
http://www.diva-portal.org

Preprint

This is the submitted version of a paper presented at Extended Semantic Web Conference (ESWC) 2014.

Citation for the original published paper:

Hammar, K. (2014)

Ontology Design Patterns: Improving Findability and Composition.

In: Valentina Presutti, Eva Blomqvist, Raphael Troncy, Harald Sack, Ioannis Papadakis, Anna

Tordai (ed.), The Semantic Web: ESWC 2014 Satellite Events: ESWC 2014 Satellite Events,

Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers (pp. 3-13). Springer

International Publishing

Lecture Notes in Computer Science

http://dx.doi.org/10.1007/978-3-319-11955-7

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-25196



Ontology Design Patterns: Improving
Findability and Composition

Karl Hammar

Jönköping University
P.O. Box 1026

551 11 Jönköping, Sweden
karl.hammar@jth.hj.se

Abstract. Ontology Design Patterns (ODPs) are intended to guide non-
experts in performing ontology engineering tasks successfully. While be-
ing the topic of significant research efforts, the uptake of these ideas
outside the academic community is limited. This paper summarises is-
sues preventing broader adoption of Ontology Design Patterns among
practitioners, with an emphasis on finding and composing such patterns,
and presents early results of work aiming to overcome these issues.

Keywords: Ontology Design Pattern, eXtreme Design, Tools

1 Introduction

Ontology Design Patterns (ODPs) were introduced by Gangemi [8] and Blomqvist
& Sandkuhl [4] in 2005 (extending upon ideas by the W3C Semantic Web Best
Practices and Deployment Working Group1), as a means of facilitating practi-
cal ontology development. These patterns are intended to help guide ontology
engineering work, by packaging best practice into small reusable blocks of ontol-
ogy functionality, to be adapted and specialised by users in individual ontology
development use cases.

This idea has gained some traction within the academic community, as evi-
denced by the Workshop on Ontology Patterns series of workshops held on con-
junction with the International Semantic Web Conference. However, the adop-
tion of ODPs among practitioners is still quite limited. If such patterns are to
be accepted as useful artefacts also in practice, it is essential that they [10]:

– model concepts and phenomena that are relevant to practitioners’ needs

– are constructed and documented in a manner which makes them accessible
and easy to use by said practitioners in real-world use cases

– are accompanied by appropriate methods and tools that support their use
by the intended practitioners

1 http://www.w3.org/2001/sw/BestPractices/



While the first requirement above can be said to be fulfilled by the ODPs
published online (the majority of which result from projects and research in-
volving both researchers and practitioners), the latter two requirements have
largely been overlooked by the academic community. Many patterns are poorly
documented, and at the time of writing, none have been sufficiently vetted to
graduate from submitted to published status in the prime pattern repository on-
line2. Toolset support is limited to some of the tasks required when employing
patterns, while other tasks are entirely unsupported. Furthermore, the most ma-
ture pattern usage support tools are implemented as a plugin for an ontology
engineering environment which is no longer actively maintained3.

In the following paper, these ODP adoption challenges are discussed in more
detail, and the author’s ongoing work on addressing them is reported. The paper
focuses exclusively on Content ODPs as defined in the NeOn Project4, as this
is most common type of Ontology Design Patterns with some 100+ patterns
published. The paper is structured as follows: Section 2 introduces relevant re-
lated published research on ODPs, Section 3 focuses on the tasks that need be
performed when finding, adapting, and applying patterns, Section 4 details the
challenges preventing the adoption of ODPs by practitioner ontologists, Section 5
proposes solutions to these challenges, Section 6 presents the initial results of
applying some of those solutions, and Section 7 concludes and summarises the
paper.

2 Related Work

Ontology Design Patterns were introduced as potential solutions to these types
of issues at around the same time independently by Gangemi [8] and Blomqvist
and Sandkuhl [4]. The former define such patterns by way of a number of charac-
teristics that they display, including examples such as “[an ODP] is a template
to represent, and possibly solve, a modelling problem” [8, p. 267] and “[an ODP]
can/should be used to describe a ‘best practice’ of modelling” [8, p. 268]. The
latter describes ODPs as generic descriptions of recurring constructs in ontolo-
gies, which can be used to construct components or modules of an ontology.
Both approaches emphasise that patterns, in order to be easily reusable, need
to include not only textual descriptions of the modelling issue or best practice,
but also some formal ontology language encoding of the proposed solution. The
documentation portion of the pattern should be structured and contain those
fields or slots that are required for finding and using the pattern.

Since their introduction, ODPs have been the subject of some research and
work, see for instance the deliverables of the EU FP6 NeOn Project5 [15, 5]
and the work presented at instances of the Workshop on Ontology Patterns6

2 http://ontologydesignpatterns.org/
3 XD Tools for NeOn Toolkit, http://neon-toolkit.org/wiki/XDTools
4 http://ontologydesignpatterns.org/wiki/Category:ContentOP
5 http://www.neon-project.org/
6 http://ontologydesignpatterns.org/wiki/WOP:Main



at the International Semantic Web Conference. There are to the author’s best
knowledge no studies indicating ontology engineering performance improvements
in terms of time required when using patterns, but results so far indicate that
their usage can help lower the number of modelling errors and inconsistencies
in ontologies, and that they are perceived as useful and helpful by non-expert
users [3, 6].

The use and understanding of ODPs have been heavily influenced by the work
taking place in the NeOn Project7, the results of which include a pattern typol-
ogy [15], and the eXtreme Design collaborative ontology development methods,
based on pattern use [5]. eXtreme Design (XD) is defined as “a family of meth-
ods and associated tools, based on the application, exploitation, and definition
of Ontology Design Patterns (ODPs) for solving ontology development issues”
[14, p. 83]. The method is influenced by the eXtreme Programming (XP)[2]
agile software development method, and like it, emphasises incremental develop-
ment, test driven development, refactoring, and a divide-and-conquer approach
to problem-solving [13]. Additionally, the NeOn project funded the development
of the XD Tools, a set of plugin tools for the NeOn Toolkit IDE intended to
support the XD method of pattern use.

Ontology Design Patterns have also been studied within the CO-ODE project[1,
7], the results of which include a repository of patterns8 and an Ontology Pre-
Processing Language (OPPL)9.

3 Using Ontology Design Patterns

The eXtreme Design method provides recommendations on how one should
structure an Ontology Engineering project of non-trivial size, from tasks and
processes of larger granularity (project initialisation, requirements elicitation,
etc) all the way down to the level of which specific tasks need be performed
when employing a pattern to solve a modelling problem. Those specific pat-
tern usage tasks (which are also applicable in other pattern-using development
methods) are:

1. Finding patterns relevant to the particular modelling issue
2. Adapting those general patterns to the modelling use case
3. Integrating the resulting specialisation with the existing ontology (i.e., the

one being built)

3.1 Finding ODPs

In XD, the task of finding an appropriate design pattern for a particular prob-
lem is viewed as a matching problem where a local use case (the problem for
which the ontology engineer needs guidance) is matched to a general use case

7 http://www.neon-project.org/
8 http://odps.sourceforge.net/odp/html/index.html
9 http://oppl2.sourceforge.net/



(the intended functionality of the pattern) encoded in the appropriate pattern’s
documentation. In order to perform such matching, the general use case needs
be expressed in a way that enables matching to take place. In practice, pattern
intent is encoded using Competency Questions [9], and matching is performed
by hand, by the ontology engineer him/herself. XD Tools supports rudimentary
keyword-based search across the ontologydesignpatterns.org portal, which can
provide the ontology engineer with an initial list of candidate patterns for a given
query.

3.2 Specialising ODPs

Having located a pattern appropriate for reuse in a specific scenario, the ontology
engineer needs to adapt and specialise said pattern for the scenario in question.
The specific steps vary from case to case, but a general approach that works in
the majority of cases is as follows:

1. Specialise leaf classes of the subclass tree
2. Specialise leaf properties of the subproperty tree
3. Define domains and ranges of specialised properties to correspond with the

specialised classes

The XD Tools provide a wizard interface that supports each these steps.
They also provide a certain degree of validation of the generated specialisations,
by presenting the user with a list of generated axioms (expressed in natural
language) for the user to reject or accept.

3.3 Integrating ODP Instantiations

Once a pattern has been adapted for use in a particular scenario, the resulting so-
lution module needs to be integrated with the ontology under development. This
integration involves aligning classes and properties in the pattern module with
existing classes and properties in the ontology, using subsumption or equivalency
mappings. This integration process may also include refactoring of the existing
ontology, in the case that requirements dictate that the resulting ontology be
highly harmonised. There is at the time of writing no known tool support for
ODP instantiation integration, and this process is therefore performed entirely
by hand.

4 ODP Adoption Challenges

As indicated above, there is a thriving research community studying patterns
and developing new candidate ODPs. Unfortunately the adoption of Ontology
Design Patterns in the broader Semantic Web community, and in particular
among practitioners, is limited. The author has, based on experiences from sev-
eral studies involving users on different levels (from graduate students to domain



experts from industry) [12, 10, 11], identified a number of issues that give rise to
confusion and irritation among users attempting to employ ODPs, and which
are likely to slow uptake of these technologies. Those issues are detailed in the
subsequent sections.

4.1 Issues on Finding ODPs

As explained, there are two methods for finding appropriate design patterns for
a particular modelling challenge - users can do matching by hand (by consulting
a pattern repository and reading pattern documentations one by one), or users
can employ the pattern search engine included in XD Tools to suggest candidate
patterns. In the former case, as soon as the list of available patterns grows to a
non-trivial number (such as in the ontologydesignpatterns.org community por-
tal), users find the task challenging to perform correctly, particularly if patterns
are not structured in a way that is consistent with their expectations [10].

In the latter case, signal-to-noise ratio of pattern search engine results is often
discouragingly low. In initial experiments (detailed in Section 6) the author found
that with a result list displaying 25 candidate patterns, the correct pattern was
included in less than a third of the cases. In order to guarantee that the correct
pattern was included, the search engine had to return more than half of the
patterns in the portal, essentially negating the point of using a search engine.
Also, the existing pattern search engine included in XD Tools does not allow
for filtering the results based on user criteria, which makes it easy for a user
to mistakenly import and apply a pattern which is inconsistent with ontology
requirements, e.g., on reasoning performance or other constraints.

4.2 Issues on Composing ODPs

The process of integrating a specialised pattern solution module into the target
ontology is not supported by any published tools, and consequently relies entirely
on the user’s ontology engineering skill. Users performing such tasks are often
confused by the many choices open to them, and the potential consequences of
these choices, not limited to:

– Which mapping axioms should be used between the existing classes and
properties and those of the solution module, e.g., equivalency or subsump-
tion?

– Where those pattern instantiation module mapping axioms should be placed:
in the target ontology, in the instantiated pattern module, or in a separate
mapping module?

– The interoperability effects of customising patterns: for instance, what are
the risks in case pattern classes are declared to be subsumed by existing top
level classes in the target ontology?

– How selections from the above composition choices affect existing ontology
characteristics such as reasoning performance, etc.



4.3 Issues on Pattern and Tooling Quality

Users often express dissatisfaction with the varying degree of documentation
quality [10]. While some patterns are documented in an exemplary fashion,
many lack descriptions of intents and purpose, consequences of use, or exam-
ple use cases. Experienced ontology engineers can see through this by studying
the accompanying OWL module in order to learn the benefits and drawbacks of
a certain pattern, but it is uncommon for non-expert users to do this successfully.

It is not uncommon for patterns to include and build upon other patterns,
and these dependencies are not necessarily intuitive or well-explained. On several
occasions the author has been questioned by practitioner users as to why, in
the ontologydesignpatterns.org repository, the pattern concerning time indexed
events makes use of the Event class that is defined in the (non time-indexed)
Participation pattern. The consequence of this dependency structure is of course
that any user who models time indexed events using patterns automatically also
includes non time-indexed participation representations in their resulting model,
which very easily gives rise to modelling mistakes.

In more practical terms, the XD Tools were designed to run as a plugin for
the NeOn Toolkit ontology IDE. This IDE unfortunately never gained greater
adoption. Additionally, XD Tools and its dependencies require a specific older
version of NeOn Toolkit. This means that ontology engineers who want to use
newer tools and standards are unable to use XD Tools, but rather have to do
their pattern-based ontology engineering without adequate tool support.

5 Improvement Ideas

The author’s ongoing research aims to improve upon ODP usage methods and
tools, in the process solving some of the issues presented above. To this end, a
number of solution suggestions have been developed, and are currently in the
process of being tested (some with positive results, see Section 6). The following
sections present these suggestions and the consequences they would have on both
patterns and pattern repositories. Implementation of these suggested improve-
ments within an updated version of the XD Tools targeting the Protégé editor
is planned to take place in the coming months.

5.1 Improving ODP Findability

In order to improve recall when searching for suitable ODPs, the author suggests
making use of two pieces of knowledge regarding patterns that the current XD
Tools pattern search engine does not consider: firstly, that the core intent of the
patterns in the index is codified as competency questions, which are structurally
similar to such queries that an end-user may pose, and secondly, that patterns
are general or abstract solutions to a common problem, and consequently, the
specific query that a user inputs needs to be transformed into a more general
form in order to match the indexed patterns level of abstraction.



The first piece of knowledge can be exploited by using string distance met-
rics to determine how similar an input query is to the competency questions
associated with a pattern solution. Another approach under study is to employ
ontology learning methods to generate graphs from both indexed pattern com-
petency questions and input queries, and then measuring the degree of overlap
between concepts referenced in these two graphs.

The second piece of knowledge can be exploited by reusing existing language
resources that represent hyponymic relations, such as WordNet. By enriching the
indexed patterns with synonyms of disambiguated classes and properties in the
pattern, and by enriching the user query using hypernym terms of the query, the
degree of overlap between a user query (worded to concern a specific modelling
issue) against a pattern competency question (worded to concern a more general
phenomenon) can be computed.

5.2 Improving ODP Integration

The challenge of integrating an instantiated pattern module into a target ontol-
ogy is at its core an ontology alignment challenge. Consequently existing ontology
alignment and ontology matching methods are likely to be useful in this context.
The behaviour of such systems against very small ontologies such as instanti-
ated pattern modules, is however not well known. The advantage that patterns
have over general ontologies in this context is the knowledge that patterns are
designed with the very purpose of being adapted and integrated into other on-
tologies, which is not true in the general ontology alignment use case. Therefore,
the pattern creator could a priori consider different ways in which that pattern
would best be integrated with an ontology, and construct the pattern in such a
way as to make this behaviour known to an alignment system.

The author suggests reusing known good practice from the ontology align-
ment domain, and combining this with such pattern-specific alignment hints
embedded in the individual pattern OWL files. For instance, a pattern class
could be tagged with an annotation indicating to a compatible alignment sys-
tem that this class represents a very high level or foundational concept, and
that consequently, it should not be aligned as a subclass; or a pattern class or
property could be tagged with annotations indicating labels of suitable sub- or
superclasses in the integration step.

Additionally, improved user interfaces would aid non-expert users in applying
patterns. Such user interfaces should detail in a graphical or otherwise intuitive
manner the consequences of selecting a particular integration strategy, in the
case that multiple such strategies are available for consideration.

6 Results

6.1 ODP Search

The author has developed a method of indexing and searching over a set of
Ontology Design Patterns based on the ideas presented in Section 5. The method



combines the existing Lucene-backed Semantic Vectors Search method with a
comparison of competency questions based on their relative Levenshtein edit
distances, and a comparison of the number of query hypernyms that can be
found among the pattern concept synonyms. Each method generates a confidence
value between 0 and 1, and these confidence values are added together with equal
weight to generate the final confidence value which is used for candidate pattern
ordering. While the approach requires further work, early results are promising,
as shown in Table 1.

The dataset used in testing was created by reusing the question sets pro-
vided by the Question Answering over Linked Data (QALD) evaluation cam-
paign. Each question was matched to one or more ODPs suitable for building
an ontology supporting the question. This matching was performed by two se-
nior ontology experts independently, and their respective answer sets merged.
The two experts reported very similar pattern selections in the cases where only
a single pattern candidate existed in the pattern repository compliant with a
competency question (e.g., the Place10 or Information Realization11 patterns),
but for such competency questions where multiple candidate patterns existed
representing different modelling practices (e.g., the Agent Role12 or Participant
Role13 patterns), their selections among these candidate patterns diverged. Con-
sequently, the joint testing dataset was constructed via the union of the two
experts’ pattern selections (representing the possibility of multiple correct mod-
elling choices), rather than their intersection. Recall was defined as the ratio of
such expert-provided ODP candidates that the automated system retrieves for
a given input question.

Table 1. Recall Improvement for ODP Search

XD-SVS Composite3

R10 6 % 22 %

R15 8 % 31 %

R20 9 % 37 %

R25 14 % 41 %

As shown in the table, the average recall within the first 10, 15, 20 or 25 re-
sults is 3-4 times better using the author’s composite method (Composite3) than
using the existing XD Tools Semantic Vectors Search (XD-SVS). It should be
noted that while Composite3 also increases the precision of the results compared
to XD-SVS by a similar degree, that resulting precision is still rather poor, at
5-6 %. The potential pattern user will consequently see a lot of spurious results

10 http://ontologydesignpatterns.org/wiki/Submissions:Place
11 http://ontologydesignpatterns.org/wiki/Submissions:Information realization
12 http://ontologydesignpatterns.org/wiki/Submissions:AgentRole
13 http://ontologydesignpatterns.org/wiki/Submissions:ParticipantRole



using either of the approaches. This is understood to be a potential usability
problem, and an area for further work.

A factor believed to be limiting the success of this method is the fact that
resolving ODP concepts and properties to corresponding concepts and properties
in natural language resources (in this case WordNet) is an error-prone process.
This is largely due to the ambiguity of language and the fact that concepts in
ODPs are generally described using only a single label per supported language.
If pattern concepts were more thoroughly documented, using for instance more
synonymous labels, class sense disambiguation would likely work better, and
ODP search consequently work better also. Additionally, WordNet does contain
parts of questionable quality (both in terms of coverage and structure), the
improvement of which may lead to increased quality of results for dependent
methods such as the one presented here.

6.2 ODP Composition

Based on an empirical study of ODP composition as employed in ontology engi-
neering tasks in the IKS Project14, a number of heuristics for ODP composition
have been extracted, and are presently being developed into a Protégé plugin
supporting such composition. Most of these heuristics are very simple and make
use of basic string matching techniques across labels or concept URIs (e.g., if
there is a greatest common substring of more than trivial length, suggest the
concept with the longer label as subconcept of the one with the shorter label,
etc.). Yet these simple heuristics cover over 60 % of the composition mappings
in the source dataset. While end-users would be able to connect such concepts
themselves by hand, suggesting them to the user will still save them considerable
work, as they do not themselves have to dig through the subsumption hierarchy
to locate the classes and properties.

These heuristics are being coupled with a confidence scoring mechanism based
on the scope of control of an ontology engineering project. This scope defines
which namespaces in the project that are allowed to be modified when performing
ODP composition. The scope can be set manually by the ontology engineer,
but is by default based on the namespaces of open and editable files in the
Protégé environment. Redefining the semantics of concepts outside of the scope
of control is not recommended. Consequently, composition subsumption axioms
in which concepts outside of the scope of control are defined as the subconcepts,
are penalised and ranked lower than axioms which do not give rise to such a
situation.

From the same study it was observed that all of the mapping axioms used
to composit an ODP specialisation module into a resulting ontology were sub-
sumption mappings (i.e., subClassOf or subPropertyOf). Equivalence mappings
were not used at all. This may indicate a cognitive understanding of the domain
of discourse as being layered, that is to say, that ODP specialisation modules
represent a layer of understanding which is more general than the final ontology,

14 http://www.iks-project.eu/



but mer specific than the original ODP. For instance, in the ontologies studied,
List (an ODP) is specialised as ContentList (an ODP specialisation), which is
then composed via subclassing into RadioChannel, Playlist, and NewsStream.
If this observation holds also in a larger set of ontologies and ODPs, it may
indicate that the border between ODP specialisation and ODP composition is
not as clear cut as previously thought, and that tooling for specialisation and
composition would need be more tightly integrated.

7 Conclusions

This paper has introduced and discussed some concrete challenges regarding the
use of Ontology Design Patterns, with an emphasis on tooling-related challenges
that prevent non-expert users from performing Ontology Engineering using such
patterns. Those challenges primarily concern; a) the task of finding patterns, b)
decisions to make when integrating pattern based modules with an existing on-
tology, and, c) pattern and tooling quality. The author’s work aims to overcome
these challenges by developing improved methods and accompanying tools for
today’s Ontology Engineering IDE:s (i.e., Protégé), better supporting each step
of ODP application and use.

The author has developed an ODP search method exploiting both the sim-
ilarity between pattern competency questions and user queries, and the rela-
tive abstraction level of general pattern solutions versus concrete user queries,
a method shown to increase recall when searching for candidate ODPs signif-
icantly. Future work regarding ODP findability includes improving recall and
precision further, and to examine which type of criteria users want to be able to
filter results based on.

The author has also developed a set of heuristics for ODP composition sug-
gestions, and a confidence scoring method based on the scope of control of an
ODP-based ontology engineering project, presently being implemented into a
tool for guiding ODP composition. Future work regarding ODP composition
includes tackling the more difficult alignments, possibly via enrichment using
lexical resources.

References

1. Aranguren, M.E., Antezana, E., Kuiper, M., Stevens, R.: Ontology Design Patterns
for Bio-ontologies: A Case Study on the Cell Cycle Ontology. BMC bioinformatics
9(Suppl 5), S1 (2008)

2. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional (2004)

3. Blomqvist, E., Gangemi, A., Presutti, V.: Experiments on Pattern-based Ontol-
ogy Design. In: Proceedings of the Fifth International Conference on Knowledge
Capture. pp. 41–48. ACM (2009)

4. Blomqvist, E., Sandkuhl, K.: Patterns in Ontology Engineering: Classification of
Ontology Patterns. In: Proceedings of the 7th International Conference on Enter-
prise Information Systems. pp. 413–416 (2005)



5. Daga, E., Blomqvist, E., Gangemi, A., Montiel, E., Nikitina, N., Presutti, V.,
Villazon-Terrazas, B.: D2.5.2: Pattern Based Ontology Design: Methodology and
Software Support. Tech. rep., NeOn Project (2007)

6. Dzbor, M., Suárez-Figueroa, M.C., Blomqvist, E., Lewen, H., Espinoza, M.,
Gómez-Pérez, A., Palma, R.: D5.6.2 Experimentation and Evaluation of the NeOn
Methodology. Tech. rep., NeOn Project (2007)

7. Egaña, M., Rector, A., Stevens, R., Antezana, E.: Applying Ontology Design Pat-
terns in Bio-Ontologies. In: Knowledge Engineering: Practice and Patterns, pp.
7–16. Springer (2008)

8. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: The Se-
mantic Web–ISWC 2005, pp. 262–276. Springer (2005)

9. Grüninger, M., Fox, M.S.: The role of competency questions in enterprise engineer-
ing. In: Benchmarking—Theory and Practice, pp. 22–31. Springer (1995)

10. Hammar, K.: Ontology Design Patterns in Use: Lessons Learnt from an Ontology
Engineering Case. In: Proceedings of the 3rd Workshop on Ontology Patterns
(2012)

11. Hammar, K.: Towards an Ontology Design Pattern Quality Model. No. 1606 in
Linköping Studies in Science and Technology, Linköping University (2013)

12. Hammar, K., Lin, F., Tarasov, V.: Information Reuse and Interoperability with
Ontology Patterns and Linked Data. In: Business Information Systems Workshops.
pp. 168–179. Springer (2010)

13. Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-Based Ontology De-
sign. In: Ontology Engineering in a Networked World, pp. 35–64. Springer (2012)

14. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E.: eXtreme Design with Content
Ontology Design Patterns. In: Proceedings of the Workshop on Ontology Patterns
(WOP 2009), collocated with ISWC 2009. p. 83 (2009)

15. Presutti, V., Gangemi, A., David, S., Aguado de Cea, G., Suárez-Figueroa, M.C.,
Montiel-Ponsoda, E., Poveda, M.: D2.5.1: A Library of Ontology Design Patterns:
Reusable Solutions for Collaborative Design of Networked Ontologies. Tech. rep.,
NeOn Project (2007)


