secondly, its suitability in studying
context-bounded phenomena (the context in this case being the development
of a system for complex event processing using semantic technologies, which
the author had the opportunity to be involved with) [114].

In the initial development of the case, the author read and studied case
related documentation in order to understand the requirements on the sys-
tem which was under development at the partner research institute (here-
after RI) that hosted the project which the case study followed. RI was
interested in learning how ODPs could be applied in the development of
a system for complex event processing, or CEP (a concept introduced in
Section 2.2.4), and for this purpose asked the author to help develop an
ODP-based variant on their own developed CEP platform. Setting up such
a system required developing an understanding of the constraints and re-
quirements on the system as formalised in a large set of requirements doc-
umentation, which the author studied extensively.

Observation and data gathering were performed at a two-day modelling
workshop at RI. The purpose of this workshop in the context of the project
was to present the developments on the proposed system architecture and
a prototype of the software to the participants, and to let them develop
configurations for it, thereby validating the applicability of the approach
to their deployment scenarios. Of course the author also had the personal
intention of studying ODP use in practice by observing the participants
work. This other motive was also, for the sake of transparency and trust,
presented to the participants of the study and they willingly accepted acting
as subjects in such observation.

During the modelling sessions data was gathered by way of audio and
video recordings of the work in progress, photographs taken of ontology
prototypes on the whiteboard, and notes taken on perceived key actions,
behaviours, and trends taken independently by two researchers, the author
and a professor with extensive experience of this research method. By act-
ing as passive observers of the ongoing ontology development process, the

76

4.2. Description of the Research Process

researchers were able to gain a perspective on real life usage of ODPs, in-
cluding difficulties and problems in usage that the subjects experienced.
Occasionally the subjects asked the researchers questions on ontologies and
semantic technologies - these questions were answered insofar as they con-
cerned technical specifics or details (such as the participants might have
been able to gather themselves via a web search), but questions regarding
modelling practice, how to solve a particular problem or which pattern to
use for a given task, were not answered, so as not to interfere with the case.

At the end of the second workshop day a semistructured group interview
was held where the participants were queried about a number of different
aspects of their experience and opinions on ODP use. The purpose of this
more active data gathering activity was to revisit and discuss issues and
statements of particular interest observed during the workshop, and to re-
solve conflicting interpretations by the researchers. However, care was taken
not to use this interview to enforce a group consensus in the cases that the
subjects expressed diverging opinions. Such situations were instead noted
and kept for analysis.

Data Analysis

Upon completing the workshop, the recorded material was transcribed into
text. The vast majority of the material was immediately understandable.
In the cases where ambiguities required interpretation, markers were put
down. Those sections were revisited at the end of transcription, when a
greater experience of the participants’ voices was established, and in the
majority of cases then resolved. The few uncertainties that remained were
clearly marked out in the transcribed text, and subsequently ignored in later
analysis steps.

The text material (notes and transcripts) was then analysed according
to established transcript analysis methods [117, 121], as discussed in Sec-
tion 4.1.3. All the texts were read through and fragments coded by theme.
The texts were read twice, once to establish coding categories in the ma-
terial, and once to apply codes to the text corpus. The fragments were
grouped by code, and the collected material pertaining to each code studied
to see what conclusions could be drawn regarding participant experiences,
opinions and behaviour.

Validity and Generalisability

As touched upon in Section 4.1.2 and mentioned by [113] and [114], per-
forming case study research in a reliable manner requires triangulating over
multiple data points to gain as complete, transparent, and trustworthy a
picture of the phenomenon of study as possible. During the modelling
workshop described above, two researchers were involved in data collection
and note-taking. Multiple data collection methods were employed (audiovi-
sual recordings of modelling sessions, researcher notes, and interview tran-

77

Chapter 4. Research Method

scripts). Preliminary analyses made at the scene were verified against the
case participants’ opinions by way of a group interview at the conclusion of
the sessions. However, due to resource limitations, coding and analysis was
performed by only one person.

As in any single-case study, the generalisability of entirely new findings is
limited, for which reason such findings warrant further empirical evaluation
in other cases. The generalisability of findings which support existing em-
pirically founded theory (i.e., those developed ODP quality indicators which
are grounded in empirical studies) is in this regard higher.

4.2.4 Learnability and Usability Evaluations

The effects observed in the Knowledge Fusion case study, with a few ex-
ceptions, concern features relevant to pattern selection, pattern naming,
pattern catalogues, etc. The majority of indicators within the initial qual-
ity model are however structural or quantitative in nature, and deal with
features of the reusable OWL building block file accompanying most ODPs.
Understanding the effects of these indicators would be helpful in guiding
ODP developers produce patterns that are not only computationally and
logically sound, but also easy to use for inexperienced ontology engineers
(which is a major raison d’être of ODPs in the first place).

In order to attempt to test some of the more quantitative and structural
learnability- and usability-related indicators of the developed model, a study
was set up in the context of a course in Information Logistics at Jönköping
University in 2012 (the results of which are presented in Section 6.2). The
study aimed to answer three questions:

1. How do the indicators Example illustration count and Documentation
minimalism affect ODP learnability?

2. How do the indicators Anonymous class count and Class/property ra-
tio affect ODP usability?

3. How do Property domain restrictions and Property range restrictions
affect ODP learnability?

The design of this evaluation was constrained by two main factors. First-
ly, the educational context in which the study was executed necessitated that
the study contain some practical lab tasks to be performed by students.
Secondly, the number of participants available (initially estimated to 10-
15) and the time constraints imposed by the educational context meant
that an in-depth qualitative approach such as an interview study would be
infeasible. To meet both of these constraints, an approach consisting of both
survey questionnaires and practical tasks was designed. Surveys are useful in
gaining an understanding of participant opinion of some phenomenon under
study. While they lack in explanatory power compared to proper interviews,
they take a fraction of the time of an interview to perform and analyse.

78

4.2. Description of the Research Process

The requirement to have participants perform a practical task inspired
the application of understandability and modifiability time indicators as
proposed by Genero et al. [76], discussed in Section 3.1.3. Additionally, the
application of such individually performed tasks have the added benefit of
giving the participants immediate real experience of ODP usage in practice,
which enables the usage of survey questions on such practical ODP usage
issues which the participants would not have been able to answer had they
only gotten a cursory overview of ODPs in a pattern repository.

In studying the first two research questions, the indicators under study
acted as controlled variables, which were adjusted as discussed below, with
the goal towards finding some interesting correlation against independent
variables from either the time measurements applied or the survey responses
received. This approach adheres to the Basili’s [103] perspective on exper-
iments in Software Engineering as discussed in Section 4.1.4. For practical
reasons this approach was not feasible for the study of the third research
question - varying one more parameter would have required considerably
more time than was available with the subjects. Instead, the question re-
garding usability effects of property domain and range restrictions was put
to the subjects through a survey form as described below.

Setting

The study was performed at Jönköping University, within a master course in
Information Logistics. This course is located in the second year of the master
program in Information Engineering and Management, and the students
taking it have earlier in the program taken courses on knowledge modelling
and knowledge management, database systems, and software engineering
methods. They have in these courses studied and used the Semantic Web
and ontologies, as well as ER and UML models. Additionally, in order to
be accepted for the program, the students must have a bachelor degree in
computer science, information systems, or a related field.

The study took place at a scheduled lab session, in a computer lab on
campus, during a four hour afternoon session (though the second survey
could be filled out also after this session). Attending the lab session was
mandatory, but participating in the study was optional. In total 12 students
opted in to take part in the study.

Study structure

The study consisted of three parts:

1. Survey 1, measuring ODP learnability effects of documentation-related
indicators

2. Tasks, measuring ODP usability effects of structural indicators

79

Chapter 4. Research Method

3. Survey 2, surveying participant opinion regarding documentation-
related and structural indicators

In Survey 1, the participants were presented with a randomised order
of four ODPs sourced from the ODP portal and asked to answer a number of
questions about them, gauging their understanding of the pattern in ques-
tion. Each pattern displayed was presented using a template mechanism, by
which the two controlled variables (i.e., documentation minimalism and ex-
ample illustration count) were randomly adjusted for each participant. The
understanding questions were of two forms; firstly, the participants were
asked to mark which out of five competency questions the pattern was ca-
pable of answering, and secondly, a scenario description was provided and
the participants were asked which class in the pattern corresponded to a cer-
tain term in the scenario text. Simultaneously, the time taken to answer the
questions was measured, for the purpose of providing corroborating evidence
of the ease or difficulty of understanding associated with each displayed pat-
tern. Additionally, each survey ended with two questions on how concrete or
abstract the participant considered the pattern, and how easy to understand
they found it.

In theTasks portion of the study, participants were asked to use patterns
to help model a number of scenarios. In order to study the usability-related
effects of the structural indicators class/property ratio and anonymous class
count, patterns varying over these two indicators and being of non-trivial size
(i.e., containing a minimum of 10 classes including imports) were selected
for study. For each of these four patterns, the participants were tasked with
modelling a certain scenario, using the provided pattern if they so wished.
The participants had the option of using either of the two tools Protégé5

or TopBraid Composer6. They were not given any specific instructions on
how to apply the patterns in terms of technology or method. However,
they had at a previous lesson in the same course been instructed on the
different methods available for this purpose, i.e., using owl:imports to im-
port the pattern OWL file as-is, adapting that OWL file via subclassing or
other modifications before importing it, or recreating the pattern from its
documentation description into an entirely new OWL file. The time taken
to complete this modelling task was recorded, and the resulting OWL files
handed in.

Finally, in the concluding Survey 2 portion of the study, the partici-
pants were surveyed on their opinions and impressions of ODPs and their
features, now that they had used them for modelling a number of scenarios.
The questions in this final survey concerned both the documentation-related
indicators and the structure-related indicators under study, and asked the
participants whether they found the presence of the features described by
these indicators to be very helpful, helpful, neither helpful nor harmful,

5http://protege.stanford.edu/
6http://www.topquadrant.com/

80

4.2. Description of the Research Process

harmful, or very harmful in understanding and using the patterns provided
to them.

4.2.5 Performance Indicator Evaluation

While the studies described in the previous sections give some insight into
usability-related effects of various ODP quality indicators and the usability
and characteristics of ODP repositories, neither study captures the possibly
substantial performance-related effects of ODP use and ODP structure. In
the evaluation described in this section the author attempted to reconcile
the previously developed initial ODP quality model with recent findings on
ontology reasoning performance. In order to support this work, a litera-
ture study on ontology performance was performed, and the prevalence of
indicators developed in the initial quality model (and also that found in
the aforementioned literature study) in real world published patterns was
studied.

The following questions were employed in this evaluation:

1. Which of the proposed performance-related effects of indicators from
the initial ODP quality model are supported by existing literature?

2. Which indicators from literature known to affect the performance of
reasoning with ontologies are also applicable to ODPs?

3. How do performance-altering indicators vary across published ODPs?

In order to answer these questions, the indicators from the initial quality
model asserted to affect resulting ontology reasoning performance were se-
lected from the initial model. A literature review across performance-related
ontology research was performed, to find evidence supporting or disproving
such performance effects of these indicators, and to add new indicators to
the extent that applicable ones were found. Finally, the values of these pro-
posed indicators among patterns “in the wild”, that is, published on the net
in ODP portals today, were studied and analysed in order to learn whether
these indicators actually do vary in practice, and how. Figure 4.3 presents
an overview of the method. In this figure, oval shapes represent artefacts of
study, and rectangular shapes represent research activities. The individual
research activities are described in more detail in the following subsections,
and the results of the evaluation are presented in Section 6.3.

Literature review

The indicators developed in the initial quality model were grounded in lit-
erature on or prestudies dealing with ontology quality issues. While such
work is very helpful in studying issues like the logical correctness of an on-
tology or the usability of ontologies for various purposes, it seldom captures

81

Chapter 4. Research Method

ODP Quality
Model

Performance
-related

indicators

Literature
review

Validate

Add

Analyze results

Update

Indicator value
distribution

Study indicator
variance in

ODP
repositories

Evaluation step 1

Evaluation step 2

Select

Figure 4.3: Performance indicator evaluation method

82

4.2. Description of the Research Process

performance-related ontology issues, which are instead published and dis-
cussed about at conferences and in particular workshops focused on descrip-
tion logic languages and formal reasoning. The first goal of this evaluation
was therefore to study the state of research in these fields, in order to learn
whether the preliminary indicators developed could be supported by connec-
tions to known performance-altering ontology structures, and also whether
the addition of new indicators to the ODP quality model based on such
known structures was warranted.

For this purpose, publications at the main tracks and the associated
workshops of four high-impact conferences dealing with formal knowledge
modelling were studied, namely the International and Extended Seman-
tic Web Conferences (ISWC and ESWC), the International Conference on
Knowledge Capture (K-CAP), and the International Conference on Knowl-
edge Engineering and Knowledge Management (EKAW). Timespan-wise pa-
pers published between 2005 and 2012 were selected and downloaded. This
delineation was made based on the initial appearance of Ontology Design
Patterns in research in 2005.

All papers matching the above criteria were downloaded, and their ab-
stracts studied. Abstracts mentioning metrics, indicators, language expres-
sivity effects, classification performance improvements or performance anal-
yses (in total, 16 papers) were selected for thorough reading. Of these, eight
were found to contain evidence supporting, disproving, or complementing
the existing indicators of the initial quality model.

Study of indicator variance in ODP repositories

While getting a better understanding of performance-related effects of ODP
indicators is an important goal in itself, if the work is to be applied in prac-
tice one needs also to study how these indicators appear in ODPs developed
and used by the community, in order to provide guidance regarding which
patterns are more or less suitable for different types of computationally ex-
pensive reasoning tasks. Such study may also help in validating the need
for a particular indicator in practical ODP use and development. For in-
stance, if all known patterns display a very small variance in one known
performance-altering indicator, this may indicate that the indicator value
results from either an established modelling practice (in which case a useful
recommendation for the community may be made) or from some inherent
characteristic of ODPs (in which case the use of the indicator provides little
value). Accordingly, the second goal of the work presented in this section
was to study how these performance-related indicators varied among the
patterns available in the pattern repositories used by the community.

To this end, the reusable OWL building blocks of the patterns from two
well known ODP repositories, http://ontologydesignpatterns.org and
http://odps.sourceforge.net, were downloaded and studied. A modu-

83

Chapter 4. Research Method

lar expandable tool for measuring ontology or ODP metrics was developed7

specifically for this purpose. The Java-based tool parses an input ontology
(or in this case, ODP module) and based on which metric measurement
plugins are located in the tool’s classpath, measures different aspects of said
ontology. It generates as output CSV data suitable for post-processing in
a spreadsheet or statistics tool. Plugins for all of the performance related
indicators under study (with two exceptions, detailed in Section 6.3) were
developed for this tool, and it was then executed over the downloaded pat-
tern set.

Analysis of indicator variance

In analysis of the data from the execution of the indicator measurements, a
simple four step process was repeated for each indicator under study:

1. Sort all ODPs by the studied indicator.

2. Observe correlation effects against other indicators. Can any direct or
inverse correlations be observed for whole or part of the set of patterns?

3. Observe distribution of values. Do the indicator values for the different
patterns vary widely or not? Is the distribution even or clustered?

4. For any interesting observation made above, attempt to find an under-
lying reason or explanation for the observation, grounded in the OWL
ontology language and established ODP usage or ontology engineering
methods.

In performing the above analysis, several interesting correlations were
discovered and studied, as shown in Section 6.3. In some cases, an explana-
tion for the correlations based on the structure of the OWL language and
the constructs within it could also be generated. Since these explanations
could be grounded in and motivated by the actual OWL language imple-
mentation, they were considered to be sufficiently motivated to warrant up-
dating the quality model accordingly. On the other hand, such explanations
for correlations that could only be motivated based on an understanding
of established practice in ontology engineering were not considered to be
sufficiently trustworthy for inclusion in the updated quality model.

The above approach in studying indicator variance can in part be con-
sidered a descriptive experiment in the Basili sense [103], i.e., an attempt to
isolate patterns in data through a structured process of evaluation, measure-
ment and analysis. However, since there is no specific treatment or compar-
ison against a control group established, this method does not wholly fulfil
the Basili experiment definition. For this to be the case, some task includ-
ing modification indicators within the ODP set would be required. This is
considered future work in order to further evaluate the ODP quality model.

7https://github.com/hammar/OntoStats

84

Chapter 5

Initial Quality Model

In order to answer the research questions put forth in Chapter 1, the author
has developed a quality model for Ontology Design Patterns. The overall
method by which this model was developed has been described in Section 4.2.
The following chapter describes the process and results in greater detail.

5.1 Quality Metamodel Development

Ontology Design Patterns are inspired by both traditional software engi-
neering design patterns and reusable software components. Like the former,
they can emphasise the logical solution to a type of problem, and express
this problem-solution mapping in text and diagrams. Like the latter, they
can, and often do, include implementation modules ready to plug in and
adapt. A general conceptualisation of ODP quality must cover both of
these aspects, allowing for both modelling of design pattern-style qualities
that are intangible or difficult to measure using purely quantitative metrics,
and of more traditionally quantifiable software component-style qualities.
Furthermore, since ODPs are used in the creation of IT artefacts, such a
conceptualisation needs also to allow for the modelling of the IT artefact
construction contexts in which the patterns are used.

The metamodel developed within this thesis project fulfils the above
requirements, and is believed to represent a suitable and relevant under-
standing of ODP quality in the general case. In it, a differentiation is made
between abstract quality characteristics like usability or performance (the
importance of which depend on the specifics of the ODP use case) and the
more concrete and measurable indicators which affect said characteristics,
for better or worse. This understanding is conceptually compatible with the
existing quality frameworks introduced in Chapter 3.

The developed metamodel is displayed in Figure 5.1. The topmost half
of Figure 5.1 displays the relation R(D,ODPU,OU) where D denotes a do-
main, ODPU denotes an ODP Use (ontology engineering, ontology matching,

85

Chapter 5. Initial Quality Model

Domain
(D)

ODP Use
(ODPU)

Ontology Use
(OU)

Indicator
Quality

Characteristic

R

Subquality of

Scale

Importance
level

Directionality

Recommenda
tion

Method

quality affected by

qu
al

ity
 h

as
 im

po
rt

an
ce

 in

Figure 5.1: Quality Metamodel

transformation, etc.), and OU denotes a use to which the result of the ODP
usage, e.g. an ontology, is put. This last concept can be exemplified in
the case that the deliverable is an ontology by competence modelling, event
scheduling, etc. or in the case that the deliverable is an alignment, by for
instance web service composition. An instantiation of this relation R cap-
tures a concrete usage example of ODPs. For each such instantiation of R
a number of quality characteristics affect the result. The term quality char-
acteristic is here used synonymously with the definition in the ISO 25010
standard [70] on software quality.

As an example, ease of use may be a quality characteristic which is ben-
eficial to the ODP usage situation R(zoology, ontology engineering, resource
supply estimations). Some quality characteristics are believed to be more
abstract and consist of compositions of other quality characteristics. For
instance, ease of use could be composed of documentation quality, format
compatibility, etc. Quality characteristics are affected (positively or nega-
tively) by indicators that are measurable using some metric. Indicators are
here used similarly to the concept quality property in ISO 25010, as concrete
properties of an IT artefact that affect some quality characteristic. For in-
stance, the quality characteristic documentation quality could be mapped to
depend on a number of indicators, one of which is has graphical illustration.

Indicators have scales of metrics, in accordance with the definitions es-
tablished by Stevens [122] on nominal, ordinal, interval, and ratio scales.
They also have recommendations that give guidance regarding what are rel-
evant values for indicators to assume, to the extent that such can be given,
and method definitions for how indicator measurements are to be sampled,

86

5.2. Quality Model Development

to the extent that it is not obvious from the indicator name itself.
The concepts used in the metamodel are defined as follows:

• Domain – A classification of the social or business environment or
area in which the developed artefact is to be deployed.

• ODP use – A classification of the use to which an ODP is to be put.

• Ontology use – A classification of the use to which the delivered
artefact generated by ODP usage is to be put.

• Importance level – The importance of a quality characteristic to a
particular ODP usage situation.

• Quality characteristic – Denotes a particular aspect of ODP quality.
Quality characteristics may be decomposed into sub-characteristics.
Quality characteristics represent concerns or perspectives on quality
on an abstract level. They are not themselves directly measurable
using some metric or method.

• Directionality – Denotes the effect that an interpreted “high” value
of an indicator has on a quality characteristic. Expressed as positive,
negative, or null (i.e., no or unknown value).

• Indicator – Individually measurable properties of an ODP that con-
tribute to some quality characteristic(s).

• Scale – The type of scale whereby an indicator is measured. One of
interval, nominal, ordinal, or ratio scales.

• Recommendation – A textual recommendation on what values for
an indicator that are relevant and beneficial to aim for in different
ontology engineering contexts. Is optional.

• Method – A description of how to perform measurements of an indi-
cator. Is optional.

5.2 Quality Model Development

As described in Section 4.2.2, the development of the initial ODP qual-
ity model consisted of adapting and reusing existing work on information
systems quality, conceptual model quality, ER model quality, and ontol-
ogy quality, as well as two smaller pre-studies. ISO 25010 [70] and Thörn
[69] provided quality characteristics for the ODP quality model, and several
other works provided indicators. The following sections describe each of the
development steps and how the reused research contributed to the initial
quality model in more detail. The resulting quality model is described in
Section 5.4.

87

Chapter 5. Initial Quality Model

5.2.1 ISO 25010 Adaptation

The majority of the quality characteristics of the ISO 25010 Product Qual-
ity Model [70], described in Section 3.1.4, (hereafter PQM) were suitable
for describing ODP quality as well, requiring only slight changes to quality
definitions to replace software- or information systems-specific terminology
or uses with ontology-specific equivalents. For instance the quality charac-
teristic functional completeness from ISO 25010 is defined as degree to which
the set of functions covers all the specified tasks and user objectives. The
same quality characteristic, if translated to an ontology engineering context,
would still be relevant, but the terms used in its definition would be differ-
ent: degree to which the ODP knowledge modelling ability meets expressed
requirements.

However, certain quality characteristics required more adaption to be
reused. One example of this is the characteristics related to performance
efficiency – since an Ontology Design Pattern is rarely, if ever, used on its
own, these quality characteristics had to be rephrased to refer to the perfor-
mance efficiency of the resulting ontologies created using patterns. Another
example is the quality characteristic compatibility and its corresponding sub-
characteristics, originally dealing with how well a system can co-exist with
other systems in terms of resource allocation and message passing. In an
ODP context, compatibility relates closer to interoperability in terms of
shared base concepts and lack of definition duplication, and the quality
characteristic definitions were revised accordingly.

Some quality characteristics were deemed too tightly coupled to the con-
cepts of software and systems, and inapplicable in an ODP context. Such
characteristics include:

• Functional correctness – In a software context it makes sense to speak
of functional correctness and functional completeness as disjoint qual-
ities - a system can perform only part of a specified task, but perform
that part correctly. However, in an ODP context, a pattern can be
considered correct only if it fulfils the requirements by which it is de-
fined. A pattern which completely covers its defined requirements and
models everything that it is required to model in the way that it is
required to be modelled expressed per those requirements, is by defini-
tion correct. By this understanding, discussing functional correctness
separately from functional completeness is unnecessary, making this
quality characteristic redundant.

• Security – This characteristic and its sub-characteristics deal with the
behaviour of a system in terms of authentication, authorisation, log-
ging, etc. As both ontologies and ODPs are inactive non-executable
components, such behaviour is not exhibited by them. Authentica-
tion, logging, auditing, etc. can be performed by software that is built
on and operates using an ontology or knowledge in which information
governing security behaviour is stored, but this does not imply that

88

5.2. Quality Model Development

the ontology exhibits any security characteristics in itself – rather, it
means that the ontology is designed to support usage in this domain,
which goes toward functional suitability.

• Reliability – As with the security characteristics, reliability and its sub-
characteristics deal primarily with executable behaviour at runtime –
how many hardware/software faults can the system sustain without
failing, to how large a degree is the system operational when required,
how well can the system recover from failure, etc. Again, ontologies
and ODPs being passive components do not exhibit system behaviour
and this characteristic is therefore not applicable to them.

• Capacity – While the other characteristics relating to performance ef-
ficiency can be rephrased to cover resulting ontologies as discussed
above, this sub-characteristic dealing with maximum capacity (exem-
plified in terms of number of users, communication bandwidth, and
transaction throughput) relates closer to executable programs, and
makes little sense in an ODP context.

Finally, the three ISO 25010 [70] PQM quality characteristics maintain-
ability, portability, and compatibility display a certain overlap when trans-
lated to apply to ODPs. This is likely due to the intended usage of these
artefacts. The software systems that the ISO standard supports are normally
deployable on their own, and thus it makes sense to differentiate between
qualities pertaining to where and how they can be deployed (portability),
how well they integrate with other systems (compatibility), and how they
can be reused in construction of other systems (maintainability). However,
ODPs are from the beginning intended to be standards-compliant (in the
sense that they adhere to the RDF/RDFS/OWL standards, not necessar-
ily to some specific conceptualisation) modules that are used and reused
together in constructing ontologies. Consequently, portability and compat-
ibility are difficult to untangle for ODPs - a pattern that is conceptually
compatible with other patterns is also portable in the sense expressed in
the ISO standard, i.e., that it can be transferred between different usage
environments. Patterns which are easy to adapt and replace are not only
portable, but also support maintainability.

In studying the definitions of these qualities present in the ISO standard,
it was decided that the ones sorting under the top-level quality compatibil-
ity were most applicable to ODPs, and that the portability qualities from
the standard were either inapplicable to ODPs or, in this context, could
be seen as specialisations of other existing qualities (adaptability of modi-
fiability, installability of operability, and replaceability of interoperability).
Consequently, portability and associated sub qualities were removed from
the model. Since in an ODP context improved pattern reusability does not
necessarily contribute to the maintainability of a pattern or a pattern-based
ontology, but does imply that the pattern can be reused and integrated

89

Chapter 5. Initial Quality Model

Table 5.1: ODP Quality Model after ISO 25010 adaptation

Quality characteristic Subcharacteristic
Functional suitability

Functional completeness
Functional appropriateness

Performance efficiency
Time behaviour
Resource utilisation

Compatibility
Co-existence
Interoperatbility
Reusability

Usability
Appropriateness recognisability
Learnability
Operability
User error protection
User interface aesthetics
Accessibility

Maintainability
Modularity
Analysability
Modifiability
Testability

Table 5.2: Mapping of Thörn quality characteristics to ISO 25010

Thörn ISO 25010
Usability Usability
Reusability Compatibility

Performance efficiency
Correctness / Formalness Functional suitability
Changeability Maintainability
Mobility Portability

Security
Reliability

more with other ontologies (i.e., is more compatible with other ontologies)
the sub-quality reusability was moved from being a sub-quality of maintain-
ability to being a sub-quality of compatibility. The resulting initial quality
model based on ISO 25010 is displayed in Table 5.1.

5.2.2 Thörn’s Qualities

Thörn’s model [69] includes six quality characteristics; changeability, reus-
ability, formalness, mobility, correctness, and usability. The majority of
these quality characteristics are easily translatable to match the top-level
quality characteristics in the ISO 25010 standard as illustrated in Table 5.2.

While the Thörn quality model does not include lower level quality char-
acteristics, the preliminary first iteration of that model also presented in [69]
does define and argue for the existence of a set of such more specific char-
acteristics. These lower level characteristics also match the characteristics
already present in the ODP quality model based on the ISO 25010 standard
to a large degree, as evidenced by Table 5.3. However, some attributes pro-

90

5.2. Quality Model Development

posed by Thörn do not have suitable matches in the initial ISO 25010-based
ODP quality model. Of these attributes a subset deal with issues that make
them strong candidates for adaptation and inclusion in the ODP quality
model, as suggested below:

• Accuracy –Degree to which the pattern represents the domain being
modelled. While a pattern may be functionally complete and correct
simply by fulfilling its design criteria (no matter what those criteria
are), accuracy is here intended to reflect how consistent the pattern
is with regards to generally accepted understanding of the domain in
question. In other words: is the pattern design criteria reasonable in
the real world?

• Consistency – The characteristic that determines absence of contra-
dictions in the ODP. A pattern which holds or suggests conflicting
axioms is obviously going to be difficult to apply in a real world case
including any reasoning requirements, but it could still be useful for
simple vocabulary tasks.

• Stability – Denotes perceived change expectation. A stable ODP is
developed with the intention of covering the foreseeable evolution of
the modelled concepts with relatively few changes to the pattern.

These characteristics and their definitions were added to the ODP quality
model, resulting in the updated set of quality characteristics displayed in
Table 5.4.

5.2.3 Reuse of ER Model Quality Research

Several methods of evaluating ER models are introduced in Section 3.1.3.
Some of these metrics and methods are strong contenders for inclusion in
an ODP quality model also.

In [76] Genero et al. study the learnability and modifiability effects of
a number of metrics on ER models. While the specific metrics studied in
this experiment are to a large degree specific to ER models (including for
example metrics like number of N:N-relationships or number of composite
attributes), the method in which the understandability and modifiability of
models is gauged via measuring the time taken to respond to an under-
standability questionnaire, and the time needed to update said models, are
easily transferrable to an ODP context. Consequently, understandability
and modifiability time measures are included in the ODP quality model, as
indicators for the corresponding sub-characteristics.

In [119], the same authors study and summarise existing data model
quality metrics. Upon reading this summary it is apparent that a great
deal of the existing work on data model metrics is specific to ER models.
However, some of the measures mentioned and proposed can be translated
into indicators applicable to ontology and Ontology Design Pattern qualities

91

Chapter 5. Initial Quality Model

Table 5.3: Thörn initial quality model mapping to ODP quality character-
istics

Thörn quality model ODP quality model
quality attribute quality subcharacteristic
Acceptability Appropriateness recognisability
Accessibility Accessibility
Accuracy
Adaptability Modifiability
Analysability Analysability
Communicativeness User interface aesthetics
Completeness Functional completeness
Complexity
Conformance Interoperability
Consistency
Extensibility Reusabilitiy
Installability
Interoperability Interoperability
Learnability Learnability
Modularity Modularity
Portability
Redundancy
Reliability
Robustness User error protection
Self-containedness Co-existence
Structuredness
Testability Testability
Understandability Learnability
Visibility

Table 5.4: ODP Quality Model after reusing Thörn [69]

Quality characteristic Subcharacteristic
Functional suitability

Functional completeness
Functional appropriateness
Accuracy
Consistency

Performance efficiency
Time behaviour
Resource utilisation

Compatibility
Co-existence
Interoperatbility
Reusability

Usability
Appropriateness recognisability
Learnability
Operability
User error protection
User interface aesthetics
Accessibility

Maintainability
Modularity
Analysability
Modifiability
Testability
Stability

92

5.2. Quality Model Development

also. These translated indicators deal primarily with the size or complexity
and includes the number of nary relations and the number of redundant
axioms, both of which are believed to affect the usability and performance
characteristics of an ODP and are therefore included in the quality model.

Both Moody and Shanks [77] and Lindland et al. [78] focus on the
importance of reducing unnecessary content (that is, such content which is
not requires for the model to be functional) in conceptual models. By this
understanding, redundant axioms are not only axioms which can be inferred
from the rest of the model (as the more technical perspective on the issue
presented in [119] might suggest), but also axioms which are not required
by ODP design criteria or competency questions. This type of minimalism
with regards to competency questions was also added to the model as an
indicator.

Moody and Shanks [77] also suggest evaluation of ER model understand-
ability via user ratings, and recommend that three user categories be con-
sidered in such rating. These three categories have been mapped to ODP
usage categories (knowledge engineers, system operator/configurator, and
end-user/input clerk) and are added as indicators contributing to the us-
ability quality sub-characteristics.

5.2.4 Reuse of Established Ontology Quality Research

As has been covered in Section 3.2, a great deal of research has already been
developed on formalising the quality of ontologies. Obviously, a lot of this
work is applicable to Ontology Design Patterns. Rather few publications
deal with qualities and quality characteristic in the senses described and
defined in the previous sections, so the contributions of existing work to this
portion of the quality model is limited. However, much work deals with
concrete and measurable qualities mapping well to the indicator definition
given in Section 5.1.

The combination of O2 and oQual by Gangemi et al. [88, 89] presented in
Section 3.2.1 provides for a very comprehensive ontology evaluation and se-
lection method. Unfortunately the method is also very complex and requires
a high degree of familiarity with description logic, knowledge modelling, and
semiotics to learn and use, skills which the intended users of Ontology Design
Patterns are rather unlikely to possess. For this reason, while the entirety
of the method has been studied, only the presented measures have been
studied and in some cases selected for reuse.

The set of quantitative indicators from [89] measuring structural dimen-
sions of ontology graphs are interesting and potentially useful. Some of the
indicators here are likely unsuitable for use with ODPs, as they measure the
presence of features that are unlikely to occur in small ontology modules
such as ODPs (example indicators include subsumption fan-outness, den-
sity, degree distribution, etc). Other indicators measure features that are
unlikely to occur frequently in an ontology module which is intended to be

93

Chapter 5. Initial Quality Model

used as a design pattern (for instance, indicators that concern the usage of
instances). However, after filtering out a number of indicators from [89] con-
sidered to be unsuitable for ODPs, several indicators remain that are likely
directly applicable to ODP evaluation also, and which were therefore added
to the model. Listed by the quality characteristic that they are believed to
affect (based on expected effects on quality as defined in [89]), those are1:

• Usability – subsumption hierarchy depth, subsumption hierarchy
breadth, tangledness, anonymous classes, class to property ratio, an-
notation ratio

• Analysability – size, axiom/class ratio

• Resulting performance efficiency – disjointness ratio

• Compatibility – tangledness, annotation ratio

The importance of good amount of integrated pattern documentation in
the form of pattern comment lines (roughly translatable to a high annota-
tion ratio) on usability is also expressed by Prechelt et al. [84], as described
in Section 3.1.5. Prechelt et al. also report an experiment showing that
this measure has an effect on the maintainability of produced solutions.
Accordingly, the effects of annotation ratio on both the above quality char-
acteristics, and maintainability, where added to the ODP quality model.

Some of the measures of functionality presented by Gangemi et al. [89]
are also interesting and potentially useful, particularly the precision and
recall measures (borrowing from established Information Retrieval theory).
Unfortunately however, as formalised and expressed in [89], these measures
depend on calculating the precision and recall in terms of correct concep-
tualisations of the world or domain of discourse vis-à-vis all possible inter-
pretations of an ontology. While this may be a formally and philosophically
correct model, it is unfortunately quite impossible to apply, for which reason
these measures are not reused here. The usability measures from the same
work are likewise interesting, but difficult to concretise and apply, for which
reason they are also excluded.

The findings on performance related indicators associated with the use
of certain types of design patterns by Lefort et al. in [100] discussed in
Section 3.2.4 are natural candidates for inclusion in an ODP quality model.
Those indicators (the number of terminological cycles present, and the com-
plexity of the description logic language used) were added to the initial
quality model indicators affecting resulting performance efficiency.

The author has in a previous work [118] studied the benefits and negative
effects of aligning an existing ontology for modelling academic competencies
and achievements to both well-established Semantic Web ontologies, and
Ontology Design Patterns. Experiences from this project indicate that the

1For full definitions of the referenced quality characteristics and indicators, see Sec-
tion 5.4.

94

5.3. Empirical Pre-studies

number of import statements (i.e., references to other ontologies, the logic
statements of which are considered to be part of the importing ontology)
in an ontology or Ontology Design Pattern can be an indicator for how
easily adaptable and compatible this ontology or ODP is. Since the OWL
language lacks features for partial import, and since imports are transitive,
the total import closure of even a relatively small pattern or ontology can
be very significant. Because of this, an ontology or ODP that imports many
other ontologies will likely take significant resources to classify using a DL
reasoner. Furthermore, due to tooling limitations in managing the display of
imported concepts, such an ontology is difficult to visualise and work with.
Consequently, the effects of import count on usability and computational
performance were added to the quality model.

As mentioned in Section 3.2.3, the OntoClean [93] methodology is an
established method for ontology evaluation. While applying OntoClean to
larger ontologies is a possibly very time-consuming process, for Ontology
Design Patterns (which are in one sense small scale ontologies) this ought
not be as big a problem. OntoClean validation would likely be a suitable
indicator for pattern accuracy, and this indicator was therefore added to the
quality model.

A master thesis by Lodhi and Ahmed [101] , introduced in Section 3.2.5
finds that certain fields in ODP documentation are considered to be of more
importance than others in supporting the learnability of the patterns. The
author’s intuition is that if this is the case, then possibly those relatively
unimportant fields (of which there are quite a few) are a distraction for
ODP users, making it difficult for them to quickly understand the ODP
when first exposed to it. Consequently, the indicator Documentation min-
imalism is defined as a limitation on the data fields displayed in the ODP
documentation in accordance with the fields found to be most important by
Lodhi and Ahmed [101].

It should be noted that while the results of Lefort et al. [100], Lodhi
and Ahmed [101], and the author’s own work [118] mentioned above are
grounded in some empirical findings, the papers by Guarino and Welty [93]
and Gangemi et al. [89] lack empirical evaluation of the proposed methods
and metrics. Such an evaluation would need to be performed to validate
whether these indicators are indeed associated with the quality characteris-
tics as asserted here.

5.3 Empirical Pre-studies

In parallel with the development of the quality model described above, two
small studies on using Ontology Design Patterns were performed and eval-
uated, providing input to the development process. The results of those
studies and their effects on the developed quality model are presented be-
low.

95

Chapter 5. Initial Quality Model

5.3.1 ODP Documentation Structure Interviews

As introduced in Section 4.2.2, this pre-study consisted of interviews with
a master student performing a master thesis project using ontologies and
Ontology Design Patterns in the healthcare domain. The student had been
provided with two such patterns and references to several more, and the
interview was performed to gauge his understanding and opinion of these
patterns.

The interviewed student was at the time on the final year of his two
year master program. He had previously obtained a bachelor in software
engineering and computer science in his home country, before migrating
to Sweden to pursue a master’s degree there. Apart from his academic
background, he had some experience of software engineering in industry,
having worked with GIS technology and databases for the armed forces
in his home country, and with web development and programming in the
private sector. He had, prior to enrolling in the master program at Jönköping
University never used semantic technologies or ontologies (the program does
however contain courses giving overviews of these technologies). He had also
not to his knowledge previously used OOP design patterns.

During the interviews, it became apparent that of the provided patterns,
all had been studied, but relatively few were deemed relevant to the problem
at hand. The ones that were seen as relevant were however very much ap-
preciated and believed to be very helpful in designing an ontology. The key
selection criterion employed by the students was the immediately perceived
fitness for purpose, i.e., whether the pattern could be seen to match the per-
ceived problem more or less directly. The provided competency questions
were not mentioned by the student as a criterion in selecting a pattern for
use, nor was the use of a pattern as a best practice recommendation for how
to frame and understand the problem considered. Instead, patterns (when
applicable) were used simply as a shortcut for implementing a solution com-
patible with how a problem was already understood. In this pattern usage
case, understandability and learnability were the most important qualities.

The interviewed student strongly preferred task-oriented documentation
in performing software and ontology engineering tasks, preferably with clear
and pedagogic examples included, as opposed to typical API documentation
formats or long and extensive white papers on whole technology stacks. He
emphasised this preference also regarding patterns. He also suggested that
more than one usage example and corresponding context be included in
pattern documentation, with reference to how such pattern usages often are
case dependent and how an understanding of several types of application
scenarios would be beneficial.

In terms of the structure of the pattern documentation, the availability
of graphic illustrations was also heavily emphasised. The student expressed
a preference for himself doodling architecture diagrams when developing
software, to help structure and understand problems, and found the same
type of conceptual diagrams very helpful in understanding patterns and the

96

5.3. Empirical Pre-studies

proposed solutions to problems they address. He recommended that both
the pattern structure itself and one or more examples of pattern application
should be presented graphically. However, the graphic illustrations need
also to be backed by descriptive texts referencing their content (both in the
case of illustrations describing pattern structure and pattern usages), rather
than be entirely disconnected artefacts.

5.3.2 ODP Usage Experiment and Survey

This second pre-study took place in an Information Logistics course at
Jönköping University, where a group of students were tasked with build-
ing an ontology using patterns, and then filled out a survey regarding that
pattern usage experience.

The 29 students who attended the session were given a background ques-
tionnaire to gauge their existing knowledge and understanding of conceptual
modelling, ontology engineering and Ontology Design Patterns. The major-
ity reported having some prior experience with RDF (55 %) and OWL (90
%), primarily from previous courses. Only around 10 % had ever used On-
tology Design Patterns for creating such ontologies however. Academically
all respondents reported having bachelor’s degrees or higher in Computer
Science or related areas.

Judging from the results of this survey and from the ontologies handed
in by the students, the usefulness of Ontology Design Patterns was appar-
ent. Out of 27 respondents, 24 responded that at least one of the provided
patterns was helpful in solving the prescribed task. Most groups used one
or two patterns, with the average number used at approximately 1.5. While
the initial idea was to get an understanding of user preferences with regards
to the abstraction level and size of patterns, the followup survey and handed
in solutions provided too little indication to say anything of consequence re-
garding such qualities or measures. There was a slightly higher number of
patterns used that the author classified as specific patterns than those clas-
sified as general patterns, but not enough to call it a significant difference.
The same was true for the survey, which indicated a slight preference for
larger and more concrete patterns, but not enough to be significant.

In terms of the pattern usage process, approximately 60 % of the students
reported having studied the accompanying OWL files to get an understand-
ing of how to apply the patterns, whereas the remaining approximately 40
% did not look at the OWL file. Supporting such a usage method requires
that the textual descriptions and graphical illustrations of the pattern be
sufficient, so that the pattern can be understood on the basis of them. When
asked to grade the understandability of the patterns that did not come with
an accompanying description, 35 % of respondents reported poor or no un-
derstanding of those patterns.

For those patterns that did have accompanying descriptions, the major-
ity of students responded that the competency questions and the graphical

97

Chapter 5. Initial Quality Model

illustrations were the most important in understanding how to use and ap-
ply the patterns. The former is in line with general consensus in the ODP
research community, but the importance of the latter has in the author’s
opinion not been as emphasised. When asked to suggest improvements to
the patterns used, the most common recommendation from the participant
students was to add example scenarios. This is in line with the findings re-
ported in the Section 5.3.1 emphasising the importance of more and better
described example usages in pattern documentation.

Finally, a somewhat unexpected result of the followup survey was the
clearly expressed preference among the participants (82 % of respondents)
for object properties encoded in patterns to be restricted by having defined
domains and ranges, as opposed to not having such domains and ranges
defined. In comments given in a free form text field accompanying this
question, respondents indicate that they think this makes the pattern OWL
files a lot easier to learn and understand. The author shares this opinion,
but would also add a plausible negative side-effect of such restrictions: it is
likely to lead to a lower reusability of patterns, if the properties are confined
to work on and with instances of classes defined within the pattern itself.

5.4 The Developed Initial Quality Model

The initial Ontology Design Pattern quality model developed is presented
in the following sections. It is not exhaustive or complete – there are some
blank spots, particularly in regard to concrete measurement methods for
indicators, recommendations for reasonable values, and the directionality of
indicator effects. Parts of the model are evaluated in Chapter 6, and certain
of these blank spots filled, but a complete evaluation of the whole model
remains to be done in a future PhD thesis.

5.4.1 Quality Characteristics

As defined in the quality metamodel in Section 5.1, quality characteristics
represent aspects of ODP quality that affect different ODP usage situa-
tions. They are not directly measurable, but are indicated through mea-
surable indicators. The quality characteristics of the model are presented
below, grouped by the top-level quality characteristics to which the lower-
level quality characteristics contribute. Each quality characteristic is given
with an accompanying definition.

Functional Suitability

Degree to which an ODP meets stated or implied needs.

• Functional completeness – Degree to which the ODP meets expressed
knowledge modelling requirements (i.e., competency questions and
other design requirements).

98

5.4. The Developed Initial Quality Model

• Functional appropriateness – Degree to which the ODP facilitates sim-
ple storage and retrieval of knowledge formalised according to its defi-
nitions (e.g., does the ODP require simple or complex SPARQL queries
to retrieve knowledge).

• Consistency – Degree to which the ODP is internally logically consis-
tent.

• Accuracy – Degree to which the ODP accurately represents the real
world domain being modelled (e.g., whether it adheres to established
industry standards and protocols, or legislation).

Resulting performance efficiency

Reasoner or system performance efficiency over ontologies created using the
pattern.

• Time behaviour efficiency – Response or processing times when rea-
soning over or using resulting ontologies in a system.

• Resource utilisation efficiency – Amounts and types of system re-
sources used when reasoning over or using resulting ontologies in a
system.

Usability

Degree to which an ODP can be used by specified users to achieve specified
goals with effectiveness, efficiency, and satisfaction.

• Appropriateness recognisability – Degree to which users can recognise
whether an ODP is appropriate for their needs.

• Learnability – Degree to which an ODP’s structure, and intended usage
can be understood by users new to it, such that they can thereafter
apply the ODP successfully and efficiently.

• Operability – Degree to which an ODP has attributes that make it
easy to apply and use.

• User error protection – Degree to which an ODP prevents users from
making modelling errors.

• User interface aesthetics – Degree to which the ODP’s documentation
(text, graphics, etc.) is pleasing for the user.

• Accessibility – Degree to which the ODP’s documentation can be used
by people with the widest range of characteristics and capabilities.

99

Chapter 5. Initial Quality Model

Maintainability

Degree of effectiveness and efficiency with which an ODP (and consequently,
ontologies built using that ODP) can be adapted and modified by maintain-
ers after deployment in some usage scenario.

• Modularity – Degree to which the ODP is composed of discrete com-
ponents such that a change to one component has minimal impact on
other components.

• Analysability – Degree of effectiveness and efficiency with which it is
possible to assess the impact on an ODP of an intended change to one
or more of its parts, or to diagnose an ODP for deficiencies or causes
of failures, or to identify parts to be modified.

• Modifiability – Degree to which an ODP can be effectively and effi-
ciently modified without introducing defects or degrading ODP qual-
ity.

• Testability – Degree of effectiveness and efficiency with which test
criteria can be established for an ODP and tests can be performed to
determine whether those criteria have been met.

• Stability – Perceived change expectation on the ODP - high stability
denotes a low degree of change is expected, and vice versa.

Compatibility

Degree to which an ODP can successfully be reused and integrated with
other ODPs or IT artefacts in the construction of ontologies or systems.

• Reusability – Degree to which an ODP can be used in more than one
system, or in building other assets.

• Co-existence – Degree to which an ODP can coexist with other ODPs
as modules in an ontology, i.e., without detrimental impact on other
ODP modules.

• Interoperability – Degree to which two or more ODPs share definitions
of co-occurring concepts.

5.4.2 Indicators and Effects

Table 5.5 lists the indicators contributing to the aforementioned quality
characteristics, along with research article(s) from which each indicator was
sourced, or, in a few cases, the section in this thesis describing the pre-study
in which it was developed or observed. Additionally, a more exhaustive list-
ing of the same indicators is provided, including indicator measurement

100

5.4. The Developed Initial Quality Model

methods, scales of measure compliant with said methods, and indicator ef-
fects on quality characteristics. The latter are also for the majority of effects
associated with a directionality, expressed as positive or negative. Direction-
ality is interpreted such that a higher value for the indicator is associated
with a increase in the affected quality characteristic if the directionality is
positive, and a decrease in the affected quality characteristic if the direc-
tionality is negative. Indicators that are expressed as boolean values should
when ascertaining effects on quality characteristic in this manner be under-
stood as representing either zero (false) or one (true).

Table 5.5: Initial model indicator summary.

Nr Name Source(s)
I-1 Accompanying text description Section 5.3.2
I-2 Annotation ratio [84], [88], [89]
I-3 Anonymous class count [88], [89]
I-4 Axiom/class ratio [88], [89]
I-5 Class disjointness ratio [88], [89]
I-6 Class to property ratio [88], [89]
I-7 Competency question count Sections 5.3.1 and 5.3.2
I-8 Direct import count [118]
I-9 DL Complexity [100]
I-10 Documentation Minimalism [101]
I-11 Example text count Sections 5.3.1 and 5.3.2
I-12 Example illustration count Sections 5.3.1 and 5.3.2
I-13 Functionality questionnaire time [76]
I-14 Minimalism [77], [78]
I-15 Modification task time [76]
I-16 Nary relation count [119]
I-17 OntoClean adherence [93]
I-18 Property domain restrictions Section 5.3.2
I-19 Property range restrictions Section 5.3.2
I-20 Redundant axiom count [119]
I-21 Size [88], [89]
I-22 Structure illustration Sections 5.3.1 and 5.3.2
I-23 Subsumption hierarchy breadth [88], [89]
I-24 Subsumption hierarchy depth [88], [89]
I-25 Tangledness [88], [89]
I-26 Terminological cycle count [100]
I-27 Transitive import count [118]
I-28 User evaluation ranking [77]

I-1 Accompanying text description

Method: Check that the ODP OWL file is associated with a textual de-
scription document or webpage.
Scale: Nominal (boolean)
Affects characteristics: Usability (positively)

I-2 Annotation ratio

Method: Divide the cardinality of the set of OWL annotation property
usages in the associated OWL file with the cardinality of the union of all
class, property, and instance nodes.

101

Chapter 5. Initial Quality Model

Scale: Ratio
Affects characteristics: Usability (positively), Compatibility (positively),
Maintainability (positively)

I-3 Anonymous class count

Method: Count the cardinality of the set of anonymous classes in the
associated OWL file.
Scale: Ratio
Affects characteristics: Usability (negatively)

I-4 Axiom/class ratio

Method: Divide the number of axioms in the associated OWL file by the
number of named classes.
Scale: Ratio
Affects characteristics: Analysability (positively)

I-5 Class disjointness ratio

Method: Take the ratio of the number of disjointness axioms in the ODP
to the possible number of disjointness axioms given the number of classes
(if C is the set of classes in the ODP, the latter is given by (|C| − 1)!). Add
to this the ratio of all classes involved in a disjointUnion axiom to the total
number of classes in the ODP.
Scale: Ratio
Affects characteristics: Resulting performance efficiency (positively)

I-6 Class to property ratio

Method: Divide the cardinality of the set of named classes in the associated
OWL file by the cardinality of the set of properties.
Scale: Ratio
Affects characteristics: Usability (positively)

I-7 Competency question count

Method: Divide the number of competency questions expressed in the
pattern documentation by the size (I-21) of the ODP.
Scale: Ratio
Affects characteristics: Learnability (positively)

I-8 Direct import count

Method: Count the owl:imports statements in the associated OWL file.
Scale: Ratio

102

5.4. The Developed Initial Quality Model

Affects characteristics: Usability (negatively), Resulting performance ef-
ficiency (negatively), Reusability (negatively)

I-9 DL Complexity

Method: Ascertain the DL complexity of the axioms included in the on-
tology, e.g., by checking using the DL metrics tab in the Protégé tool.
Scale: Ordinal
Affects characteristics: Resulting performance efficiency (negatively)

I-10 Documentation minimalism

Method: Assert that the ODP documentation contains only the minimum
documentation fields required to enable use of the ODP (e.g., graphical
representation, examples, pattern intent, OWL building block link, OWL
example file, competency questions, common pitfalls, and consequences of
use).
Scale: Nominal (boolean)
Affects characteristic: Learnability (positively)

I-11 Example text count

Method: Count the number of written examples of ODP usage in the
associated description.
Scale: Ratio
Affects characteristics: Appropriateness recognisability (positively),
Learnability (positively)

I-12 Example illustration count

Method: Count the number of illustrations of example ODP usage in the
associated description.
Scale: Ratio
Affects characteristics: Learnability (positively)

I-13 Functionality questionnaire time

Method: Apply a questionnaire on ODP functionality and usage, and have
a set of representative users answer this questionnaire, measuring the time
required for them to do so. In the case that the same participants take mul-
tiple surveys for different ODPs, ensure sufficient randomisation in survey
ordering to avoid learning effects affecting the results.
Scale: Ratio
Affects characteristics: Learnability (negatively)

103

Chapter 5. Initial Quality Model

I-14 Minimalism

Method: Compare ODP axioms against its competency questions and
other design restrictions, ensuring that no extraneous axioms, not required
by design requirements, exist.
Scale: Nominal (boolean)
Affects characteristics: Learnability (positively), Operability (positively),
Compatibility (positively)

I-15 Modification task time

Method: Define a set of modification tasks for an ODP, and have a set
of representative users perform these tasks. Measure the time required to
perform said modifications. In the case that the same participants perform
multiple modification tasks for different ODPs, ensure sufficient randomisa-
tion in ODP ordering to avoid learning effects affecting the results.
Scale: Ratio
Affects characteristics: Modifiability (negatively)

I-16 Nary relation count

Method: Count the number of classes defined in the ODP associated OWL
file that exist solely to mitigate the OWL binary property limitation, i.e.,
classes that would not be naturally expressed as their own nouns in natural
language as expressed by representative domain-knowledgeable users.
Scale: Ratio
Affects characteristics: Resulting performance efficiency (negatively),
Usability (directionality unknown)

I-17 OntoClean adherence

Method: Employ the OntoClean method to tag the ODP classes and prop-
erties with OntoClean metaproperties. Assert that the taxonomic struc-
ture of the ODP is compliant with the constraints imposed by the applied
metaproperties.
Scale: Nominal (boolean)
Affects characteristics: Functional suitability (positively)

I-18 Property domain restrictions

Method: Divide the cardinality of the set of properties that have defined
domain restrictions with the cardinality of the set of all properties in the
ODP.
Scale: Ratio
Affects characteristics: Learnability (positively), Reusability (negatively)

104

5.4. The Developed Initial Quality Model

I-19 Property range restrictions

Method: Divide the cardinality of the set of properties that have defined
range restrictions with the cardinality of the set of all properties in the ODP.
Scale: Ratio
Affects characteristics: Learnability (positively), Reusability (negatively)

I-20 Redundant axiom count

Method: Calculate the number of asserted axioms that can be removed
from the ODP OWL file without affecting the inferred model.
Scale: Ratio
Affects characteristics: Resulting performance efficiency (negatively),
Usability (directionality unknown)

I-21 Size

Method: Add the cardinality of the set of OWL classes to the cardinality
of the set of OWL properties in the ODP.
Scale: Ratio
Affects characteristics: Learnability (negatively), Analysability (nega-
tively)

I-22 Structure illustration

Method: Assert that the ODP documentation includes at least one illus-
tration of the classes and properties proposed by the pattern and how they
relate.
Scale: Nominal (boolean)
Affects characteristics: Learnability (positively)

I-23 Subsumption hierarchy breadth

Method: Define a level as the set of all classes in an ODP that have the
same number of hops via asserted subclass links to the top-level concept
owl:Thing. Define the breadth of a level as the cardinality of that level.
The average breadth of the ODP is then the sum of all breadths in an ODP
divided by the cardinality of the set of levels.
Scale: Ratio
Affects characteristics: Usability (directionality unknown)

I-24 Subsumption hierarchy depth

Method: Define an ancestor path as a path through the asserted subsump-
tion hierarchy linking a leaf node concept to the top-level concept owl:Thing
. Define the depth of an ancestor path as the cardinality of that path. The
average depth of the ODP is then the sum of all depths in the ODP divided

105

Chapter 5. Initial Quality Model

by the cardinality of the set of ancestor paths.
Scale: Ratio
Affects characteristics: Usability (directionality unknown)

I-25 Tangledness

Method: Divide the cardinality of the set of named classes which are as-
serted to have more than one named superclass by the cardinality of the set
of all classes in the ODP.
Scale: Ratio
Affects characteristics: Usability (negatively), Compatibility (negatively)

I-26 Terminological cycle count

Method: Execute a DL reasoner over the ODP. Then calculate the number
of occurrences of terminological cycles that occurs in it, i.e., concepts that
occur on both sides of a DL equivalency definition and are therefore wholly
or partially defined in terms of themselves.
Scale: Ratio
Affects characteristics: Resulting performance efficiency (negatively)

I-27 Transitive import count

Method: Calculate the cardinality of the set of OWL files found through
a recursive search over the import hierarchy of the original reusable OWL
building block associated with the ODP.
Scale: Ratio
Affects characteristics: Usability (negatively), Resulting performance ef-
ficiency (negatively) , Reusability (negatively)

I-28 User evaluation ranking

Method: Develop a survey on the usability of an ODP, expressing quan-
tifiable rating-style questions on for instance the understandability of the
pattern documentation components, the suitability of the pattern naming,
and the aesthetics of the pattern documentation. Define each question met-
ric clearly enough that ambiguity and interpretation can be minimised. Let
ODP users of different categories (knowledge engineers, system developers,
data input clerks) answer the survey. Pay particular notice to results from
your intended ODP usage group (which may depend on context, but often
is the knowledge engineers). In the case that fewer people are available to
reply, consider employing delphi techniques [123] to arrive to one joint eval-
uation as opposed to several individual ones.
Scale: Interval
Affects characteristics: Usability (positively)

106

Chapter 6

Quality Model Evaluations

The quality model presented in the previous chapter is an initial but well-
founded theory on how one may understand and structure the quality of
Ontology Design Patterns. As any theory, it must be tested and validated,
to ensure that it is in actual fact consistent, relevant and useful. The fol-
lowing chapter presents the work that the author has undertaken in testing
different aspects of said model, updating it when so required. These tests
are by no means exhaustive, and more work definitely remains to be done if
one is to be able to say that the proposed ODP quality model has been truly
and completely vetted. However, as we shall see, preliminary results indi-
cate that quite a few of the suggested quality characteristics and indicators
are useful in selecting and applying Ontology Design Patterns for ontology
engineering cases.

6.1 The Knowledge Fusion Case Study

This section presents a case study of content pattern usage in configuration
of an event processing system. The focus of this case study has primarily
been on usability and compatibility related aspects of Ontology Design Pat-
tern quality. A number of the hypothesised qualities and indicators were
found to be relevant and helpful for the involved practitioners, but a num-
ber of possible new indicators were also seen. The case study setup and
method issues associated with it are discussed in Section 4.2.3. The study
has previously been published in [124].

6.1.1 Case Characterisation1

The project framing this case study was a small spinoff project from a larger
project on threat detection using sensor systems where the partner research

1For reasons of integrity and confidentiality, the case description and published data
has been anonymised.

107

Chapter 6. Quality Model Evaluations

institute (hereafter denoted RI) was involved. The work at RI focused on
development of a rule-based complex event processing subsystem intended to
help isolate and correlate critical situations and threats based on incoming
data, to support human operators in decision making and response force
deployment guidance.

Within the spinoff project that the case study covered, the aim was to
develop the same functionality as the one in the Knowledge Fusion subsys-
tem, but using Semantic Web-based technologies like ontologies and descrip-
tion logic reasoners. The motivation for this project from RI’s perspective
was twofold: they wanted to see if they could achieve higher flexibility of
knowledge modelling and reasoning by using description logic languages as
opposed to the more low-level pre-compiled rules used in the existing sys-
tem. They also believed that using ODPs as preconfigured modules of func-
tionality to plug in and out of the system could support reconfigurability,
particularly by non-expert users.

Workshop tasks

Data collection was performed at a two-day workshop, at which the case
participants from RI developed configurations for the ODP-based variant of
the complex event processing system. Two scenario descriptions developed
within the project were used to describe system deployment contexts2. The
participants then attempted to model some typical relevant critical situa-
tions associated with each of these scenarios. Two examples of such critical
situations are listed below:

• A gang is four or more people who have been seen together via at least
three cameras over at least fifteen minutes and who are all wearing the
same colour clothing. A critical situation occurs when a gang of five or
more football fans are loud and have within the last hour been spotted
by a camera at a bar.

• Two vehicles are the same if they have the same license plate number
or have the same brand, model and colour and are observed by two
cameras located at the same physical place within five seconds. A
vehicle is behaving oddly if observed driving less than 15 km/h in
three different cameras.

To their aid, the participants had a set of twenty Ontology Design Pat-
terns, of which fourteen were selected from the ODP community portal, and
six were selected from other research projects (Table 6.1). They were not
provided with any training in pattern use, and were not recommended any
particular development method, on the basis that providing such recommen-
dations or training would restrict the participants’ behaviour and interaction
with the patterns and the possibility of learning from their work.

2Downloadable from http://purl.karlhammar.com/data/phl/odpcep/

108

6.1. The Knowledge Fusion Case Study

Table 6.1: ODPs provided for case study participants

ODP name Source3

Access Rights Section 5.3 pre-studies
Accountability Adapted from [120]
Action ODP Portal
Action Distance Section 5.3 pre-studies
Agent Role ODP Portal
Authorised Position Section 5.3 pre-studies
Basic Plan ODP Portal
Communication Event ODP Portal
Description and situation ODP Portal
Nary Participation ODP Portal
Observation ODP Portal
Part Of ODP Portal
Participant Role ODP Portal
Participation ODP Portal
Path Section 5.3 pre-studies
Place ODP Portal
Route Section 5.3 pre-studies
Time Indexed Participation ODP Portal
Time Indexed Situation ODP Portal
Time Interval ODP Portal

Participants

Three participants attended the modelling workshops, participants A, B,
and C. They were all male, and were at the time of the study all in the age
bracket from 35 to 55 years. All three were researchers (two PhDs, one MSc)
in software engineering or conceptual and data modelling within RI, and all
three had some experience in such modelling. B and C had little or no prior
knowledge of Semantic Web ontologies and semantic technologies, whereas A
had worked on these topics quite extensively, among other things researching
rule languages for reasoning over Semantic Web ontologies. Their respective
specialities were as follows:

• A had published on ontology matching, rule languages, model trans-
formations, semantic technology use cases, etc.

• B had published on information logistics, mobile computing, context-
and task-aware computing, etc.

• C had published on component based software engineering, middle-
wares, service orientation, system architectures, garbage collectors,
etc.

6.1.2 Data

The resulting dataset comprises some 21600 words, or approximately 85
pages of text. Of these, 16 pages are researcher notes, and 69 pages are audio
or video transcriptions. The participants were initially skeptical about being

3ODP Portal denotes http://ontologydesignpatterns.org. All patterns are down-
loadable from http://purl.karlhammar.com/data/phl/odpcep/

109

Chapter 6. Quality Model Evaluations

recorded on film, and their behaviour changed noticeably when cameras were
present, becoming quite a lot more formal and tense. In order to promote a
good natural working environment for observations, the researchers chose to
turn off the recording equipment initially, turning it back on only when the
participants had gotten warmed up to the task and seemed less concerned
about this. Due to the triangulation in analysis, this is believed to have
little effect on the reliability of the results however.

Additionally, six whiteboard illustrations were photographed. In ana-
lysing the gathered data, qualitative text analysis methods were applied
as described in Section 4.2.3: the text was split into fragments based on
content and each fragment tagged with a thematic code. In total there
were 187 applications of such codes to fragments, with the distribution of
fragments over codes shown in Table 6.2.

Table 6.2: Distribution of fragments to codes.

Code label Fragments Code label Fragments
DL/semantics limitations 8 ODP structure 1
Efficiency 11 ODP usage prerequisites 11
Implicit ontology effects 1 ODP-attributable errors 8
Method/metamodel adequacy 6 ODPs-as-error-control 7
Modelling errors 1 ODPs-as-ground ontologies 8
ODP catalogue and selection 28 ODPs-as-guidance 21
ODP complexity 1 OE method observations 8
ODP effects 3 Pattern insufficient 12
ODP imports 10 Top-down/bottom-up choices 7
ODP method observations 19 Usefulness 13
ODP size 3

6.1.3 Findings

The following section presents some observations and analyses pertaining to
the research questions developed from the gathered data. Some of the anal-
yses are also accompanied by reflections on how these observations support
or weaken the initial quality model hypothesis presented in Section 5.4.

Important ODP Features

During the modelling and subsequent interviews, the issues of ODP size and
ODP import count were brought up. The participants initially expressed di-
vergent opinions regarding the effect of OWL import statements in ODPs.
Participant A considered imports quite helpful in that the reconciliation of
imported more general base concepts with one’s own model provided a good
opportunity for validating the soundness of one’s own design. He also em-
phasised the advantage of getting a foundational logic “for free” that one
would not otherwise have had time to develop. Participant C expressed an
understanding of the tension between reuse and applicability presented by
the import feature and large import closures, comparing it to discussions

110

6.1. The Knowledge Fusion Case Study

in the object oriented design pattern community in the nineties. Partici-
pant B criticised the use of imports, on the grounds that the expansion of
ODP size that such imports imply negatively affects ODP usability, and
on the grounds that the base concepts included by imported patterns may
be incompatible with one’s own world view, being written for some other
purpose:

“I really have to know what is there and what does it mean. And
maybe it’s written with some other focus, some other direction,
some other goal. And I don’t believe in this general modelling of
the universe that fits all purposes.” – Participant B

Participant B also indicated that he would use the idea of a pattern as
presented in a pattern catalogue and reimplement it, rather than reuse an
existing OWL building block, if that block contained too many imports or
dependencies. After some discussions Participant A agreed to the soundness
of such a method in the case of a large import closure not directly relevant
to the problem at hand. Both participants A and B proposed that a better
solution would be to add support for partial imports to tools and standards.

In terms of the size of patterns, the participants emphasised during the
interview session the importance of patterns being small enough to be easily
understood in a minute or two of study. They considered an appropriate size
to be three-four classes and the object- and datatype properties associated
with them. They drew parallels to object oriented design patterns which are
frequently of approximately this size. This expressed preference is consistent
with the patterns they selected during modelling, all of which contained
three or fewer classes, excluding imports.

Pattern Selection

It was observed that the single most important variable in ODP selection
from the pattern catalogue seemed to be pattern naming. If a name “rang
a bell” the participants proceeded with studying the pattern specifics to see
whether the pattern was suitable in their case. This observation is sup-
ported by participant feedback at the interview session. The participants
also suggested that description texts and competency questions were im-
portant selection criteria that should be emphasised in an ODP catalogue.
Additionally, they considered the possible negative consequences of applying
a certain pattern to a problem to be of particular importance in selecting
and applying patterns.

On the subject of pattern catalogues, the participants indicated that they
considered the two catalogues to which they had been exposed (the ODP
community portal and the one developed for these sessions) to be unordered
and unintuitive, holding patterns of varying completeness, abstraction level
and domain, all mixed in one long list. The participants suggested that they
would find it easier to navigate a catalogue that was structured according
to topic, architecture tier, abstraction level, or some other hierarchy:

111

Chapter 6. Quality Model Evaluations

“You also know the old classification of upper ontologies, domain
ontologies, and task ontologies. You know this old picture. This,
at least this structure should be present.” – Participant A

Further participant suggestions for improvements to ODP catalogue us-
ability included the addition of graphical illustration of pattern dependen-
cies, and providing a semantic search engine across ODPs held in the cata-
logue. The former suggestion was inspired by an illustration from the Core
J2EE Patterns web page4 that the participants found helpful in decipher-
ing pattern intent, and which Participant C in particular argued would be
helpful in understanding the structure of a set of ODP patterns. The lat-
ter suggestion was that a search engine be added allowing users to search
through concepts and properties present in ODPs in the catalogue, ideally
including NLP techniques to match for synonyms and related terms.

ODP Usage Method

The participants initially developed their designs on a whiteboard rather
than on their computers. They used the patterns as guidance in develop-
ment, rather than as concrete building blocks to be applied directly. When
questioned on why this method of working was preferred, they stated that
it was more flexible and required less commitment to a design in progress
than immediately formalising to OWL code. The participants would build
a prototype solution to a whole problem in one go, rather than tackle one
part of the problem at a time. This method is contrary to eXtreme De-
sign (as described in Section 2.4.2), which emphasises modular development
and unit testing. However, the individual critical situations being modelled
were rather small and self-contained, and it is uncertain whether this way
of working would scale to larger and more complex problem spaces.

The guidance that the participants got out of the patterns appears to be
of two types. To begin with, to the extent that patterns provided reasonable
solutions to difficult to model problems, the pattern solutions were used as
archetypes for own solutions on the whiteboard. This was the most common
usage of patterns observed. In the second case, patterns were used to verify
the correctness of modelling, by ensuring that the developed solution was
consistent with the patterns selected:

Participant B: “Is a vehicle an agent?”
Participant A: “Let’s check the pattern!”

The latter usage was observed both on the whiteboard and later on when
attempting to formalise results into OWL files on a computer. In usage, the
selected patterns were seen as optimal solutions to problems, and no re-
flections on the suitability of the patterns in question were observed. On
the contrary, in some situations the participants attempted to realign their

4http://www.corej2eepatterns.com/

112

6.1. The Knowledge Fusion Case Study

solutions to available design patterns even when this needlessly significantly
increased the complexity of their solution. One example of this is the ob-
served use of the AgentRole pattern in categorising different types of staff,
which in the scope of the problem could just as easily have been done via
subsumption.

During modelling there were occasions when the work process slowed
down, and the participants got caught up in discussions on how to define
some very fundamental concepts such as situation, time, event, etc. When
questioned, participants expressed a strong preference for such foundational
concepts being available as patterns. While a few such foundational patterns
have been extracted from top-level ontologies and made available in the
community portal [8], their documentation is at the time of writing limited.

Effects of ODP Usage

Across the two days of working, a noticeable improvement in modelling
speed among the participants could be observed. Tasks that in the morning
took an hour to complete were in the afternoon performed in fifteen-twenty
minutes. While this learning effect cannot be solely attributed to pattern
use, the participants indicated that a certain efficiency gain is certainly due
to them:

“I think it was helpful, it makes it clearer and furthers reuse,
saving time.” – Participant A

This efficiency gain was most pronounced when the participants reused
patterns which they had already tried once or twice on other problems. The
participants also indicated that in order to get the most out of the design
patterns, a practitioner needs to have developed some degree of familiarity
with them:

“For me it’s a new type of modelling [...] but it’s understandable,
and I can imagine if you know patterns, you are quite faster at
inventing everything.” – Participant C

As has been mentioned in Section 6.1.3, the effects of ODP use on the
process and resulting ontologies were not all beneficial. In some cases, over-
dependence on patterns complicated the resulting ontologies needlessly, and
misunderstanding of pattern documentation led to generally strange results.
An example of the latter is the modelling of the characteristic “loudness”,
where the resulting model had time being loudness-indexed rather than the
other way around. On the whole however these problems were minor com-
pared to the observed and perceived benefits of ODP usage in guiding mod-
elling.

113

Chapter 6. Quality Model Evaluations

6.2 Learnability and Usability Evaluations

In this study, two structural indicators from the initial model were selected
for study, namely Anonymous class count and Class to property ratio. These
indicators share the characteristics that they are easy to formalise, measure,
and vary as needed for the sake of the study, and they also per the ini-
tial model affect the usability related quality characteristics. Additionally,
two indicators dealing with ODP documentation, Example illustration count
and Documentation minimalism, believed to affect ODP learnability, were
selected for study. Like the structural indicators, these indicators are easy to
vary as needed through the use of adjustable templates for displaying ODP
documentation. Finally, as the study design was being developed, the op-
portunity to also query participants about the perceived learnability effects
of a few more structural features of ODPs was also realised and taken. The
use of Property domain restrictions and Property range restrictions were se-
lected for such study, based on the fact that these features are naturally used
in most ontology modelling situations, meaning that the study participants
are very likely to come across them and form an opinion and understanding
about them. Accordingly, the following research questions were established
for the study:

1. How do the indicators Example illustration count and Documentation
minimalism affect ODP learnability?

2. How do the indicators Anonymous class count and Class to property
ratio affect ODP usability?

3. How do Property domain restrictions and Property range restrictions
affect ODP learnability?

In order to answer the above questions, a study consisting of both sur-
veys and timed tasks, was set up, as described i Section 4.2.4. Based on
the existing initial ODP quality model, the following hypotheses were es-
tablished:

• Patterns including examples (i.e., “Scenarios” as expressed in ODP
portal) with illustrations are superior to ones having examples simply
written in text, in terms of learnability.

• Patterns displaying documentation minimalism (i.e., a limitation of
the fields displayed per pattern to a sane minimum) are superior to
patterns not displaying this feature, in terms of learnability.

• Patterns that contain a high number of anonymous class definitions
(i.e., restrictions) are more difficult to apply than patterns that contain
low numbers of such definitions.

• Patterns that have a high ratio of classes to properties are easier to
apply than patterns that display a low such ratio.

114

6.2. Learnability and Usability Evaluations

• Property domain restrictions and Property range restrictions in ODPs
are beneficial to the learnability of said ODPs.

The patterns used in this evaluation and provided to the participants are
listed in Table 6.3. They were selected from all non-trivial (i.e., larger than
10 classes including imports) and general purpose patterns patterns in the
ontologydesignpatterns.org repository, and were chosen so as to provide
variation across the two structural indicators under study, as indicated in
the table. Of all non-trivially sized ODPs in the ODP portal, the mean
anonymous class count was 23, and the mean Class to Property ratio was
0.5, with a variation between 0 and 56 for the former value and between
0.33 and 0.83 for the latter.

Table 6.3: ODPs used in learnability and usability evaluations.

ODP name C/P ratio C/P group AC count AC group
Basic Plan 0,4 Low 33 High
Communication Event 0,55 High 41 High
Reaction 0,45 Low 16 Low
Invoice 0,65 High 0 Low

6.2.1 Results

Survey 1

The most interesting results from the first survey, regarding documentation-
related effects on learnability, are summarised in Tables 6.4, 6.5, and 6.6. In
all of these tables, the participant responses have been averaged, grouped
by the indicator under study, such that the responses given by participants
seeing the patterns exhibiting documentation minimalism can easily be con-
trasted against those given by participants seeing non-minimal patterns (and
likewise for example illustrations).

Table 6.4: Survey 1: competency question recognition correctness ratio.

Group Com. Event Reaction Invoice Basic Plan
Minimal 70 % 89 % 88 % 90 %
Non-minimal 54 % 80 % 100 % 80 %
Illustrated 63 % 75 % 100 % 75 %
Non-illustrated 53 % 91 % 90 % 91 %

Table 6.4 indicates how well participants were able to match a pattern to
five given competency questions. The values in the given table are averaged
across the participant/pattern pairs for each group of ODPs. Of interest here
is that for three out of four patterns (Basic Plan, Communication Event, and
Invoice), the group seeing documentation minimal patterns scored higher
than the non-minimal group. The presence of an illustrated example does
not seem to correspond to any increase in correct responses.

115

Chapter 6. Quality Model Evaluations

Table 6.5: Survey 1: class recognition correctness ratio.

Group Com. Event Reaction Invoice Basic Plan
Minimal 50 % 57 % 80 % 67 %
Non-minimal 29 % 50 % 100 % 60 %
Illustrated 50 % 25 % 80 % 75 %
Non-illustrated 0 % 71 % 100 % 57 %

Table 6.5 indicates how well participants were able to match a term in a
given scenario description text to a class name in the ODPs. Interesting to
note here is that, just as in the previous table, for three out of four patterns,
the participants seeing documentation minimal variants scored better than
those seeing non-minimal ones. Presence or absence of illustrated examples
do not correlate with any such results.

Table 6.6: Survey 1: time required to answer questions.

Group Com. Event Reaction Invoice Basic Plan
Minimal 14,75 7 4 13
Non-minimal 11,29 10 8,83 13
Illustrated 13,13 7,75 8,4 11,75
Non-illustrated 11 8,29 5,17 13,71

Table 6.6 averages the time (in minutes) taken by participants to answer
the questions underlying the above tables. Again, we see a slight advantage
for the documentation minimal variant group in two cases, when compared
with the non-minimal variant group, and no effect of illustrated examples.

Tasks

Table 6.7: Task times (in minutes) and learnability metrics.

ODP name Time taken Concreteness Difficulty
Communication Event 57 2.55 3.27
Reaction 67.54 2.55 2.82
Invoice 47.82 3.55 2.3
Basic Plan 66 2.91 2.73

The times required to model the provided scenarios using the given pat-
tern are detailed in Table 6.7, along with the average participant responses
for concreteness/abstraction and difficulty of understanding from the first
survey. The latter two measures were taken using five point scales, e.g. rang-
ing between “very easy” (a score of 1) and “very difficult”, (a score of 5).
When cross-referencing this table against the ODP characterisations in Ta-
ble 6.3, we can see that the two patterns having the lowest class to property
ratio (Communication Event, Invoice), are the ones for which the associ-
ated modelling exercise took least time to complete. We can also see from
the concreteness and difficulty of understanding measures that the Invoice

116

6.2. Learnability and Usability Evaluations

pattern was considered by far the most concrete and easiest to understand,
whereas Communication Event was considered quite difficult to understand
and quite abstract.

Survey 2

Table 6.8 shows the most interesting results of the second survey on how
the participants perceived indicators and their effects on the usability and
learnability of the patterns in question. The indicators queried about (ab-
breviated in the table) were the presence of example illustration in pattern
documentations, the restrictions on ranges or domains of properties asserted
in the patterns, and the existence of class restriction axioms in the pattern
(the latter being the main source of anonymous class definitions in an ontol-
ogy). For the first three indicators, participants were questioned how they
found the presence of the related features helped or harmed in understanding
the patterns, whereas for the last indicator, they were questioned how they
found the presence of this feature helped or harmed in using the patterns.

Table 6.8: Perceived usability and learnability effects of indicators from
survey 2.

Effect Illustrations Range res. Domain res. Class res.
Very helpful 50 % 25 % 17 % 17 %
Helpful 42 % 67 % 50 % 58 %
Neither 0 % 0 % 8 % 0 %
Harmful 0 % 8 % 8 % 17 %
Very harmful 8 % 0 % 0 % 0 %
No opinion 0 % 0 % 17 % 8 %

6.2.2 Findings

The data gathered gives some indications regarding the possible validity of
the original hypotheses, though it does not in its own right clearly prove or
disprove any one of them.

The hypothesis that patterns including examples with illustrations are
superior to ones having examples simply written in text in terms of learn-
ability is partially supported by the observation that a large majority of
study participants themselves rank the presence of illustrated examples as
Helpful or Very helpful (Table 6.8) with regards to understanding how to
use a pattern. However, the data collected on how quickly and how well
they were actually able to learn the pattern (Tables 6.4, 6.5, and 6.6) give
no such support to the hypothesis.

The hypothesis that patterns displaying documentation minimalism are
superior to patterns not displaying this feature, in terms of learnability, is
partially supported by the observation that for three different measures
(competency question recognition, class recognition, and time required to re-
spond to survey one), the participant groups seeing pattern variants display-

117

Chapter 6. Quality Model Evaluations

ing documentation minimalism performed better than participant groups
seeing non-minimal variants. However, the small number of participants
and patterns tested severely limits the validity of the figures presented, so
this should rather be considered an indication than evidence.

That patterns that contain a high number of anonymous class definitions
are more difficult to apply than patterns that contain low numbers of such
definitions is not supported by the gathered data. In fact, the data from
survey 2 presented in Table 6.8 indicates that the opposite may be more
correct, and that anonymous class definitions improve usability. As that ta-
ble shows, a large majority of study participants found the presence of class
restrictions (which result in anonymous classes) in an ODP to be Helpful
or Very helpful in terms of usability. The question on class restriction ef-
fects was also associated with an open question where several participants
expressed how they found these restrictions helpful in ascertaining the pur-
pose of a class in the case that labels, comments, and the subsumption
hierarchy were not sufficient for this.

The hypothesis that patterns that have a high ratio of classes to proper-
ties are easier to apply than patterns that display a low such ratio is partially
supported by the data exhibited in Tables 6.7 and 6.3, which shows that the
two patterns displaying the highest such ratio are the ones that were fastest
to complete modelling tasks with. However, for at least one of the patterns
(Invoice), it is quite possible that other characteristics of the pattern dis-
played in the former table (its ease of use and concrete nature) affect the
resulting time more than the class to property ratio, so the support for this
hypothesis is rather weak, and more study of it would be required.

The hypothesis that Property domain restrictions and property range
restrictions in ODPs are beneficial to the learnability of said ODPs is sup-
ported by the results shown in Table 6.8. As illustrated there, a clear major-
ity of the participants express that domain and range restrictions on proper-
ties are Helpful or Very helpful in terms of usability of patterns. Associated
with the questions on these indicators were open questions, where partici-
pants indicated the reason for these responses being that restrictions helped
clarify the intended usage of properties. As the presence of such restrictions
are likely to have constraining effects on the reusability of patterns, it is an
important issue to study whether the usability gains given by their presence
could instead be achieved by other means, for instance improved pattern
documentation pages or RDFS labelling and comments.

In addition to the original hypotheses, an unforeseen effect relating to
indicator effects was observed that is relevant to the ODP quality model
development. As seen in Table 6.7, participant-reported values for concrete-
ness and difficulty of use seem to be inversely related. While the issue of the
abstraction/concreteness of patterns has been avoided in the initial quality
model (largely due to difficulties in finding proper measurement methods
for such indicators), this finding implies that more study on the topic is
warranted. Another unexpected observation along similar lines concerns

118

6.3. Performance Indicator Evaluation

the fact that study participants rated the Communication Event pattern
as more abstract than the Basic Plan one. While Communication Event is
rather complex and contains many classes, it is in the author’s opinion actu-
ally an example of a quite concrete ODP. Clearly more work on establishing
how to measure and understand the abstraction or concreteness levels of
ODPs is required.

6.3 Performance Indicator Evaluation

For the purpose of evaluating and refining performance-related indicators
from the initial quality model, a literature survey and a study of existing
indicator variance in published ODPs was performed, as detailed in Sec-
tion 4.2.5. To reiterate, the following research questions were employed in
the evaluation:

1. Which of the proposed performance-related effects of indicators from
the initial ODP quality model are supported by existing literature?

2. Which indicators from literature known to affect the performance of
reasoning with ontologies are also applicable to ODPs?

3. How do performance-altering indicators vary across published ODPs?

The following sections detail the results of this evaluation work.

6.3.1 Literature Study

In the studied papers, three main types of indicators and corresponding
effects could be identified, namely expressivity profile indicators (i.e., in-
dicators related to profiles or constraints of ontology language structures
available for use), inheritance hierarchy structural indicators (i.e., indica-
tors related to the structure of the subsumption tree), and axiom usage
indicators (i.e., general indicators related to the logical axioms employed
in an ontology). Each of these categories and the indicators found to be
associated with them are discussed in the following subsections.

Profile indicators

In the initial ODP quality model it was hypothesised that the use of a
more expressive description logic language would be detrimental to reasoning
performance, based on the fact that a more expressive language allows for a
much larger set of possible inferences to be drawn. This idea is supported by
the findings of several papers in the studied set, e.g., by Urbani et al. [125,
126] and Horridge et al. [127], not to mention the recent recommendations
by the W3C specifying OWL 2 Profiles [128].

Urbani et al. discuss the issue of scaling out description logic reason-
ing on parallel computing clusters using the MapReduce framework. They

119

Chapter 6. Quality Model Evaluations

show in [125] that materialising the closure of an RDF graph using RDFS
semantics can be performed using MapReduce, due to certain characteris-
tics of the RSFS semantics. As shown in [126], the increased expressivity of
OWL means that implementing such parallelisable scalable reasoning over
datasets based on OWL ontologies is significantly more difficult than when
using RDFS. OWL, when expressed as transformation rules, allows for mul-
tiple instance triples in the antecedent, and it is impossible to define an
ordering of rules whereby each rule need only fire once, which greatly com-
plicates the distribution of an OWL-based dataset across the nodes of a
MapReduce cluster. By limiting themselves to the OWL Horst fragment of
OWL, the authors manage to work around these issues and present a result-
ing solution (WebPIE) that enables reasoning with OWL Horst significantly
faster than previous solutions. Even so, the solution is many times slower on
real data than the simpler RDFS reasoning from [125], and adapting it for
higher levels of expressivity (i.e., OWL DL) would (if at all possible) most
likely increase execution time further.

In [127] Horridge et al. analyse the characteristics of the three OWL 2
profiles, OWL 2 RL, OWL 2 EL, and OWL 2 QL, and study the adherence
to these profiles among ODPs published on the Web. The three profiles are
subsets of OWL 2 intended for particular usages. By limiting the semantics
used, both in terms of actual axioms allowed and the positioning and use of
those axioms, computational properties suitable to different uses (reasoning
over many classes and properties, query answering over large sets of instance
data, or reasoning using predictably performant rule-based systems). Hor-
ridge et al. [127] find that relatively few ODPs fit in these profiles, and that
this may in part be due to modelling practices and recommendations (e.g.,
to always declare an inverse for an object property, or the use of cardinality
restrictions where existential restrictions could be used instead).

The initially proposed quality model only declared one indicator per-
taining to language expressivity (DL Complexity, I-9), where a higher ex-
pressivity was hypothesised to be more detrimental to performance than a
lower one for all types of tasks. The above indicates that it would be use-
ful to instead consider the problem from a perspective of multiple indicators
contributing to different types of performance-related quality characteristics
(corresponding to the aforementioned profiles and use cases).

Structural indicators

The initially proposed quality model presents a number of hypotheses re-
garding the performance impact of indicators relating to the subsumption
hierarchy structure of ODPs. The studied literature adds support to at least
one of these hypotheses, the effect of tangledness, but it also supports the
addition of a performance-altering effect to the previously defined usability-
related indicator on subsumption hierarchy depth, as well as new anonymous
class-aware versions of existing structural indicators.

120

6.3. Performance Indicator Evaluation

Kang et al. [129] perform a thorough evaluation of the effects of a num-
ber of different ontology metrics on performance in different commonly used
reasoners. While most of their observations are on effects of axiomatic indi-
cators (as discussed in the following section), one interesting finding concerns
the subsumption hierarchy. Kang et al. find that the indicator that they de-
note tree impurity has a measurable impact on reasoner performance, such
that a high degree of tree impurity in an ontology correlates to slower rea-
soning over that same ontology. This tree impurity metric measures how far
the ontology’s inheritance hierarchy deviates from being a tree, by calcu-
lating how many more owl:subClassOf axioms are present in the ontology
than are needed to structure a pure tree. This is simply a different way of
measuring the same indicator that in the initial quality model of this thesis
is denoted tangledness. By showing that tree impurity contributes to re-
duced computational efficiency, Kang et al. [129] thereby also validate that
tangledness contribute to lowering the same quality characteristic.

In [130], LePendu et al. study the characteristics of both ontologies and
data in the biomedicine domain, with a goal towards improving performance
by way of optimisation of data and data structure as opposed to purchasing
more hardware. For this purpose, a number of synthetic ontologies and
data sets were generated and classified. One of the metrics studied, and
found to have a high impact on materialisation performance, is the depth of
the subsumption hierarchy. The explanation given for this is that for every
asserted instance of a subclass, all of the logic axioms pertaining to each
and every superclass must also be calculated. For a shallow ontology, this
may be a matter of just a few classes before the top level class is reached,
and not a lot of work. For a deeper ontology however, this may be a quite
significant amount of entailments that need to be computed. Kang et al.
[129] also study the depth indicator, and like LePendu et al. find that it
contributes to slower reasoning performance.

The majority of metrics whose effects are studied by Kang et al. [129]
are first defined by Zhang et al. in [131]. This paper holds an interesting re-
flection on the importance of including anonymous classes when computing
values for structural indicators affecting reasoning performance, since these
anonymous classes are obviously reasoned over just as named classes are.
However, anonymous classes are likely to be less important when consider-
ing for instance usability-related effects of those same structural indicators.
Consequentially, both anonymous class-aware and non anonymous class-
aware variants of such indicators would need to be included in the ODP
quality model.

Axiomatic indicators

The majority of performance-affecting indicators discussed and tested in the
studied literature concerns the use of particular types of axioms or structures
in an ontology. Two papers in particular contribute to this knowledge,

121

Chapter 6. Quality Model Evaluations

namely Goncalves et al. [132] and the aforementioned work by Kang et al.
[129].

Goncalves et al. [132] investigate performance variability in ontologies,
and details a developed method for isolating performance-degrading sec-
tions of ontologies, by the authors denoted “hot spots”, for different rea-
soners. In the paper some methods for approximate reasoning over ontolo-
gies where such hot spots have been removed are presented and compared.
The use of such methods may partially mitigate the loss in information
caused by the hot spot removal. The removal of hot spots were found to
cut reasoning times by between 81 and 99 %. As a side effect of their
work, the authors notice that the removal of hotspots correlate with the
removal of General Concept Inclusions, GCIs, from the ontologies. GCIs
are subclass or equivalency axioms that have a complex class expression
on their right hand side, for instance (HeartDisease and hasLocation

some HeartValve)SubClassOf: CriticalDisease. While this effect was
particularly obvious for the HermiT reasoner, where every single GCI was
found within a hot spot, it also occurred to a lesser degree within other
studied reasoners. These results suggest that the number of GCI axioms in
an ontology, and ODP, are useful as indicators of reasoning performance,
particularly for the HermiT reasoner.

As mentioned above, [129] evaluate performance effects of a number of
metrics (most of which are presented by Zhang et al. in [131]). They find
four indicators that show a measurable performance-altering effect and that
can be applied to ODPs also:

• Existential quantifications – the number of existential quantification
axioms in an ontology or ODP. This is easiest measured by counting
the number of ObjectSomeValuesFrom axioms in the ontology.

• Cyclomatic complexity – inspired by the same metric as used in soft-
ware engineering complexity calculations, this indicator measures the
number of linearly independent paths through the RDF graph, includ-
ing not only subclass relations but any directed edges, which a reasoner
needs to traverse in classifying said graph.

• Class in-degree – the average number of incoming edges to classes in
the ontology. This gives an indication as to how interconnected an
ontology or ODP is.

• Class out-degree – the inverse of the above indicator, i.e., the average
number of outgoing edges to classes in the ontology.

6.3.2 Indicator Variance in ODP Repositories

The results of the study of indicator variance (the setup of which is in-
troduced in Section 4.2.5) are detailed below, with the exception of a few
indicators that were not included, namely cyclomatic complexity, and the

122

6.3. Performance Indicator Evaluation

Figure 6.1: Class in-degree and Class to property ratio distributions

set of OWL profile adherence indicators. It proved practically infeasible to
develop software for reliably measuring the former, and rather than make as-
sertions based on possibly inexact data, it has been left out of this analysis.
However, as it was proven by Kang et al. [129] to be of importance for rea-
soner performance, it is considered relevant for inclusion in the ODP quality
model, despite our current lack of knowledge regarding its variance among
published patterns. The latter set of indicators has as mentioned above been
discussed extensively in Horridge et al.[127], to which the interested reader
is referred. The findings in [127] clearly support the interpretation of these
indicators as important for ODP developers to be aware of and keep in mind
in ODP work, a fact which in turn motivates the inclusion of said indicators
in the ODP quality model.

Average class in-degree

The values for the average class in-degree indicator vary between 0.75 and
8, with a median value of 2.39 and an average value of 2.6. The distribution
of indicator values over the whole pattern set is shown in Figure 6.1. As
illustrated in the figure, the large majority of patterns (93 %) have a class
in-degree of less than four, whereas a small group of patterns differ quite
significantly and have an average value of around six.

Upon comparing some of the patterns exhibiting high and low values
for the average class in-degree indicator, it was observed that they tended

123

Chapter 6. Quality Model Evaluations

to differ in terms of the number of object properties contained within the
patterns. The patterns exhibiting a high level of class in-degree seemed to
contain a larger number of object properties than those patterns displaying
a low level of this indicator. To test whether this held for the entirety of the
pattern set, the values of the class to property ratio indicator from the initial
ODP quality model were mapped against the values of the class in-degree
indicator. The inverse of the former being a size-wise normalised measure
of the number of properties in the ontology, such a mapping should if the
observation holds indicate the existence of an inverse correlation between
the two mapped indicator value series.

The results, as shown in Figure 6.1, while not indicating a clear inverse
correlation of the indicators across the entire studied pattern set, does indeed
indicate that the patterns displaying highest class in-degree have a lower
class to property ratio (i.e., contain more properties per class as posited
above), and that many of the patterns displaying low class-in degree have a
higher than average class to property ratio (i.e., contain fewer properties).

One possible explanation for this observation is the existence of domain
and range definitions on the many object properties in patterns with high
average class in-degree. It is generally considered good practice to establish
such definitions for properties one adds to an ontology. However, each such
domain or range definition gives rise to one incoming RDF edge to the
class in question, raising the average class in-degree indicator. Based on
this observation, a recommendation to the effect of limiting the number
of domain and range definitions used in performance-dependent ontologies
can be made, and the initial ODP quality model was revised accordingly.
However, there may also be other as yet unknown causes beside domain
and range definitions that that give rise to high average class in-degrees,
and given the observation on variability in this indicator in the observed
patterns, including the indicator itself it in a revised ODP quality model is
also warranted.

Average class out-degree

The values for the average class out-degree indicator vary between 1 and
3.83, with a median value of 2.75 and an average of 2.64. The distribution
of indicator values over the whole pattern set is shown in Figure 6.2. The
reason why all patterns exhibit a value of at least one is simply that all
defined classes by definition have at least one outgoing subClassOf edge to
another class.

In studying some patterns displaying low or high values, it was observed
that the patterns displaying a higher value seem to be patterns in which
class restrictions are used extensively. Class restrictions are written as the
class being asserted to be either a subclass of or equivalent to a restric-
tion axiom, which would explain this observation – each subClassOf or
equivalentClass axiom adds an outgoing edge, increasing the value of the
indicator.

124

6.3. Performance Indicator Evaluation

Figure 6.2: Class out-degree and Anonymous class count distributions

To test whether this explanation is supported by further evidence, the
number of anonymous class definitions (i.e., restrictions) were plotted against
the value of the class out-degree indicator. The results are presented in Fig-
ure 6.2 which indicates a possible correlation between class out-degree and
anonymous class count.

Since the number of class restrictions has in earlier chapters been shown
to be helpful in guiding users of an ODP, this unexpected performance-
related effect of using such restrictions is of particular interest. Also, given
the variation of this indicator’s values over the studied ODPs, inclusion of
the indicator in the ODP quality model is well motivated.

Depth of inheritance

As mentioned in Section 6.3.1, it can be important to measure both asserted
and inferred versions of structural indicators. Due to the difficulty of mea-
suring the inferred indicators across the transitive import closure graph of
an ODP using the tools and APIs available at the time of writing, the values
below were only calculated over the asserted depths of patterns, excluding
imports. Moreover, as even this is quite a difficult task (due to different
practices on how subclass relations to the top-level owl:Thing class are
modelled), certain simplifications had to be made. These simplifications in-
clude the assumption of a subclass relation to Thing if no other superclass
is asserted within the particular OWL file5.

5To study the code used to calculate the depth metrics, the reader is referred to
https://github.com/hammar/OntoStats/tree/master/plugins-structural

125

Chapter 6. Quality Model Evaluations

Figure 6.3: Subsumption depth indicator variance

The subsumption hierarchy depth of the patterns varies from 0 to 5.3,
with a median value of 1.5 and an average value of 1.7. In other words,
most of the patterns are not very deep. The distribution of values across
the patterns studied are displayed in Figure 6.3. At the bottom end of
the spectrum is a fairly large group (38 of 103 patterns) that have a depth
of one or less. In studying this particularly shallow group, it appears to
consist of two types of patterns. The first type consist of simpler domain
specific vocabularies that do not employ much expressive logics, but rather
act as schemas for simple datatypes that may be reused. Examples include
patterns for species habitats, invoices, etc. The second type consist of very
general patterns that define abstract or intangible phenomena without going
into specific details. Examples include patterns modelling phenomena like
participation and situation. A large part of the latter group seems to result
from refactoring of top-level ontologies like DOLCE, whereas many of the
patterns in the former group seem to be developed for more concrete and
applied purposes.

The patterns from the http://odp.sourceforge.net repository are
generally deeper (with an average depth of 3.29) than those from the http:
//ontologydesignpatterns.org portal. However, the latter patterns gen-
erally contain more example classes that would likely be removed before
instantiation in real cases, reducing this difference.

The large variation in depth displayed indicates that this is an indicator
which is suitable to include in the ODP quality model.

126

6.3. Performance Indicator Evaluation

Existential quantification count

About half the patterns, 51 of 103, contain no explicit existential quan-
tification axioms. If cardinality restrictions are rewritten into semantically
equivalent existential restrictions as suggested in [127], the number of pat-
terns containing no existential quantification axioms drops to 43. Of the
60 patterns that contain such axioms half, 31, contain one or two existen-
tial quantification axioms each. Studying a number of such patterns it was
observed that the axioms are used sparingly and only when required.

However, in studying the patterns that contained a higher number of
existential quantification axioms (i.e., three or more, as seen in 29 of the
patterns), it was observed that these axioms were sometimes used in seem-
ingly unneeded ways. For instance, subclasses restating such axioms as were
already asserted on their superclasses, and existential quantification used to
assert the coexistence of two individuals where it seems one individual might
well exist on its own. These observed suboptimal uses of computationally
expensive existential quantification axioms clearly motivates the inclusion
of the indicator in an ODP quality model - it seems ODP developers need
to be reminded not to take the use of this type of axioms lightly.

General concept inclusion count

General concept inclusions were not displayed by any of the studied ODPs.
The author believes that this is for two reasons: firstly, because such con-
structs are generally not supported by ontology engineering tools such as
Protégé (other than via workarounds), and secondly, because they add little
new in terms of logical expressivity. Equivalent logic can be written in sim-
pler ways by using other methods. Whatever the reason, the complete lack
of any patterns displaying this indicator implies that it would be unneces-
sary to include it in a quality model for such Ontology Design Patterns, and
it is consequently not included in the resulting model.

Tree Impurity / Tangledness

Due to the mentioned inconsistencies in how subclass relations to the owl:
Thing concept are modelled, the tree impurity indicator is difficult to mea-
sure in a reliable manner without first modifying the studied ontologies.
However, this indicator actually measures the same thing as the tangled-
ness indicator presented in Section 5.4, i.e., how far an ontology inheritance
hierarchy deviates from being a tree with one parent class per subclass.
Therefore, observations regarding tangledness variation in the dataset carry
over to the tree impurity indicator also.

Of the 103 studied patterns, only three display any degree of asserted
tangledness at all. In all three of these cases, the number of multi-parent
classes in the pattern was one. It appears that the use of asserted multiple
inheritance in ODPs is rare. However, it should be noted that the number

127

Chapter 6. Quality Model Evaluations

of inferred multi-parent classes may be significantly greater than this num-
ber. While inferred tangledness has for technical reasons been infeasible to
measure in this study, its effect on the performance of reasoning may be
considerable, for which reason it is kept in the ODP quality model.

6.3.3 Results

Table 6.9 summarises the observations of performance-altering indicators
discussed in the previous sections. Included in the table is a column indi-
cating which indicators from the initial quality model that are supported
or adapted, and a column with references to the source of the observation.
In the following chapter, Chapter 7, the updated quality model including
the indicators tested and developed in this chapter is presented, including
measurement methods and scales associated with these new indicators.

Table 6.9: Performance related indicator summary.

Name Existing indicator Sources
Anonymous class count Anonymous class count (I-3) Section 6.3.2
Average class in-degree [129, 131]
Average class out-degree [129, 131]
Cyclomatic complexity [129]
Depth of inheritance Subsumption hierarchy depth (I-

24)
[129, 130, 131]

Existential quantification count [129]
OWL 2 EL adherence DL Complexity (I-9) [127, 128]
OWL 2 QL adherence DL Complexity (I-9) [127, 128]
OWL 2 RL adherence DL Complexity (I-9) [127, 128]
OWL Horst adherence DL Complexity (I-9) [125, 126]
Property domain restrictions ratio Property domain restrictions ra-

tio (I-18)
Section 6.3.2

Property range restrictions ratio Property range restrictions ratio
(I-19)

Section 6.3.2

Tree impurity Tangledness (I-25) [129, 131]

128

Chapter 7

Refined ODP Quality
Model

The following chapter presents an updated version of the ODP quality
model, based on the initial version presented in Chapter 5, and revised
according to the evaluation findings presented in Chapter 6.

7.1 Metamodel

The refined ODP quality model adheres to the quality metamodel developed
in Section 5.1, as shown in Figure 7.1. The concepts included in this meta-
model remain unchanged since the initial quality model, and are described
in some detail in Section 5.1, for which reason they are not repeated here.

7.2 Quality Characteristics

The initial quality model presented in Section 5.4 included five top level
quality characteristics, and twenty sub-characteristics. In the development
and evaluation of indicators for the quality model described in this thesis,
most of the initial quality characteristics could be associated with one or
more indicators. Of those few that could not, the majority remain strong
candidates for such linkage given more development of suitable ODP quality
indicators. For instance, the present lack of indicators for Testability does
not imply that the testability of ODPs is unimportant, but only that more
work is required in order to find suitable methods of measuring testability.

From the initial quality model, two quality characteristics were found
to be unsuitable and replaced. The two sub-characteristics Time behaviour
efficiency and Resource utilisation efficiency were found to be redundant, in
that they simply express two different aspects of their parent quality char-
acteristic Resulting performance efficiency. The quality characteristics of

129

Chapter 7. Refined ODP Quality Model

Domain
(D)

ODP Use
(ODPU)

Ontology Use
(OU)

Indicator
Quality

Characteristic

R

Subquality of

Scale

Importance
level

Directionality

Recommenda
tion

Method

quality affected by

qu
al

ity
 h

as
 im

po
rt

an
ce

 in

Figure 7.1: Quality Metamodel

the revised quality model are listed below. The quality characteristics that
are associated with some indicators which have been evaluated in Chapter 6
are marked with an exclamation point, the ones associated with only un-
evaluated indicators are marked with an asterisk, and the ones for which no
indicators have yet been developed are unmarked.

Functional Suitability (!)

Degree to which an ODP meets stated or implied needs.

• Functional completeness * – Degree to which the ODP meets ex-
pressed knowledge modelling requirements (i.e., competency questions
and other design requirements).

• Functional appropriateness – Degree to which the ODP facilitates sim-
ple storage and retrieval of knowledge formalised according to its defi-
nitions (e.g., does the ODP require simple or complex SPARQL queries
to retrieve knowledge).

• Consistency – Degree to which the ODP is internally logically consis-
tent.

• Accuracy (*) – Degree to which the ODP accurately represents the real
world domain being modelled (e.g., whether it adheres to established
industry standards and protocols, or legislation).

130

7.2. Quality Characteristics

Resulting performance efficiency (!)

Reasoner or system performance efficiency over ontologies created using the
pattern.

Usability (!)

Degree to which an ODP can be used by specified users to achieve specified
goals with effectiveness, efficiency, and satisfaction.

• Appropriateness recognisability (!) – Degree to which users can recog-
nise whether an ODP is appropriate for their needs.

• Learnability (!) – Degree to which an ODPs structure, and intended
usage can be learned by users new to it, such that they can thereafter
apply the ODP successfully and efficiently.

• Operability (*) – Degree to which an ODP has attributes that make
it easy to apply and use.

• User error protection (!) – Degree to which an ODP prevents users
from making modelling errors.

• User interface aesthetics – Degree to which the ODP’s documentation
(text, graphics, etc.) is pleasing for the user.

• Accessibility – Degree to which the ODP’s documentation can be used
by people with the widest range of characteristics and capabilities.

Maintainability

Degree of effectiveness and efficiency with which an ODP (and consequently,
ontologies built using that ODP) can be adapted and modified by maintain-
ers after deployment in some usage scenario.

• Modularity – Degree to which the ODP is composed of discrete com-
ponents such that a change to one component has minimal impact on
other components.

• Analysability (*) – Degree of effectiveness and efficiency with which
it is possible to assess the impact on an ODP of an intended change
to one or more of its parts, or to diagnose an ODP for deficiencies or
causes of failures, or to identify parts to be modified.

• Modifiability (*) – Degree to which an ODP can be effectively and
efficiently modified without introducing defects or degrading existing
ODP quality.

• Testability – Degree of effectiveness and efficiency with which test
criteria can be established for an ODP and tests can be performed to
determine whether those criteria have been met.

131

Chapter 7. Refined ODP Quality Model

• Stability – Perceived change expectation on the ODP - high stability
denotes a low degree of change is expected, and vice versa.

Compatibility (*)

Degree to which an ODP can successfully be reused and integrated with
other ODPs or IT artefacts in the construction of ontologies or systems.

• Reusability (!) – Degree to which an ODP can be used in more than
one system, or in building other assets.

• Co-existence – Degree to which an ODP can coexist with other ODPs
as modules in an ontology, i.e., without detrimental impact on other
ODP modules.

• Interoperability – Degree to which two or more ODPs share definitions
of co-occurring concepts.

7.3 Indicators and Effects

Tables 7.1 and 7.2 list the updated set of indicators and corresponding effects
on quality characteristics in the refined ODP quality model. The former
table holds those indicators whose effects have been evaluated, either in this
thesis, or in some other known empirical evaluation. In this table, the third
column references said evaluation. The latter table holds those indicators
whose effects have been hypothesised in the initial quality model presented
in Section 5.4, but which remain to be evaluated empirically.

Two indicators have been been removed from the initial quality model
due to being redundant or supplanted by updated variants. The first of
these, Direct import count (I-8) can be understood as a specialisation of
Transitive import count (I-27). Given that the effects on ODP quality char-
acteristics associated with import count all concern the size and complexity
of the transitive import closure, measuring only the direct import count is
unnecessary. The second removed indicator is DL Complexity (I-9). In the
refined ODP model this indicator has been replaced by OWL 2 profile and
OWL Horst adherence indicators (I-35 through I-38) which measures similar
description language aspects and effects on quality, but builds on established
work in the field.

Indicators that are new to or updated in the refined quality model com-
pared to the initial quality model from Section 5.4 are listed in more detail
below, including associated measurement methods, scales, and in some cases
recommendations. Those indicators that are included in Tables 7.1 and 7.2
but not listed below are unchanged since the initial quality model. The
directionality of indicator effects (positive or negative) is interpreted in the
same manner as in the initial quality model, detailed in Section 5.4.2.

132

7.3. Indicators and Effects

Table 7.1: Evaluated indicator effects of the refined quality model.

Nr Indicator Quality characteristic affected Evaluation
I-29 Abstraction level Usability Section 6.2.2
I-1 Accompanying text description Appropriateness recognisability Section 6.1.3
I-3 Anonymous class count Usability Section 6.2.2
I-3 Anonymous class count Resulting performance efficiency Section 6.3.2
I-30 Average class in-degree Resulting performance efficiency [129, 131]
I-31 Average class out-degree Resulting performance efficiency [129, 131]
I-6 Class to property ratio Usability Section 6.2.2
I-32 Common pitfalls description User error protection Section 6.1.3
I-7 Competency question count Appropriateness recognisability Section 6.1.3
I-33 Cyclomatic complexity Resulting performance efficiency [129, 131]
I-10 Documentation minimalism Learnability Section 6.2.2
I-12 Example illustration count Learnability Section 6.2.2
I-34 Existential quantification count Resulting performance efficiency [129]
I-35 OWL 2 EL Adherence Resulting performance efficiency [127, 128]
I-36 OWL 2 QL Adherence Resulting performance efficiency [127, 128]
I-37 OWL 2 RL Adherence Resulting performance efficiency [127, 128]
I-38 OWL Horst Adherence Resulting performance efficiency [125, 126]
I-18 Property domain restrictions Learnability Section 6.2.2
I-18 Property domain restrictions Resulting performance efficiency Section 6.3.2
I-19 Property range restrictions Learnability Section 6.2.2
I-19 Property range restrictions Resulting performance efficiency Section 6.3.2
I-21 Size Learnability Section 6.1.3
I-22 Structure illustration Appropriateness recognisability Section 6.1.3
I-24 Subsumption hierarchy depth Resulting performance efficiency [129, 130, 131]
I-25 Tangledness Resulting performance efficiency [129, 131]
I-26 Terminological cycle count Resulting performance efficiency [100]
I-27 Transitive import count Reusability Section 6.1.3
I-27 Transitive import count Usability Section 6.1.3

7.3.1 Updated Indicators

I-1 Accompanying text description

Method: Check that the ODP OWL file is associated with a textual de-
scription document or webpage.
Scale: Nominal (boolean)
Affects characteristics (evaluated): Appropriateness recognisability (pos-
itively)

I-3 Anonymous class count

Method: Count the cardinality of the set of anonymous classes in the
associated OWL file.
Scale: Ratio
Recommendation: Anonymous classes that result from restrictions on
classes are helpful in terms of learnability and usability and their use is
recommended if these are prioritised qualities. Patterns that display high
number of anonymous classes not associated with such restrictions are not
known to have these effects and are not recommended.
Affects characteristics (evaluated): Usability (positively), Resulting
performance efficiency (negatively)

133

Chapter 7. Refined ODP Quality Model

Table 7.2: Unevaluated indicator effects of the refined quality model.

Nr Indicator Quality characteristic affected
I-2 Annotation ratio Compatibility
I-2 Annotation ratio Maintainability
I-2 Annotation ratio Usability
I-4 Axiom/class ratio Analysability
I-5 Class disjointness ratio Resulting performance efficiency
I-7 Competency question count Learnability
I-11 Example text count Appropriateness recognisability
I-11 Example text count Learnability
I-13 Functionality questionnaire time Learnability
I-14 Minimalism Compatibility
I-14 Minimalism Learnability
I-14 Minimalism Operability
I-15 Modification task time Modifiability
I-16 Nary relation count Resulting performance efficiency
I-16 Nary relation count Usability
I-17 OntoClean adherence Functional suitability
I-18 Property domain restrictions Reusability
I-19 Property range restrictions Reusability
I-20 Redundant axiom count Resulting performance efficiency
I-20 Redundant axiom count Usability
I-21 Size Analysability
I-22 Structure illustration Learnability
I-23 Subsumption hierarchy breadth Usability
I-24 Subsumption hierarchy depth Usability
I-25 Tangledness Compatibility
I-25 Tangledness Usability
I-27 Transitive import count Resulting performance efficiency
I-28 User evaluation ranking Usability

I-7 Competency question count

Method: Divide the number of competency questions expressed in the pat-
tern documentation by the size (I-21) of the ODP.
Scale: Ratio
Recommendation: Competency questions should be viewed as require-
ments on the ODP, such that any functionality of the ODP that is not
explicitly touched upon by at least one competency question should be con-
sidered non-essential.
Affects characteristics (evaluated): Appropriateness recognisability (pos-
itively)
Affects characteristics (unevaluated): Learnability (positively)

I-18 Property domain restrictions ratio

Method: Divide the cardinality of the set of properties that have defined
domain restrictions with the cardinality of the set of all properties in the
ODP.
Scale: Ratio
Recommendation: If the ODP is to be used in a scenario where pattern
learnability is important, use domain restrictions extensively to document
property and class behaviour. If the ODP is to be used in a scenario where
performance is important, avoid the use of such restrictions.

134

7.3. Indicators and Effects

Affects characteristics (evaluated): Learnability (positively), Resulting
performance efficiency (negatively)
Affects characteristics (unevaluated): Reusability (negatively)

I-19 Property range restrictions ratio

Method: Divide the cardinality of the set of properties that have defined
range restrictions with the cardinality of the set of all properties in the ODP.
Scale: Ratio
Recommendation: If the ODP is to be used in a scenario where pattern
learnability is important, use range restrictions extensively to document
property and class behaviour. If the ODP is to be used in a scenario where
performance is important, avoid the use of such restrictions.
Affects characteristics (evaluated): Learnability (positively), Resulting
performance efficiency (negatively)
Affects characteristics (unevaluated): Reusability (negatively)

I-22 Structure illustration

Method: Assert that the ODP documentation includes at least one illus-
tration of the classes and properties proposed by the pattern and how they
relate.
Scale: Nominal (boolean)
Affects characteristics (evaluated): Appropriateness recognisability (pos-
itively)
Affects characteristics (unevaluated): Learnability (positively)

I-24 Subsumption hierarchy depth

Method: Define an ancestor path as a path through the asserted subsump-
tion hierarchy linking a leaf node concept to the top-level concept owl:Thing
. Define the depth of an ancestor path as the cardinality of that path. The
average depth of the ODP is then the sum of all depths in the ODP divided
by the cardinality of the set of ancestor paths.
Scale: Ratio
Affects characteristics (evaluated): Resulting performance efficiency
(negative)
Affects characteristics (unevaluated): Usability (directionality unknown)

I-25 Tangledness

Method: Classify the ODP using a reasoner. Then divide the cardinality
of the set of named classes which have more than one named superclass by
the cardinality of the set of all classes in the ODP.
Scale: Ratio
Affects characteristics (evaluated): Resulting performance efficiency

135

Chapter 7. Refined ODP Quality Model

(negatively)
Affects characteristics (unevaluated): Compatibility (negatively), Us-
ability (negatively)

I-27 Transitive import count

Method: Calculate the cardinality of the set of OWL files found through
a recursive search over the import hierarchy of the original reusable OWL
building block associated with the ODP.
Scale: Ratio
Recommendation: Be aware of the semantics of the OWL imports func-
tion, i.e., that it necessitates accepting as true the whole import closure
within your context. Consequently, avoid importing ontologies that have a
large import closure, or that are not strictly necessary for functionality.
Affects characteristics (evaluated): Reusability (negatively), Usability
(directionality unknown)
Affects characteristics (unevaluated): Resulting performance efficiency
(negatively)

7.3.2 New Indicators

I-29 Abstraction level

Method: Provide a representative group of ODP users with a survey over
the set of patterns for which this indicator is to be measured, querying
them for their opinion on the abstraction level of each pattern, from high
to low. Ensure that the users are given sufficient time to study and apply
the patterns in test scenarios before answering the survey. Providing the
users with multiple patterns allows them to see a variation of patterns that
makes it easier for them to answer confidently (especially if they lack prior
experience of ODPs). As a benchmark of survey reliability (a sort of gold
standard), include in the studied set a number of patterns with a priori
known abstraction levels.
Scale: Ordinal
Affects characteristics (evaluated): Usability (negatively)

I-30 Average class in-degree

Method: Calculate the average number of ingoing RDF edges that OWL
classes in the ODP have.
Scale: Ratio
Affects characteristics (evaluated): Resulting performance efficiency
(negatively)

136

7.3. Indicators and Effects

I-31 Average class out-degree

Method: Calculate the average number of outgoing RDF edges OWL
classes in the ODP have.
Scale: Ratio
Affects characteristics (evaluated): Resulting performance efficiency
(negatively)

I-32 Common pitfalls description

Method: Assert that the ODP documentation contains a description of
common usage mistakes for said ODP.
Scale: Nominal (boolean)
Affects characteristics (evaluated): User error protection (positively)

I-33 Cyclomatic complexity

Method: Calculate the cyclomatic complexity of the ODP graph, per the
following formula: CYC = #E–#N + 2*cc, where #E is the number of
edges in the RDF graph, #N is the number of nodes, and cc is the number
of strongly connected components.
Scale: Ratio
Affects characteristics (evaluated): Resulting performance efficiency
(negatively)

I-34 Existential quantification count

Method: Count the cardinality of the set of existential quantification ax-
ioms in the ODP.
Scale: Ratio
Recommendation: While limiting the number of existential quantification
axioms is helpful for increasing performance, it is not recommended to do
this via translation of said axioms into semantically equivalent cardinality
axioms with a limit of one, as this may put the ODP outside of an easily
computable OWL 2 profile.
Affects characteristics (evaluated): Resulting performance efficiency
(negatively)

I-35 OWL 2 EL Adherence

Method: Assert that the ODP uses only such axioms which are allowed
under the OWL 2 EL profile.
Scale: Nominal (boolean)
Recommendation: The EL profile is developed for efficient reasoning over
ontologies containing many classes or properties. If the ODP is to be ap-
plied in the construction of such an ontology, compliance with this profile is
important.

137

Chapter 7. Refined ODP Quality Model

Affects characteristics (evaluated): Resulting performance efficiency
(positively)

I-36 OWL 2 QL Adherence

Method: Assert that the ODP uses only such axioms which are allowed
under the OWL 2 QL profile.
Scale: Nominal (boolean)
Recommendation: The QL profile is developed for efficient query answer-
ing over ontologies or knowledge bases containing large amounts of instance
data. If the ODP is to be applied in the construction of an ontology used
for such a purpose, compliance with this profile is important.
Affects characteristics (evaluated): Resulting performance efficiency
(positively)

I-37 OWL 2 RL Adherence

Method: Assert that the ODP uses only such axioms which are allowed
under the OWL 2 RL profile.
Scale: Nominal (boolean)
Recommendation: The RL profile is developed for efficient reasoning us-
ing traditional rule engine based technologies. If the ODP is to be applied in
the construction of an ontology for use with such technologies, compliance
with this profile is important.
Affects characteristics (evaluated): Resulting performance efficiency
(positively)

I-38 OWL Horst Adherence

Method: Assert that the ODP uses only such axioms which are allowed
under the OWL Horst dialect of OWL.
Scale: Nominal (boolean)
Recommendation: OWL Horst can scale out over a MapReduce-based
computation cluster. If the ODP is to be used in the construction of an
ontology used with simpler reasoning over very large amounts of data, com-
pliance with OWL Horst is important.
Affects characteristics (evaluated): Resulting performance efficiency
(positively)

138

Chapter 8

Conclusions and Future
Work

The following chapter revisits the initial motivation for this thesis project,
presents the contributions of the work, discusses how the performed work
has helped answer the research questions, and suggests areas of continued
study regarding the quality of Ontology Design Patterns.

8.1 Summary of Contributions

The problems associated with traditional ontology engineering are intro-
duced and discussed in Chapter 1 and Chapter 2. The core of the problem
is that the complexity of the ontology representation languages and tools
necessitate ontology engineers having extensive experiences of knowledge
modelling issues and formal logics, in addition to the domain for which the
ontology is developed. This slows the uptake of semantic technologies in
non-academic settings, where these technologies are perceived to be difficult
to learn and apply, and where consequently, relatively simple vocabular-
ies are used instead. Ontology Design Patterns are proposed to alleviate
this problem by providing non-experts with reusable building blocks, sup-
porting them in developing ontologies and employing semantic technologies.
However, as shown in Section 2.5, there is no established understanding on
how such patterns are best developed (or as it may be, found, isolated, or
generated), what the guiding principles for such development should be, or
what qualities patterns should display in order to be helpful and usable for
different purposes. Consequently the development and use of patterns by
non-academics remain limited.

This thesis project was motivated by the need for developing an under-
standing of Ontology Design Pattern quality, such that these patterns can
more easily be developed and used by practitioners. To this end, an On-

139

Chapter 8. Conclusions and Future Work

tology Design Pattern quality model was developed. The model has two
purposes. As a research artefact, it has proven valuable in structuring the
phenomena and effects under study, and to help devise case studies and ex-
periments. As a project deliverable, it packages and provides the developed
understanding of ODP quality, in a format accessible to practitioners.

In Chapter 1 a list of the expected contributions of this thesis project
was presented. That list is repeated here, with comments:

• A conceptual understanding of quality, as it relates to Ontology Design
Patterns.

The ODP Quality Metamodel, presented in Section 5.1, provides a
perspective on how to break apart the quality concept in an Ontol-
ogy Design Pattern context. Its design was influenced by the results
of the MAPPER project [67], which helped provide a conceptual un-
derstanding of quality in modelling. An important attribute of this
understanding of ODP quality is the difference it makes between qual-
ity characteristics and indicators, where the former represent perspec-
tives on quality which are not directly measurable, and the latter are
quantifiable and measurable properties that contribute to said qual-
ity characteristics. Another important attribute of the quality meta-
model is how it defines the importance of quality characteristics as
being context-bounded; that is, quality characteristics are not in and
of themselves said to be of a certain importance in the general case, but
depending on the priorities of the ontology engineering situation they
may be more or less important. This ODP Quality Metamodel can be
used as a starting point for researchers discussing ODP quality, and
further populated with developed or discovered quality characteristics
and indicators in the future.

• A set of Ontology Design Pattern quality characteristics, capturing the
different relevant perspectives on ODP quality.

Section 7.2 presents the ODP quality model set of quality character-
istics, with definitions. These quality characteristics were developed
by reusing existing work in neighbouring fields, as described in Sec-
tions 5.2.1 and 5.2.2. Key influences in this process were the ISO
25010 [70] software quality standard, and the PhD thesis “On the
Quality of Feature Models” by Christer Thörn [69]. Both practition-
ers and researchers can make use of these quality characteristics; the
former using them to prioritise requirements on constituent ODPs in
ontology engineering projects involving patterns, and the latter using
them as a framework to connect studied or developed indicators.

• Indicators and methods for quantifying and measuring ODP quality
characteristics.

Section 7.3 presents the ODP quality model set of indicators, used to
measure the above mentioned quality characteristics. These indicators

140

8.2. Research Questions Revisited

were first developed by reusing existing work in neighbouring fields, as
described in Sections 5.2.3, 5.2.4, and 5.3. Several of them were then
evaluated and developed further as described in Chapter 6. These
indicators may be used by practitioners in evaluating and selecting
between pattern candidates suitable for use in ontology engineering
projects, based on the effect that the indicators have on the wanted
quality characteristics.

• Recommendations on suitable values for said indicators, or aspects to
consider when measuring them.

The indicators presented in Section 7.3 are in many cases associated
with concrete recommendations for ontology engineers to consider.
These recommendations are based on observations and experiences
from the evaluation of ODP quality in Chapter 6. They provide fur-
ther guidance to practitioners on reasonable indicator values given the
intended ODP or ontology usage.

The resulting ODP quality model is presented in full in Chapter 7. It
is the main contribution of this thesis, and provides answers to the initially
posed research questions, as shown in Section 8.2.

8.2 Research Questions Revisited

Revisiting the research questions established in Chapter 1, those were:

1. Which quality characteristics of Content Ontology Design Patterns can
be differentiated, and through what indicators can they be measured
and observed?

2. How do the quality characteristics of Content Ontology Design Pat-
terns interact and affect one another?

The first question is answered through the developed and partially eval-
uated quality model presented in Chapter 7. The quality model includes a
set of quality characteristics believed, and in some cases also observed, to be
relevant and useful in ontology engineering scenarios where Ontology Design
Patterns are used. This listing of quality characteristics is an answer to the
first half of the first question. The model also includes a set of measurable
indicators in Section 7.3, complete with methods and scales, contributing to
these quality characteristics. This listing of indicators provide an answer to
the second half of the first research question.

The answer to the second question can be inferred from Table 7.1, where
it is observed that some indicators are found to have effects on multiple
quality characteristics. For instance, the number of anonymous classes af-
fect the usability of a pattern positively, and the performance efficiency of
the same pattern negatively. Similar conflicting effects can also be seen in

141

Chapter 8. Conclusions and Future Work

the indicators on the ratio of properties that have domain and range restric-
tions set. This implies that in an ontology engineering situation a choice
needs to be made regarding the tradeoff between the usability and learnabil-
ity quality characteristics on the one hand, and the performance efficiency
quality characteristic on the other. This result is in line with the observa-
tion made in [127] that some established learnability-related good practices
in pattern design (such as always declaring inverse properties) are incom-
patible with the OWL 2 EL profile and consequently significantly reduce the
performance efficiency of ontologies. Pattern users and designers need to be
aware of this tradeoff in order to select the patterns that are most suitable
to their use cases. Other tradeoffs for developers to keep in mind concern
the reusability and usability of ODPs that employ a high degree of import
statements, which have shown to be both potentially helpful in validating
design choices, and restrictive in terms of lowering reuse potential of ODPs,
as discussed in Section 6.1.3.

It is important to note that neither of the two research questions have
been exhaustively answered. There are several quality characteristics and
indicators that have support in literature but which have not yet been evalu-
ated and tested. In particular, quality characteristics and indicators relating
toMaintainability and Compatibility are in need of more study, as such qual-
ity characteristics are likely to have impact on ontology maintenance costs,
which could be a hindrance for the adoption of Semantic Web ontologies in
enterprises. There are also most likely more indicator effects waiting to be
found through further empirical evaluation of the model, effects which could
interact in ways requiring more tradeoff choices to be made.

8.3 Future Work

The work presented in this thesis has answered the original research ques-
tions, but it has also opened up possibilities for further exploration and
research. As has been touched upon in Section 8.2, the ODP quality model
presented in this work can be strengthened in several ways, allowing the
original research questions to be more exhaustively answered. The effects
described in the quality model are generally based on observations from one
or two cases, or experiments, each, and in order to increase the validity of
the model, more extensive evaluation of these effects would be helpful. Also,
several quality characteristics and indicators have not yet been evaluated,
and are supported only by theory. Evaluating the effects of these indica-
tors and the need for these quality characteristics would also strengthen the
ODP quality model.

The work performed in this thesis project has illustrated the need for an-
other research question to be studied, namely Which quality characteristics
of Content Ontology Design Patterns affect the suitability of the resulting
ontologies for different uses? As shown in the previous section it is clear
that the use case in which an ODP is applied matters greatly in terms of

142

8.3. Future Work

which qualities and consequently indicators should be prioritised. There-
fore, validating the way in which the ODP quality metamodel defines an
ontology use case, as well as investigating which typical use cases exist and
which quality characteristics that support them, would be highly beneficial
to pattern users. Closely related to this is the question of how user compe-
tence and background affect modelling performance and results in different
cases.

While the Ontology Design Pattern quality model is intended to be help-
ful for practitioners on its own, it could benefit users more if matched by
guidelines on how to best apply the model in practice. Such guidelines
would cover both selection of ODPs based on prioritised quality characteris-
tics, and the development of ODPs displaying such qualities as required for
particular use cases. Developing such a set of guidelines is a natural next
step in development of the ODP quality model.

Finally, there are some more practical developments in terms of tooling
and methods that could be beneficial to the research community if developed
after the end of this thesis project. Firstly, the OntoStats tool developed
for measuring ODP indicators in the evaluation of performance-related in-
dicators provides a rather simple way for measuring various metrics of on-
tologies, Ontology Design Patterns, and serialised knowledge bases either
individually or in bulk. The development of more plugins for this tool could
potentially help other researchers avoid reinventing the wheel. Secondly, the
knowledge fusion case study resulted in several suggestions for improvement
to the ODP portal, which certainly merit attention. These include an im-
proved search engine, a better and more task-oriented pattern classification
system, and clearer visualisation of pattern interdependencies.

143

Chapter 8. Conclusions and Future Work

144

Bibliography

[1] K. Sandkuhl. Information Logistics in Networked Organizations: Se-
lected Concepts and Applications. In Enterprise Information Systems:
9th International Conference, ICEIS 2007, Funchal, Madeira, June
12-16, 2007, Revised Selected Papers, volume 12, page 43. Springer
Verlag, 2008.

[2] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge Engineering:
Principles and methods. Data & knowledge Engineering, 25(1):161–
197, 1998.

[3] V. Tarasov and M. Lundqvist. Modeling Collaborative Design Com-
petence with Ontologies. International Journal of e-Collaboration
(IJeC), 3(4):46–62, 2007.

[4] K. Sandkuhl and A. Billig. Ontology-based artefact management in
automotive electronics. International Journal of Computer Integrated
Manufacturing, 20(7):627–638, 2007.

[5] A. Smirnov, M. Pashkin, N. Chilov, and T. Levashova. Knowledge lo-
gistics in information grid environment. Future Generation Computer
Systems, 20(1):61–79, 2004.

[6] E. Blomqvist and K. Sandkuhl. Patterns in Ontology Engineering:
Classification of Ontology Patterns. In ICEIS 2005: proceedings of the
Seventh International Conference on Enterprise Information Systems,
Miami, USA, May 25-28, 2005, 2005.

[7] A. Gangemi. Ontology Design Patterns for Semantic Web Content.
In The Semantic Web–ISWC 2005, pages 262–276. Springer, 2005.

[8] V. Presutti, A. Gangemi, S. David, G. Aguado de Cea, M. C. Suárez-
Figueroa, E. Montiel-Ponsoda, and M. Poveda. D2.5.1: A Library
of Ontology Design Patterns: Reusable Solutions for Collaborative
Design of Networked Ontologies. Technical report, NeOn Project,
2007.

145

Bibliography

[9] E. Blomqvist, A. Gangemi, and V. Presutti. Experiments on Pattern-
based Ontology Design. In Proceedings of the Fifth International Con-
ference on Knowledge Capture, pages 41–48. ACM, 2009.

[10] K. Hammar and K. Sandkuhl. The State of Ontology Pattern Re-
search: A Systematic Review of ISWC, ESWC and ASWC 2005–2009.
In Workshop on Ontology Patterns: Papers and Patterns from the
ISWC workshop, pages 5–17, 2010.

[11] R.L. Ackoff. From Data to Wisdom. Journal of Applied Systems
Analysis, 16:3–9, 1989.

[12] G. Bellinger, D. Castro, and A. Mills. Data, Information, Knowledge,
and Wisdom. http://www.systems-thinking.org/dikw/dikw.htm,
checked on: 2012-09-28, 2004.

[13] H. Tsoukas and E. Vladimirou. What is organizational knowledge?
Journal of Management Studies, 38(7):973–993, 2001.

[14] R. D. Stacey. Complex responsive processes in organizations: Learning
and knowledge creation. Psychology Press, 2001.

[15] A. Newell. The knowledge level: Presidential address. AI Magazine,
2(2):1, 1981.

[16] F. Baader. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge: Cambridge University Press, 2003.

[17] T. R. Gruber. A Translation Approach to Portable Ontology Specifi-
cations. Knowledge Acquisition, pages 199–220, 1993.

[18] J. Z. Pan. Resource Description Framework. In Handbook on Ontolo-
gies, pages 71–90. Springer, 2009.

[19] G. Antoniou and F. Van Harmelen. Web Ontology Language: OWL.
In Handbook on Ontologies, pages 91–110. Springer, 2009.

[20] S. Staab and R. Studer, editors. Handbook on Ontologies. Springer,
2009.

[21] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Sci-
entific American, 284(5):28–37, 2001.

[22] T. Berners-Lee. Semantic Web on XML. Talk held at XML 2000
conference in Washington DC, slides published at http://www.w3.

org/2000/Talks/1206-xml2k-tbl/slide10-0.html, 2000.

[23] G. Klyne and J. J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax. Technical report, W3C, 2004.

146

Bibliography

[24] D. Brickley and R.V. Guha. RDF Vocabulary Description Language
1.0: RDF Schema. Technical report, W3C, 2004.

[25] L.W. Lacy. OWL: Representing Information Using the Web Ontology
Language. Trafford Publishing, 2005.

[26] D.L. McGuinness and F. van Harmelen. OWL Web Ontology Lan-
guage Overview. Technical report, W3C, 2004.

[27] W3C OWL Working Group. OWL 2 Web Ontology Language Docu-
ment Overview (Second Edition). Technical report, W3C, 2012.

[28] N. Guarino, editor. Formal Ontology in Information Systems: Pro-
ceedings of the First International Conference (FOIS’98). Ios Press
Inc, 1998.

[29] T. Berners-Lee. Linked Data. http://www.w3.org/DesignIssues/

LinkedData.html, checked on: 2012-10-10, June 2009.

[30] L. Ding, D. DiFranzo, S. Magidson, DL McGuinness, and J. Hendler.
The Data-gov Wiki: A Semantic Web Portal for Linked Government
Data. In Proceedings of the 6th International Conference on Knowl-
edge Capture, 2009.

[31] L. Ding, D. DiFranzo, A. Graves, J.R. Michaelis, X. Li, D.L. McGuin-
ness, and J. Hendler. Data-gov Wiki: Towards Linking Government
Data. In 2010 AAAI Spring Symposium Series, 2010.

[32] R. Guha, R. McCool, and E. Miller. Semantic Search. In Proceedings
of the 12th International Conference on World Wide Web, pages 700–
709. ACM, 2003.

[33] V. Uren, Y. Lei, V. Lopez, H. Liu, E. Motta, and M. Giordanino. The
usability of semantic search tools: a review. The Knowledge Engineer-
ing Review, 22(04):361–377, 2007.

[34] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff. Se-
mantic annotation, indexing, and retrieval. Web Semantics: Science,
Services and Agents on the World Wide Web, 2(1):49–79, 2004.

[35] Y. Lei, V. Uren, and E. Motta. SemSearch: A Search Engine for the
Semantic Web. InManaging Knowledge in a World of Networks, pages
238–245. Springer, 2006.

[36] R. Bhagdev, S. Chapman, F. Ciravegna, V. Lanfranchi, and D. Pe-
trelli. Hybrid Search: Effectively Combining Keywords and Semantic
Searches. In The Semantic Web: Research and Applications, pages
554–568. Springer, 2008.

147

Bibliography

[37] R. Bhagdev, A. Chakravarthy, S. Chapman, F. Ciravegna, and V. Lan-
franchi. Creating and Using Organisational Semantic Webs in Large
Networked Organisations. In The Semantic Web - ISWC 2008, pages
723–736. Springer, 2008.

[38] D.C. Luckham and B. Frasca. Complex Event Processing in Dis-
tributed Systems. Technical report, Stanford University, 1998.

[39] W. Yao, C.H. Chu, and Z. Li. Leveraging complex event processing
for smart hospitals using RFID. Journal of Network and Computer
Applications, 2010.

[40] G. Hermosillo, L. Seinturier, and L. Duchien. Using Complex Event
Processing for Dynamic Business Process Adaptation. In Proceedings
of the 7th IEEE 2010 International Conference on Services Computing
(SCC 2010), pages 466–473. IEEE, 2010.

[41] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream reasoning
and complex event processing in ETALIS. Semantic Web, 2011.

[42] D.F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus.
C-SPARQL: SPARQL for Continuous Querying. In Proceedings of the
18th International Conference on World Wide Web, pages 1061–1062.
ACM, 2009.

[43] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, Y. Huang, V. Tresp,
A. Rettinger, and H. Wermser. Deductive and Inductive Stream
Reasoning for Semantic Social Media Analytics. Intelligent Systems,
IEEE, PP: 99:1–1, 2010.

[44] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. In-
cremental Reasoning on Streams and Rich Background Knowledge. In
The Semantic Web: Research and Applications, pages 1–15. Springer,
2010.

[45] V. Tarasov. Ontology-based Approach to Competence Profile Man-
agement. Journal of Universal Computer Science, 18(20):2893–2919,
2012.

[46] A. Billig, E. Blomqvist, and F. Lin. Semantic Matching Based on
Enterprise Ontologies. In On the Move to Meaningful Internet Systems
2007: CoopIS, DOA, ODBASE, GADA, and IS, pages 1161–1168.
Springer, 2007.

[47] A. Ranganathan and R. H. Campbell. A Middleware for Context-
Aware Agents in Ubiquitous Computing Environments. InMiddleware
2003, pages 143–161. Springer-Verlag New York, Inc., 2003.

148

Bibliography

[48] H. Chen, T. Finin, and A. Joshi. An ontology for context-aware per-
vasive computing environments. The Knowledge Engineering Review,
18(03):197–207, 2003.

[49] M. Gruninger and M. S. Fox. The Role of Competency Questions in
Enterprise Engineering. In Proceedings of the IFIP WG5, volume 7,
pages 212–221, 1994.

[50] M. Fernández-López, A. Gómez-Pérez, and N. Juristo. METHON-
TOLOGY: From Ontological Art Towards Ontological Engineering.
Technical report, American Association for Artificial Intelligence,
1997.

[51] Y. Sure, S. Staab, and R. Studer. On-To-Knowledge Methodology
(OTKM). In Handbook on Ontologies. Springer, 2003.

[52] S. Pinto, S. Staab, Y. Sure, and C. Tempich. OntoEdit Empowering
SWAP: a Case Study in Supporting DIstributed, Loosely-Controlled
and evolvInG Engineering of oNTologies (DILIGENT). In The Se-
mantic Web: Research and Applications, pages 16–30. Springer, 2004.

[53] H. S. Pinto, S. Staab, C. Tempich, and Y. Sure. Distributed Engineer-
ing of Ontologies (DILIGENT). In Semantic Web and Peer-to-Peer,
pages 303–322. Springer, 2006.

[54] N. Noy and D. L. McGuinness. Ontology Development 101. Technical
report, Knowledge Systems Laboratory, Stanford University, 2001.

[55] E. Blomqvist. Semi-automatic Ontology Construction based on Pat-
terns. PhD thesis, Linköping University, 2009.

[56] A. Gangemi and V. Presutti. Ontology Design Patterns. In Handbook
on Ontologies, pages 221–243. Springer, 2009.

[57] E. Daga, E. Blomqvist, A. Gangemi, E. Montiel, N. Nikitina, V. Pre-
sutti, and B. Villazon-Terrazas. D2.5.2: Pattern based ontology de-
sign: methodology and software support. Technical report, NeOn
Project, 2007.

[58] E. Blomqvist, K. Sandkuhl, F. Scharffe, and V. Svatek, editors. WOP
2009: Proceedings of the Workshop on Ontology Patterns. CEUR
Workshop Proceedings, 2009.

[59] E. Blomqvist, V.K. Chaudhri, O. Corcho, V. Presutti, and K. Sand-
kuhl, editors. WOP 2010: Proceedings of the 2nd International Work-
shop on Ontology Patterns. CEUR Workshop Proceedings, 2010.

[60] E. Blomqvist, A. Gangemi, K. Hammar, and M. C. Suárez-Figueroa,
editors. WOP 2012: Proceedings of the 3rd Workshop on Ontology
Patterns. CEUR Workshop Proceedings, 2012.

149

Bibliography

[61] M. Dzbor, M. C. Suárez-Figueroa, E. Blomqvist, H. Lewen, M. Es-
pinoza, A. Gómez-Pérez, and R. Palma. D5.6.2 Experimentation and
Evaluation of the NeOnMethodology. Technical report, NeOn Project,
2007.

[62] F. Van Harmelen, A. Ten Teije, and H. Wache. Knowledge Engineering
Rediscovered: Towards Reasoning Patterns for the Semantic Web. In
The Fifth International Conference on Knowledge Capture, pages 81–
88, 2009.

[63] M. A. Hearst. Automatic Acquisition of Hyponyms from Large Text
Corpora. In Proceedings of the 14th Conference on Computational
Linguistics - Volume 2, pages 539–545. Association for Computational
Linguistics, 1992.

[64] V. Presutti, E. Daga, A. Gangemi, and E. Blomqvist. eXtreme Design
with Content Ontology Design Patterns. In Proceedings of the Work-
shop on Ontology Patterns (WOP 2009), collocated with International
Semantic Web Conference (ISWC 2009), page 83, 2009.

[65] V. Presutti, E. Blomqvist, E. Daga, and A. Gangemi. Pattern-Based
Ontology Design. In Ontology Engineering in a Networked World,
pages 35–64. Springer, 2012.

[66] M. Ivarsson and T. Gorschek. Technology transfer decision support
in requirements engineering research: a systematic review of REj. Re-
quirements Engineering, 14(3):155–175, 2009.

[67] K. Sandkuhl, H. Tellioglu, and S. Johnsen. Orchestrating Economic,
Socio-Technical and Technical Validation using Visual Modelling. In
16th European Conference on Information Systems: ECIS 2008, 2008.

[68] G. M. Campagnolo, G. Jacucci, S. G. Johnsen, O-W. Rahlff, K. Sand-
kuhl, H. Tellioglu, and I. Wagner. MAPPER Deliverable D3 - Frame-
work for Validation of Economic, Socio-Technical and Technical View-
points. Technical report, MAPPER Consortium, 2006.

[69] C. Thörn. On the Quality of Feature Models. PhD thesis, Department
of Computer and Information Science, Linköpings Universitet, 2010.

[70] ISO. ISO/IEC 25010: Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - Sys-
tem and software quality models. Technical report, International Or-
ganization for Standardization, 2011.

[71] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing Cardinality-
based Feature Models and their Specialization. Software Process: Im-
provement and Practice, 10(1):7–29, 2005.

150

Bibliography

[72] J. Sun, H. Zhang, Y. Fang, and L.H. Wang. Formal Semantics and
Verification for Feature Modeling. In Proceedings of the 10th Inter-
national Conference on Engineering of Complex Computer Systems
(ICECCS 2005), pages 303–312. IEEE, 2005.

[73] M. Eriksson, J. Börstler, and K. Borg. Software product line modeling
made practical. Communications of the ACM, 49(12):49–54, 2006.

[74] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COVAMOF: A
Framework for Modeling Variability in Software Product Families. In
Software Product Lines, pages 25–27. Springer, 2004.

[75] D. Batory, C. Johnson, B. MacDonald, and D. Von Heeder. Achieving
Extensibility Through Product-Lines and Domain-Specific Languages:
A Case Study. In Software Reuse: Advances in Software Reusability,
pages 83–153. Springer, 2000.

[76] M. Genero, G. Poels, and M. Piattini. Defining and Validating Mea-
sures for Conceptual Data Model Quality. In Advanced Information
Systems Engineering, pages 724–727. Springer, 2006.

[77] D. Moody and G. Shanks. What Makes a Good Data Model? Evaluat-
ing the Quality of Entity Relationship Models. In Entity-Relationship
Approach – ER ’94 Business Modelling and Re-Engineering, pages
94–111. Springer, 1994.

[78] O.I. Lindland, G. Sindre, and A. Solvberg. Understanding Quality in
Conceptual Modeling. Software, IEEE, 11(2):42–49, 1994.

[79] R. Watts. Measuring software quality. NCC Publications, 1987.

[80] J. McCall, P. Richards, and G. Walters. Factors in software quality.
National Technical Information Service, 1977.

[81] K. Beck, R. Crocker, G. Meszaros, J. Vlissides, J. O. Coplien, L. Do-
minick, and F. Paulisch. Industrial Experience with Design Patterns.
In Proceedings of the 18th International Conference on Software En-
gineering, pages 103–114. IEEE Computer Society, 1996.

[82] G. Masuda, N. Sakamoto, and K. Ushijima. Applying Design Pat-
terns to Decision Tree Learning System. In ACM SIGSOFT Software
Engineering Notes, volume 23, pages 111–120. ACM, 1998.

[83] S. Chen and B. W. Morris. Using Design Patterns, Analysis Pat-
tern, and Case-Based Reasoning to Improve Information Modeling and
Method Engineering in Systems Development. International Journal
of Applied Management and Technology, 7(1):7, 2009.

151

Bibliography

[84] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy.
Two Controlled Experiments Assessing the Usefulness of Design Pat-
tern Documentation in Program Maintenance. Software Engineering,
IEEE Transactions on, 28(6):595–606, 2002.

[85] N-L. Hsueh, P-H. Chu, and W. Chu. A quantitative approach for
evaluating the quality of design patterns. Journal of Systems and
Software, 81(8):1430–1439, 2008.

[86] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented
design quality assessment. Software Engineering, IEEE Transactions
on, 28(1):4–17, 2002.

[87] A. Gómez-Pérez, M Fernandez-Lopez, and O Corcho. Ontological En-
gineering. Springer-Verlag, London, Berlin, 2004.

[88] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann. Modelling
Ontology Evaluation and Validation. In The Semantic Web: Research
and Applications, pages 140–154. Springer, 2006.

[89] A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann, R. Gil, F. Bol-
ici, and O. Strignano. Ontology evaluation and validation. Technical
report, Laboratory for Applied Ontology, ISTC-CNR, 2005.

[90] A. Lozano-Tello and A. Gómez-Pérez. ONTOMETRIC: A Method to
Choose the Appropriate Ontology. Journal of Database Management,
2(15):1–18, 2004.

[91] T. L. Saaty. A scaling method for priorities in hierarchical structures.
Journal of Mathematical Psychology, 15(3):234–281, 1977.

[92] C. Welty and N. Guarino. Supporting ontological analysis of tax-
onomic relationships. Data & Knowledge Engineering, 39(1):51–74,
2001.

[93] N. Guarino and C. Welty. Evaluating Ontological Decisions with On-
toClean. Communications of the ACM, 45(2):61–65, 2002.

[94] N. Guarino and C. A. Welty. An Overview of OntoClean. In Handbook
on Ontologies, pages 201–220. Springer, 2009.

[95] P. Spyns, R. Meersman, and M. Jarrar. Data modelling versus Ontol-
ogy engineering. ACM SIGMOD Record, 31(4):12–17, 2002.

[96] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening
WordNet with DOLCE. AI magazine, 24(3):13, 2003.

[97] M. Doerr, J. Hunter, and C. Lagoze. Towards a Core Ontology for
Information Integration. Journal of Digital Information, 4(1), 2006.

152

Bibliography

[98] M. Hepp. GoodRelations: An Ontology for Describing Products and
Services Offers on the Web. In Knowledge Engineering: Practice and
Patterns, pages 329–346. Springer, 2008.

[99] M. Fernández-López and A. Gómez-Pérez. The integration of Onto-
Clean in WebODE. In Proceedings of the EON2002 Workshop at 13th
EKAW, 2002.

[100] L. Lefort, K. Taylor, and D. Ratcliffe. Towards Scalable Ontology
Engineering Patterns: Lessons Learned from an Experiment based
on W3C’s Part-whole Guidelines. In Proceedings of the Second Aus-
tralasian Workshop on Advances in Ontologies, pages 31–40. Aus-
tralian Computer Society, Inc., 2006.

[101] S. Lodhi and Z. Ahmed. Content Ontology Design Pattern Presenta-
tion. Master’s thesis, Jönköping University, 2011.

[102] R. L. Glass, V. Ramesh, and I. Vessey. An Analysis of Research in
Computing Disciplines. Communications of the ACM, 47(6):89–94,
2004.

[103] V. R Basili. The Role of Experimentation in Software Engineering:
Past, Current, and Future. In Proceedings of the 18th International
Conference on Software Engineering, pages 442–449. IEEE Computer
Society, 1996.

[104] D. I-K. Sjøberg, T. Dyb̊a, B. C-D. Anda, and J. E. Hannay. Building
Theories in Software Engineering. In Guide to Advanced Empirical
Software Engineering, pages 312–336. Springer, 2008.

[105] R. B. Johnson and A. J. Onwuegbuzie. Mixed Methods Research: A
Research Paradigm Whose Time Has Come. Educational Researcher,
33(7):14–26, 2004.

[106] G. Morgan and L. Smircich. The Case for Qualitative Research.
Academy of Management Review, pages 491–500, 1980.

[107] R. L. Daft. Learning the Craft of Organizational Research. Academy
of Management Review, pages 539–546, 1983.

[108] L. P. Ruddin. You Can Generalize Stupid! Social Scientists, Bent Fly-
vbjerg, and Case Study Methodology. Qualitative Inquiry, 12(4):797–
812, 2006.

[109] P. Palvia, D. Leary, E. Mao, V. Midha, P. Pinjani, and A.F. Salam.
Research Methodologies in MIS: An Update. Communications of the
Association for Information Systems, 14:526–542, 2004.

153

Bibliography

[110] F. Shull and R. L. Feldmann. Building Theories from Multiple Evi-
dence Sources. In Guide to Advanced Empirical Software Engineering,
pages 337–364. Springer, 2008.

[111] B. Kitchenham. Procedures for Performing Systematic Reviews. Tech-
nical report, Keele University, 2004.

[112] S. Schneider, R. Torkar, and T. Gorschek. Solutions in global software
engineering: A systematic literature review. International Journal of
Information Management, 2012.

[113] S. Easterbrook, J. Singer, M-A. Storey, and D. Damian. Selecting
Empirical Methods for Software Engineering Research. In Guide to
Advanced Empirical Software Engineering, pages 285–311. Springer,
2008.

[114] R. K. Yin. Case Study Research: Design and Methods. SAGE Publi-
cations, Inc., 4 edition, 2009.

[115] C. B. Seaman. Qualitative Methods. In Guide to Advanced Empirical
Software Engineering, pages 35–62. Springer, 2008.

[116] J Singer, S. E. Sim, and T. C. Lethbridge. Software Engineering Data
Collection for Field Studies. In Guide to Advanced Empirical Software
Engineering, pages 9–34. Springer, 2008.

[117] P. Burnard. A method of analysing interview transcripts in qualitative
research. Nurse Education Today, 11(6):461–466, 1991.

[118] K. Hammar, F. Lin, and V. Tarasov. Information Reuse and Inter-
operability with Ontology Patterns and Linked Data. In Business
Information Systems Workshops, pages 168–179. Springer, 2010.

[119] M. Piattini, M. Genero, C. Calero, and G. Alarcos. Data Model Met-
rics. In Handbook of Software Engineering and Knowledge Engineer-
ing, volume 2, pages 215–229. World Scientific Pub Co Inc, 2002.

[120] M. Fowler. Analysis Patterns: Reusable Object Models. Addison-
Wesley, 1997.

[121] D.R. Garrison, M. Cleveland-Innes, M. Koole, and J. Kappelman. Re-
visiting methodological issues in transcript analysis: Negotiated cod-
ing and reliability. The Internet and Higher Education, 9(1):1–8, 2006.

[122] S. S. Stevens. On the Theory of Scales of Measurement. Science,
103(2684):677–680, 1946.

[123] B. B. Brown. Delphi Process: A Methodology Used for the Elicitation
of Opinions of Experts. Technical report, The RAND Corporation,
1968.

154

Bibliography

[124] K. Hammar. Ontology Design Patterns in Use – Lessons Learnt from
an Ontology Engineering Case. In WOP 2012: Proceedings of the 3rd
Workshop on Ontology Patterns, in conjunction with the 11th Inter-
national Semantic Web Conference (ISWC) 2012, 2012.

[125] J. Urbani, S. Kotoulas, E. Oren, and F. Van Harmelen. Scalable
Distributed Reasoning using MapReduce. In The Semantic Web -
ISWC 2009, pages 634–649. Springer, 2009.

[126] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen, and H. Bal.
OWL reasoning with WebPIE: calculating the closure of 100 billion
triples. In The Semantic Web: Research and Applications, pages 213–
227. Springer, 2010.

[127] M. Horridge, M. E. Aranguren, J. Mortensen, M. Musen, and N. F.
Noy. Ontology Design Pattern Language Expressivity Requirements.
In Proceedings of the 3rd Workshop on Ontology Patterns, 2012.

[128] W3C. OWL 2 Web Ontology Language Profiles (Second Edition).
http://www.w3.org/TR/owl2-profiles/, checked on: 2013-02-27.

[129] Y-B. Kang, Y-F. Li, and S. Krishnaswamy. Predicting Reasoning
Performance Using Ontology Metrics. In The Semantic Web – ISWC
2012, pages 198–214, 2012.

[130] P. LePendu, N. Noy, C. Jonquet, P. Alexander, N. Shah, and
M. Musen. Optimize First, Buy Later: Analyzing Metrics to Ramp-up
Very Large Knowledge Bases. In The Semantic Web – ISWC 2010,
pages 486–501. Springer, 2010.

[131] H. Zhang, Y-F. Li, and H. B. K. Tan. Measuring design complexity of
semantic web ontologies. Journal of Systems and Software, 83(5):803–
814, 2010.

[132] R. S. Goncalves, B. Parsia, and U. Sattler. Performance Heterogeneity
and Approximate Reasoning in Description Logic Ontologies. In The
Semantic Web – ISWC 2012, pages 82–98, 2012.

155

Bibliography

156

List of Figures

2.1 Ackoff’s Knowledge Hierarchy 8
2.2 Course ontology example . 11
2.3 Course data expressed using the ontology in Figure 2.2 11
2.4 The Semantic Web layer cake (adapted from [22]) 14
2.5 Guarino’s ontology classification hierarchy [28] 17
2.6 Context Dependant Information ODP 31
2.7 NeOn ODP Typology [8] . 33
2.8 Blomqvist’s ODP Typology [55] 35
2.9 XD Pattern Selection Approach [64] 36
2.10 XD Workflow (adapted from [64]) 37

3.1 MAPPER validation framework metamodel [67, 68] 47

4.1 Licentiate project method overview 67
4.2 ODP literature study overview. 68
4.3 Performance indicator evaluation method 82

5.1 Quality Metamodel . 86

6.1 Class in-degree and Class to property ratio distributions . . . 123
6.2 Class out-degree and Anonymous class count distributions . . 125
6.3 Subsumption depth indicator variance 126

7.1 Quality Metamodel . 130

157

List of Figures

158

List of Tables

2.1 ODP papers by year . 39
2.2 Institutes by paper count . 39
2.3 Classification of the reviewed papers’ connection to ODPs. . . 40
2.4 Validation levels of reviewed papers. 40
2.5 Quality of empirical validations. 40
2.6 Institution counts . 41
2.7 ODP importance classification of reviewed papers. 41

3.1 ISO 25010 Quality In Use Model (adapted from [70]) 51
3.2 ISO 25010 Product Quality Model (adapted from [70]) 52

4.1 Content categories and definitions. 70

5.1 ODP Quality Model after ISO 25010 adaptation 90
5.2 Mapping of Thörn quality characteristics to ISO 25010 90
5.3 Thörn initial quality model mapping to ODP quality charac-

teristics . 92
5.4 ODP Quality Model after reusing Thörn [69] 92
5.5 Initial model indicator summary. 101

6.1 ODPs provided for case study participants 109
6.2 Distribution of fragments to codes. 110
6.3 ODPs used in learnability and usability evaluations. 115
6.4 Survey 1: competency question recognition correctness ratio. 115
6.5 Survey 1: class recognition correctness ratio. 116
6.6 Survey 1: time required to answer questions. 116
6.7 Task times (in minutes) and learnability metrics. 116
6.8 Perceived usability and learnability effects of indicators from

survey 2. 117
6.9 Performance related indicator summary. 128

7.1 Evaluated indicator effects of the refined quality model. . . . 133
7.2 Unevaluated indicator effects of the refined quality model. . . 134

159

Department of Computer and Information Science
Linköpings universitet

Licentiate Theses

Linköpings Studies in Science and Technology
Faculty of Arts and Sciences

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at: FOA,

Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)
No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-

gorithms, 1984.
No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Computer

Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Systems,

1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge- Bases,

1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm for

Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotational

Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Systems, 1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.

No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.
No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinriktat och

samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En komparativ

studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques, 1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende

arbetssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Companion,

1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap och

metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod, 1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska företag.

1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.

No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.
No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions, 1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värdering och

vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel och Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och värdering

av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hierarchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveckling,

1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organisatorisk verksamhetsutveckling - metoder som stöd vid utveckling av

partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt i

personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv, 1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder och

leverantörer på producentmarknader, 1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.

No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie ur ett
agentteoretiskt perspektiv, 2000.

No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.
No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter från ett

FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.
No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B e-procurement,

2001.
No 890 Annika Flycht-Eriksson: Domain Knowledge Management in Information-providing Dialogue systems, 2001.
FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarkitektur

och aktörssamverkan som förutsättningar för affärsprocesser, 2001.
No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet som

stöd för beslut om anskaffning av JAS 1982, 2002.
FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
FiF-a-51 Per Oscarsson: Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.
No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.
No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages, 2002.
No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in limited

liability companies, 2002.
FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.
FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times, 2002.
No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.

No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.
No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002.
No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for Irregular

Architectures, 2002.
No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.
No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts, 2003.
No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.
FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.
No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.
No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.
FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.
No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.
No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region, 2004.
FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.
FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.
No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.
No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
No 1138 Thomas Gustafsson: Maintaining Data Consistency in Embedded Databases for Vehicular Systems, 2004.
No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the sick

leave process: an Activity Theoretical perspective, 2005.
FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.
No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.
No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.
No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.
FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie baserad på

trafikinformationstjänsten RDS-TMC, 2005.
No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.
FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i

transaktionsintensiva verksamheter, 2005.
No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.
No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution, 2005.
No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging Industry,

2005.

No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.
No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting Data,

2005.
No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered Approach,

2005.
No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.
No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.
No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.
No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.
No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.
No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implementation

Methodology, 2006.
No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.
No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.
No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation - What

are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.
No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.
No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.
No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education and

Research Simulations, 2006.
FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.
No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006.
No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.
No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.
No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.
No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.
No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage, 2007.
No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.
No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches, 2007.
No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.
No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations, 2007.
No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.
No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.
No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.
No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.
No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.
No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.
No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.
No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.
No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.
No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.
No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.
No 1356 Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.
No 1359 Jana Rambusch: Situated Play, 2008.
No 1361 Martin Karresand: Completing the Picture - Fragments and Back Again, 2008.
No 1363 Per Nyblom: Dynamic Abstraction for Interleaved Task Planning and Execution, 2008.
No 1371 Fredrik Lantz: Terrain Object Recognition and Context Fusion for Decision Support, 2008.
No 1373 Martin Östlund: Assistance Plus: 3D-mediated Advice-giving on Pharmaceutical Products, 2008.
No 1381 Håkan Lundvall: Automatic Parallelization using Pipelining for Equation-Based Simulation Languages, 2008.
No 1386 Mirko Thorstensson: Using Observers for Model Based Data Collection in Distributed Tactical Operations, 2008.
No 1387 Bahlol Rahimi: Implementation of Health Information Systems, 2008.
No 1392 Maria Holmqvist: Word Alignment by Re-using Parallel Phrases, 2008.
No 1393 Mattias Eriksson: Integrated Software Pipelining, 2009.
No 1401 Annika Öhgren: Towards an Ontology Development Methodology for Small and Medium-sized Enterprises,

2009.
No 1410 Rickard Holsmark: Deadlock Free Routing in Mesh Networks on Chip with Regions, 2009.
No 1421 Sara Stymne: Compound Processing for Phrase-Based Statistical Machine Translation, 2009.
No 1427 Tommy Ellqvist: Supporting Scientific Collaboration through Workflows and Provenance, 2009.
No 1450 Fabian Segelström: Visualisations in Service Design, 2010.
No 1459 Min Bao: System Level Techniques for Temperature-Aware Energy Optimization, 2010.

No 1466 Mohammad Saifullah: Exploring Biologically Inspired Interactive Networks for Object Recognition, 2011
No 1468 Qiang Liu: Dealing with Missing Mappings and Structure in a Network of Ontologies, 2011.
No 1469 Ruxandra Pop: Mapping Concurrent Applications to Multiprocessor Systems with Multithreaded Processors and
 Network on Chip-Based Interconnections, 2011.
No 1476 Per-Magnus Olsson: Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles, 2011.
No 1481 Anna Vapen: Contributions to Web Authentication for Untrusted Computers, 2011.
No 1485 Loove Broms: Sustainable Interactions: Studies in the Design of Energy Awareness Artefacts, 2011.
FiF-a 101 Johan Blomkvist: Conceptualising Prototypes in Service Design, 2011.
No 1490 Håkan Warnquist: Computer-Assisted Troubleshooting for Efficient Off-board Diagnosis, 2011.
No 1503 Jakob Rosén: Predictable Real-Time Applications on Multiprocessor Systems-on-Chip, 2011.
No 1504 Usman Dastgeer: Skeleton Programming for Heterogeneous GPU-based Systems, 2011.
No 1506 David Landén: Complex Task Allocation for Delegation: From Theory to Practice, 2011.
No 1507 Kristian Stavåker: Contributions to Parallel Simulation of Equation-Based Models on

Graphics Processing Units, 2011.
No 1509 Mariusz Wzorek: Selected Aspects of Navigation and Path Planning in Unmanned Aircraft Systems, 2011.
No 1510 Piotr Rudol: Increasing Autonomy of Unmanned Aircraft Systems Through the Use of Imaging Sensors, 2011.
No 1513 Anders Carstensen: The Evolution of the Connector View Concept: Enterprise Models for Interoperability
 Solutions in the Extended Enterprise, 2011.
No 1523 Jody Foo: Computational Terminology: Exploring Bilingual and Monolingual Term Extraction, 2012.
No 1550 Anders Fröberg: Models and Tools for Distributed User Interface Development, 2012.
No 1558 Dimitar Nikolov: Optimizing Fault Tolerance for Real-Time Systems, 2012.
No 1582 Dennis Andersson: Mission Experience: How to Model and Capture it to Enable Vicarious Learning, 2013.
No 1586 Massimiliano Raciti: Anomaly Detection and its Adaptation: Studies on Cyber-physical Systems, 2013.
No 1588 Banafsheh Khademhosseinieh: Towards an Approach for Efficiency Evaluation of

Enterprise Modeling Methods, 2013.
No 1589 Amy Rankin: Resilience in High Risk Work: Analysing Adaptive Performance, 2013.
No 1592 Martin Sjölund: Tools for Understanding, Debugging, and Simulation Performance Improvement of Equation-

Based Models, 2013.
No 1606 Karl Hammar: Towards an Ontology Design Pattern Quality Model, 2013.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070320125831
 708.6614
 S5-utfall
 Blank
 496.0630

 Tall
 0
 0
 No
 635
 395
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 177
 176
 177

 1

 HistoryItem_V1
 DefineBleed

 Range: all pages
 Request: bleed all round 14.17 points
 Bleed area is outside visible: no

 0.0000
 0
 0.0000
 14.1732
 0
 0
 581
 343
 0.0000
 Fixed

 Both
 AllDoc

 PDDoc

 0.0000

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 177
 176
 177

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 5.67, distance 14.17 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 0 down, columns 0 across
 Align: centre

 0.0000
 14.1732
 5.6693
 1
 Corners
 0.2999
 ToFit
 0
 0
 0.7000
 0
 0
 0
 0.0000
 0

 D:20071003103129
 841.8898
 a4
 Blank
 595.2756

 Tall
 589
 352
 0.0000
 C
 0

 PDDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

