
“Dissertation” — 2017/8/15 — 10:53 — page i — #1

Linköping Studies in Science and Technology

Disserta�ons. No. 1879

Content Ontology Design Pa�erns:
Quali�es, Methods, and Tools

by

Karl Hammar

Linköping University
Department of Computer and Informa�on Science

Division of Human-Centered Systems
SE-581 83 Linköping, Sweden

Linköping 2017



“Dissertation” — 2017/8/15 — 10:53 — page ii — #2

© 2017 Karl Hammar

Cover photograph by Jenny Hammar

ISBN: 978-91-7685-454-9

ISSN: 0345–7524

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139584/

Printed by LiU Tryck, Linköping 2017



“Dissertation” — 2017/8/15 — 10:53 — page iii — #3

Abstract

Ontologies are formal knowledge models that describe concepts and rela-
tionships and enable data integration, information search, and reasoning.
Ontology Design Patterns (ODPs) are reusable solutions intended to sim-
plify ontology development and support the use of semantic technologies by
ontology engineers. ODPs document and package good modelling practices
for reuse, ideally enabling inexperienced ontologists to construct high-quality
ontologies. Although ODPs are already used for development, there are still
remaining challenges that have not been addressed in the literature. These
research gaps include a lack of knowledge about (1) which ODP features are
important for ontology engineering, (2) less experienced developers’ prefer-
ences and barriers for employing ODP tooling, and (3) the suitability of the
eXtreme Design (XD) ODP usage methodology in non-academic contexts.

This dissertation aims to close these gaps by combining quantitative and
qualitative methods, primarily based on five ontology engineering projects
involving inexperienced ontologists. A series of ontology engineering work-
shops and surveys provided data about developer preferences regarding
ODP features, ODP usage methodology, and ODP tooling needs. Other
data sources are ontologies and ODPs published on the web, which have
been studied in detail. To evaluate tooling improvements, experimental ap-
proaches provide data from comparison of new tools and techniques against
established alternatives.

The analysis of the gathered data resulted in a set of measurable quality
indicators that cover aspects of ODP documentation, formal representation
or axiomatisation, and usage by ontologists. These indicators highlight qual-
ity trade-offs: for instance, between ODP Learnability and Reusability, or
between Functional Suitability and Performance Efficiency. Furthermore,
the results demonstrate a need for ODP tools that support three novel prop-
erty specialisation strategies, and highlight the preference of inexperienced
developers for template-based ODP instantiation—neither of which are sup-
ported in prior tooling. The studies also resulted in improvements to ODP
search engines based on ODP-specific attributes. Finally, the analysis shows
that XD should include guidance for the developer roles and responsibilities
in ontology engineering projects, suggestions on how to reuse existing ontol-
ogy resources, and approaches for adapting XD to project-specific contexts.

iii



“Dissertation” — 2017/8/15 — 10:53 — page iv — #4



“Dissertation” — 2017/8/15 — 10:53 — page v — #5

Populärvetenskaplig
sammanfattning

De senaste tv̊a decennierna har användningen av Internet och dess killer app
World Wide Web (i dagligt tal webben) ökat explosionsartat, s̊aväl vad gäller
antal användare som antal tillgängliga tjänster. Vi surfar inte längre bara p̊a
webben för att söka efter information – snarare lever vi i allt högre utsträck-
ning v̊ara liv uppkopplade via den. Vi handlar mat och gör bankärenden, vi
bokar semestrar och läser böcker, vi delar bilder och videos och minnen med
varandra. I de flesta avseenden har webben och dess möjligheter utvecklats
l̊angt bortom vad de flesta trodde var möjligt.

I andra avseenden har vi dock bara skrapat p̊a ytan. Webben är fort-
farande i huvudsak ett medium för kommunikation människor emellan. Det
inneh̊all som publiceras p̊a webben, oavsett om det är i text-, bild-, eller
videoformat, är till större del oförst̊aeligt för programvara – det är avsett för
konsumtion av människor, som tolkar, först̊ar, och eventuellt agerar p̊a det.
Om webbinneh̊all i stället kunde tolkas och först̊as maskinellt av mjukvaror,
s̊a skulle det möjliggöra mängder av innovativa nya integrerade tjänster och
produkter: intelligenta mobila agenter skulle kunna svara p̊a användarens
fr̊agor genom att läsa och först̊a information publicerat p̊a webben, snarare
än att bara svara vad de blivit programmerade till; information fr̊an olika
företags eller myndigheters webbsidor skulle enkelt kunna samköras, s̊a att
till exempel kunder enkelt kan jämföra liknande produkter eller tjänster
hos olika webbhandlare; rapportering fr̊an olika nyhetssajter skulle kunna
jämföras maskinellt för att detektera olika tolkningar eller vinklingar p̊a
det rapporterade materialet, etc. Visionen av den här framtida webben där
människor och maskiner delar information p̊a ett sömlöst och integrerat sätt
har ett namn: den Semantiska Webben.

För att möjliggöra den Semantiska Webben s̊a krävs att deltagande
människor och system kommer överens om och standardiserar kommunika-
tion p̊a tv̊a olika niv̊aer: dels p̊a format- och syntaxniv̊a, och dels p̊a kon-
ceptuell definitionsniv̊a. Den första niv̊an rör det rent tekniska informations-
utbytet mellan system för olika sorters data (textsträngar, siffror, bilder,
etc.). Parallellt med och p̊a grund av Internets och webbens framväxt s̊a har
ett flertal standarder etablerats kring dessa format för datarepresentation

v



“Dissertation” — 2017/8/15 — 10:53 — page vi — #6

och -utbyte, vilka fungerar väl även för en Semantisk Webb. P̊a den senare
niv̊an, standardiseringen av formella definitioner för de ting som system och
människor skall kunna kommunicera om (de semantiska ontologierna), finns
det betydligt mer kvar att göra.

En stor utmaning är att konstruktionen av dessa ontologier är förh̊allande-
vis komplex och kräver kunskaper som f̊a programmerare eller analytiker be-
sitter – de behöver ha djupg̊aende först̊aelse för alla de koncept som de vill
f̊anga och formalisera definitioner av (produkter, händelser, organisationer,
processer, etc), de behöver ha stor erfarenhet av konceptuell modellering,
och de behöver känna till de relativt komplicerade format och verktyg som
används för att konstruera ontologier.

Designmönster för ontologier (Ontology Design Patterns, eller ODP:er)
är avsedda att förenkla utvecklingen av ontologier. ODP:er beskriver, i
text och i bild, vanligt förekommande modelleringsproblem och etablerade
lösningar p̊a dessa problem. En ODP kan till exempel beskriva hur man
bäst modellerar händelser, oaktat vilken typ av händelse (en konsert, ett
kurstillfälle, en flygresa, etc.) det rör sig om. ODP:er brukar, utöver sagda
beskrivning, även best̊a av en liten och återanvändbar bit ontologi-kod, som
en utvecklare enkelt kan anpassa och återanvända. Genom användning
av ODP:er och ODP-baserade verktyg s̊a kan utvecklarens behov av dju-
pare kunskaper inom konceptuell modellering och ontologiutveckling min-
skas väsentligt.

Den här avhandlingen studerar ODP:er och ODP-användning ur tre per-
spektiv. Till att börja med undersöker författaren vilka egenskaper eller
kvaliteter hos ODP:er som är viktiga för deras användning, och hur dessa
kvaliteter kan mätas. Avhandlingens resultat avseende dessa fr̊agor formal-
iseras i en kvalitetsmodell som inkluderar ett antal olika kvaliteter (Func-
tional Suitability, Usability, Maintainability, Compatibility, Resulting perfor-
mance efficiency), ett antal underkvaliteter för var och en av dessa, och ett
antal (38 st.) kvalitetsindikatorer som bidrar till respektive kvalitet eller
underkvalitet.

Vidare studeras i avhandlingen hur verktyg för användning av ODP:er
kan förbättras s̊a att utvecklare enklare kan hitta lämpliga ODP:er, och
lättare kan använda dessa i sina ontologier p̊a korrekt sätt. Resultat inom
detta omr̊ade inkluderar nya metoder (och tillhörande verktyg) för instan-
siering av ODP:er in i en ontologi, metoder som är särskilt lämpade i sce-
narion där användaren är mindre kunnig om ontologi-utveckling, eller i sce-
narion där användaren enklare vill kunna integrera sina ontologier och sina
data med sedan tidigare publicerade ontologier och data. Andra resultat p̊a
verktygsomr̊adet inkluderar en sökmotor för ODP:er som presterar bättre
än tidigare använd teknik för att hitta ODP:er.

Slutligen undersöks i avhandlingen hur en etablerad projektmetod för
användning av ODP:er, eXtreme Design-metoden (XD), fungerar i praktiken
och hur den kan förbättras för att matcha utvecklares behov av metodstöd.
Författaren finner att XD kan förbättras genom tydligare dokumentation



“Dissertation” — 2017/8/15 — 10:53 — page vii — #7

av olika projektroller och ansvarsomr̊aden, genom rekommendationer för
återanvändning av etablerade ontologier (inte bara ODP:er), och genom
anpassningar som tar större hänsyn till projektspecifika sammanhang som
kundrelationer, utvecklingsteamets kompetenser, och teamets organisation.

Sammanfattningsvis bidrar den här avhandlingens resultat till att öka
kunskapen om hur ODP:er bör vara konstruerade och beskrivna, hur ODP:er
används p̊a bäst sätt, och hur verktyg för att stödja s̊adan användning
bör fungera. Dessa bidrag möjliggör förenklad utveckling av ontologier och
ontologi-baserad teknik, vilket i sin tur bidrar till utvecklingen av den Se-
mantiska Webben och de m̊anga funktioner och tjänster som följer utav
den.



“Dissertation” — 2017/8/15 — 10:53 — page viii — #8



“Dissertation” — 2017/8/15 — 10:53 — page ix — #9

Acknowledgements

This research was financed by and carried out at the Department of Com-
puter Science and Informatics at Jönköping University and the Department
of Computer and Information Science at Linköping University. Data gath-
ering took place in several research projects, funded by both national and
international organisations. I would like to express my gratitude to the
partners involved in and the funders of these projects:

• IMSK: Integrated Mobile Security Kit (funded by the European Union
Seventh Framework Programme, FP7/2007-2013, grant agreement 218038)

• VALCRI: Visual Analytics for Sense-Making in Criminal Intelligence
Analysis (funded by the European Union Seventh Framework Pro-
gramme, FP7/2007-2013, grant agreement 608142)

• SSyncAHD: Standardising Syndromic Classification in Animal Health
Data (funded by Vinnova)

• OSTAG: Ontology-based Software Test Case Generation (funded by
the Swedish Knowledge Foundation grant number 20140170)

• E-care@home (a “SIDUS”—Strong Distributed Research Environment—
funded by the Swedish Knowledge Foundation)

My supervision team has consisted of Professor Henrik Eriksson (Lin-
köping University), Associate Professor Vladimir Tarasov (Jönköping Uni-
versity), and Assistant Professor Eva Blomqvist (Linköping University).
In the earlier half of this PhD project (which awarded the Swedish licentiate
degree), Professor Kurt Sandkuhl was also engaged. I owe a tremendous
debt of gratitude to all of my supervisors, who have helped me with ideas,
feedback, and encouragement, over the past years. However, I would like to
single out Eva in particular—a PhD project is a rather lengthy and some-
times tiring undertaking, and Eva has helped see this through, not only as
a supervisor, but as a mentor, and as a friend. Thank you.

In addition to the supervision team, several other colleagues have also
contributed to this work. At Jönköping University, Christer Thörn, Ulf
Seigerroth, Fredrik Abrahamsson, and Ulf Johansson have all read

ix



“Dissertation” — 2017/8/15 — 10:53 — page x — #10

and commented on parts of the dissertation. Anders Arvidsson has kept
management and students off my back so that I had time to get the research
done. At Linköping University, Anne Moe has kept the formal processes
running smoothly, and Brittany Shahmehri has helped with language-
proofing the text. Any remaining flaws in content or style are of course
entirely my own.

Last but not least, I am most grateful for the support I’ve had from
friends and family. Fredrik R Krohnman has helped me stay clinically
and cynically sane. My beautiful daughter Astrid has helped me keep the
big picture in focus, by always putting a smile on my face. Per-Olof and
Gudrun Nyberg have, in turn, kept a smile on Astrid’s face, and helped
take care of things when I’ve been travelling to conferences and project meet-
ings. Finally, and most importantly, my wonderful and talented wife Jenny
has supported me through thick and thin. Jenny: I love you endlessly.

Karl Hammar
Jönköping, July 2017

x



“Dissertation” — 2017/8/15 — 10:53 — page xi — #11

Contents

1 Introduction 1
1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Delimitations . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Summary of Publications . . . . . . . . . . . . . . . . . . . . 6
1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background and Related Work 13
2.1 Knowledge Modelling and Ontologies . . . . . . . . . . . . . . 13

2.1.1 Data, Information, and Knowledge . . . . . . . . . . . 13
2.1.2 Terminological and Assertional Knowledge . . . . . . . 15
2.1.3 Ontology Components . . . . . . . . . . . . . . . . . . 16
2.1.4 RDF, RDFS, and OWL . . . . . . . . . . . . . . . . . 19

2.2 Ontology Applications . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Ontology Types . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Linked Data . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Semantic Search . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 Reasoning Tasks . . . . . . . . . . . . . . . . . . . . . 26

2.3 Ontology Development . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 METHONTOLOGY . . . . . . . . . . . . . . . . . . . 27
2.3.2 On-To-Knowledge . . . . . . . . . . . . . . . . . . . . 28
2.3.3 DILIGENT . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 SAMOD . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.5 Ontology Development 101 . . . . . . . . . . . . . . . 32

2.4 Ontology Design Patterns . . . . . . . . . . . . . . . . . . . . 33
2.4.1 ODP Typologies . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 ODP-based Ontology Construction . . . . . . . . . . . 39
2.4.3 Other Perspectives on ODPs . . . . . . . . . . . . . . 42

2.5 Quality Frameworks . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.1 MAPPER . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Conceptual Model Quality . . . . . . . . . . . . . . . . 44
2.5.3 Entity Relationship Model Quality . . . . . . . . . . . 46
2.5.4 Information System Quality . . . . . . . . . . . . . . . 47

xi



“Dissertation” — 2017/8/15 — 10:53 — page xii — #12

Contents

2.5.5 Pattern Quality . . . . . . . . . . . . . . . . . . . . . . 49
2.6 Ontology Quality Evaluation . . . . . . . . . . . . . . . . . . 51

2.6.1 O2 and oQual . . . . . . . . . . . . . . . . . . . . . . . 51
2.6.2 ONTOMETRIC . . . . . . . . . . . . . . . . . . . . . 52
2.6.3 OntoClean . . . . . . . . . . . . . . . . . . . . . . . . 53
2.6.4 Terminological Cycle Effects . . . . . . . . . . . . . . . 55
2.6.5 ODP Documentation Template Effects . . . . . . . . . 55

3 Research Method 57
3.1 Applicable Methods in the Computing Disciplines . . . . . . . 57

3.1.1 Design Science—A Pragmatic Approach . . . . . . . . 60
3.1.2 Systematic Literature Review . . . . . . . . . . . . . . 63
3.1.3 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.4 Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.5 Researcher Logs or Participant Diaries . . . . . . . . . 69
3.1.6 Experimentation . . . . . . . . . . . . . . . . . . . . . 70

3.2 Research Process . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Answering Research Question 1 . . . . . . . . . . . . . 75
3.2.2 Answering Research Question 2 . . . . . . . . . . . . . 78
3.2.3 Answering Research Question 3 . . . . . . . . . . . . . 80
3.2.4 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.5 Research Logs . . . . . . . . . . . . . . . . . . . . . . 85
3.2.6 Qualitative Data Analysis . . . . . . . . . . . . . . . . 85
3.2.7 Surveys Employed . . . . . . . . . . . . . . . . . . . . 88

3.3 Attributes of the Research Process . . . . . . . . . . . . . . . 90
3.3.1 Workshop Observations . . . . . . . . . . . . . . . . . 90
3.3.2 Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.3 ODP Feature Studies . . . . . . . . . . . . . . . . . . 91
3.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . 92

4 ODP Quality Model 93
4.1 Initial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1.1 Quality Metamodel Development . . . . . . . . . . . . 94
4.1.2 Initial Quality Characteristics . . . . . . . . . . . . . . 95
4.1.3 Initial Quality Indicators . . . . . . . . . . . . . . . . 97

4.2 Second Generation Model . . . . . . . . . . . . . . . . . . . . 101
4.2.1 IMSK Workshop . . . . . . . . . . . . . . . . . . . . . 101
4.2.2 ILOG Course Study . . . . . . . . . . . . . . . . . . . 105
4.2.3 Performance Indicator Evaluation . . . . . . . . . . . 111

4.3 Third Generation Model . . . . . . . . . . . . . . . . . . . . . 119
4.3.1 Ontology Engineering Survey . . . . . . . . . . . . . . 120
4.3.2 ODP Design Preferences Survey . . . . . . . . . . . . 122
4.3.3 Ontology Engineering Workshop Observations . . . . . 125

4.4 Summary: Resulting Quality Model . . . . . . . . . . . . . . 128
4.4.1 Quality Metamodel . . . . . . . . . . . . . . . . . . . . 128
4.4.2 Quality Characteristics . . . . . . . . . . . . . . . . . 130

xii



“Dissertation” — 2017/8/15 — 10:53 — page xiii — #13

Contents

4.4.3 Quality Indicators and Effects . . . . . . . . . . . . . . 132
4.4.4 Quality Trade-offs . . . . . . . . . . . . . . . . . . . . 133
4.4.5 Notes on Unstudied Qualities . . . . . . . . . . . . . . 136

5 ODP Tool Support Improvement 139
5.1 ODP Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 140
5.1.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . 140
5.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 ODP Specialisation Strategies . . . . . . . . . . . . . . . . . . 143
5.2.1 Understanding ODP Specialisation Practices . . . . . 143
5.2.2 Strategy Usages and Effects . . . . . . . . . . . . . . . 148

5.3 Template-Based Instantiation . . . . . . . . . . . . . . . . . . 152
5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . 155
5.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 157

5.4 Summary: eXtreme Design for Protégé . . . . . . . . . . . . . 159
5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 159
5.4.2 Developed Solution . . . . . . . . . . . . . . . . . . . . 161
5.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 163

6 ODP Methodology Development 169
6.1 Project Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.1.1 Observation: Role and Task Challenges . . . . . . . . 170
6.1.2 Suggestion: XD Roles and Responsibilities . . . . . . . 175

6.2 Ontology Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2.1 Observation: Ontology Reuse Challenges . . . . . . . 178
6.2.2 Suggestion: An Ontology Reuse Checklist . . . . . . . 181

6.3 Context-Based Methodology Adaptation . . . . . . . . . . . . 184
6.3.1 Observation: Real World XD Project Contexts . . . . 184
6.3.2 Suggestion: Project Adaptation Questionnaire and Rec-

ommendations . . . . . . . . . . . . . . . . . . . . . . 186
6.4 Summary: eXtreme Design 1.1 . . . . . . . . . . . . . . . . . 188

7 Discussion 193
7.1 Research Questions Revisited . . . . . . . . . . . . . . . . . . 193
7.2 Research Consequences and Future Challenges . . . . . . . . 195

7.2.1 ODP Quality Model . . . . . . . . . . . . . . . . . . . 195
7.2.2 Tooling Support . . . . . . . . . . . . . . . . . . . . . 198
7.2.3 Methodology Development . . . . . . . . . . . . . . . 200

7.3 Summary of Future Work . . . . . . . . . . . . . . . . . . . . 201

8 Conclusions 203

Bibliography 207

xiii



“Dissertation” — 2017/8/15 — 10:53 — page xiv — #14

Contents

A ODP Quality Model Indicators 225
A.1 Documentation Indicators . . . . . . . . . . . . . . . . . . . . 225
A.2 Model Indicators . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.3 In-Use Indicators . . . . . . . . . . . . . . . . . . . . . . . . . 232

List of Figures 235

List of Tables 237

xiv



“Dissertation” — 2017/8/15 — 10:53 — page 1 — #15

Chapter 1

Introduction

This dissertation concerns the development of methods, tools, and measures
for Ontology Design Patterns, and specifically Content Ontology Design
Patterns. One of the most commonly used definitions of the term ontology
within the information sciences is attributed to Studer et al., who (building
on previous work by Gruber [65]) define an ontology as a “formal, explicit
specification of a shared conceptualisation” [153, p. 25]. In layman’s terms, it
is a commonly agreed upon (shared) model of a domain of discourse (concep-
tualisation) that is specific and clear enough that it can be interpreted by a
computer (formal, explicit). An ontology is thus a type of formal knowledge
model. Ontologies allow organisations to formally define how they view their
information, in turn enabling harmonisation of information systems across
the organisation. Software developers can build systems using ontologies as
specifications, or, in other cases, ontologies can be directly applied as con-
crete artefacts in systems defining schemas or formats of information. On-
tologies and ontology-based technology has seen significant adoption, with
examples of ontology use ranging from schemas for publishing linked data
[16] to biomedical research integration [148] to question answering for TV
quiz shows [51], and everything in between.

While in a broad sense such ontologies can be developed in any mod-
elling or object-oriented programming language, unless it is prefixed by
some additional identifier, the term is most often reserved for Semantic
Web ontologies—that is, ontologies that are defined using a set of standards
developed for the future Web by the World Wide Web Consortium (W3C).
These standards, which have had a large impact on the ontology research
community, include the RDF data model, the RDF Schema extension, and
the OWL knowledge representation language. The W3C ontology languages
have several advantages over other types of data or knowledge representa-
tion languages; as they are community standards they are not tied to any
particular vendor, implementation platform or programming language; as
they are initially developed from an RDF graph formalism, they can easily

1



“Dissertation” — 2017/8/15 — 10:53 — page 2 — #16

Chapter 1. Introduction

accomodate heterogeneous data; and as they use IRI identifiers, ontologies
built using these languages integrate well with other web resources. In this
dissertation, unless explicitly mentioned otherwise, the term ontology indi-
cates an ontology built using the W3C standards1.

Ontology engineering is the discipline or trade of developing ontologies.
High-quality ontology engineering is costly, as performing it requires the
union of rather specific skills—the ontology engineers need to have both
a thorough understanding of the domains under study, and a solid under-
standing of how these domains are best represented in terms of the logic
axioms that make up ontologies. Alternatively, domain experts and mod-
elling experts might be paired together, each contributing according to their
competence, but also at greatly increased cost of development. Given how
ontologies are often reused and depended on by many other components in
a large system, the risk of design mistakes in ontology modelling needs to
be minimised, as such mistakes can be particularly expensive to rectify at a
later stage. It is nonetheless not uncommon to see such failures in practice
(see e.g., [35]). Driven by these conflicting challenges of reducing ontology
engineering costs while maintaining or increasing quality, the Knowledge
Modelling research community has over the years put much effort into de-
veloping methods and tools for simplifying ontology engineering, with the
goal of making the work easy and intuitive enough that a domain expert
might perform it efficiently and correctly.

One such method is the reuse of established best practices in the form of
Ontology Design Patterns (ODPs). The use of Design Patterns to describe
reusable solutions (an idea first proposed by Christopher Alexander in the
field of architecture [2]) has some history in computer science, most notably
the Object-oriented Design Patterns proposed by the “Gang of Four” [54],
and the Analysis Patterns developed and discussed by Martin Fowler [53].
The idea of employing the design pattern idea for ontology engineering,
in the form of ODPs, was introduced by Gangemi [55] and Blomqvist &
Sandkuhl [25] in 2005 (extending ideas by the W3C Semantic Web Best
Practices and Deployment Working Group2). ODPs package known good
solutions to commonly occurring ontology modelling problems, which can be
reused in many different ontology development use cases. The intent is that
the use of such ODPs, and appropriate support tooling, will guide ontology
engineers (whether experienced or novices) and support them in developing
high quality ontologies with greater ease and confidence.

Since their introduction in 2005, ODPs have received quite a bit of re-
search attention, and a community has formed3 based on the developments
of these ideas as explored primarily within the NeOn project [133]. Pattern
workshops have been held at the largest academic Semantic Web and Knowl-

1While the findings presented in this dissertation may be applicable to other ontology
languages also, the author has not evaluated any such applicability.

2http://www.w3.org/2001/sw/BestPractices/
3http://www.ontologydesignpatterns.org

2



“Dissertation” — 2017/8/15 — 10:53 — page 3 — #17

1.1. Problem

edge Modelling conferences, and a number of Ontology Design Patterns have
been published. One particularly important result of this work is the de-
velopment of the eXtreme Design (XD) ontology engineering methodology
(see Section 2.4.2 or [131]).

There are several proposed types of Ontology Design Patterns being stud-
ied, concerning everything from naming standards to reasoning procedures
(see Section 2.4.1 or [133]). Of these pattern types, Content ODPs in par-
ticular have received significant attention. Such patterns package commonly
recurring ontology features as small and generically reusable building blocks,
to be reused by ontology engineers in development. They are, in a sense,
analogous to the aforementioned Analysis Patterns, in that they emphasise
the reusability of the developed domain model, rather than the technical
specifics covered by other types of ODPs. Content patterns are intended to
aid in ontology engineering in two ways: Firstly, by reducing the amount
of modelling work needed for implementing common features, pattern usage
ought to lower the cost in terms of time and resources for ontology engi-
neering projects. Secondly, by promoting the encoding and reuse of best
practice solutions to common modelling problems, pattern usage ought to
lead to better ontologies with fewer modelling errors and inconsistencies.
To the author’s best knowledge, the validity of the former assumption has
not been established, but the latter is supported by some empirical evidence
[24, 21].

1.1 Problem

Despite the considerable amount of work that has been published on the
topic of ODPs development and use over the course of the last twelve years,
there are still gaps in research that are not fully addressed. This dissertation
addresses some of these gaps:

• Lack of knowledge of ODP quality: While many patterns have been
presented, and while patterns are being used in various system devel-
opment projects, there are few publications documenting and evaluat-
ing the effects of using these patterns for different purposes. Even less
work has been done on the structure and design of patterns themselves,
and consequently, little is known about which qualities or properties
of patterns are beneficial in ontology engineering tasks, and inversely,
which properties are not helpful or are possibly even harmful in such
tasks.

• Lack of fine-grained method and tool support: The XD methodology
prescribes certain tasks that should be performed in a certain order,
but the granularity of these tasks is rather coarse, for instance, “Reuse
and integrate selected CPs”, which is a task that is very likely com-
posed of many sub-tasks. There is neither detailed guidance on how

3



“Dissertation” — 2017/8/15 — 10:53 — page 4 — #18

Chapter 1. Introduction

to perform these subtasks, nor sufficient tool support to guide users
on what choices to make and the trade-offs that they may imply.

• Lack of empirical grounding of the XD methodology: While the XD
methodology has been used in several projects and described in sev-
eral articles, these publications have tended to focus on the resulting
ontologies, not evaluation of the methodology itself. Consequently, we
lack information on how well the XD methodology works in different
scenarios, and which type of adaptations or modifications might need
to be made to the method to make it work in different usage contexts.

• Lack of knowledge of practitioner use cases: The projects in which
ODPs have been used have generally been performed in academic con-
texts. Consequently, there is little knowledge of the preferences and
requirements of non-academic ontologists, nor do we know much about
how well suited the XD methodology and ODP support tooling are to
ontology engineering projects with such non-academic participants.

Filling the above gaps in research is important both in terms of strength-
ening the theoretical underpinnings and academic understanding of ODPs
and their usages, but also in terms of supporting the uptake of ODPs and,
in turn, ontology-based technologies in industry.

1.2 Research Questions

The knowledge gaps discussed in the previous section motivate the research
work presented in this dissertation and the overarching objective which is
defined as follows:

To develop an understanding of important ODP quality issues,
and to develop ODP tooling and usage methodologies as required
to support the use of ODP-based ontology engineering, particu-
larly by inexperienced ontologists.

The research questions addressed in this dissertation, derived from the
above objective, are as follows:

1. Which ODP features or qualities are important in supporting pattern
understanding and use?

2. How can the features and functionality of ODP usage tools be im-
proved to support inexperienced ontologists?

3. How can ODP usage methodology be improved to support inexperi-
enced ontologists?

4



“Dissertation” — 2017/8/15 — 10:53 — page 5 — #19

1.3. Contributions

The first question is treated via the development of an ODP quality
model, as described in Chapter 4. The second question is adressed through
the development of new methods and tools supporting ODP search and
instantiation, in Chapter 5. The third and final question is the subject of
Chapter 6, in which experiences of applying the XD methodology are used to
develop methodology improvement suggestions. For further details on how
the research project was organised and the questions treated, see Section 3.2.

1.2.1 Delimitations

This work focuses exclusively on Content ODPs. In Section 2.4.1 the in-
terested reader may learn about the NeOn typology of Ontology Design
Patterns [133] and the other types of ontology patterns that have been pro-
posed. However, in the above research questions, and in the remainder of
this dissertation (unless stated otherwise) the terms Ontology Patterns and
Ontology Design Patterns, and the ODP abbreviation, all refer to Content
Ontology Design Patterns per the NeOn definition.

Note that the term “inexperienced ontologist” as it is used in the research
questions does not refer to someone who is necessarily completely untrained
in computer technology or programming; rather, it refers to someone who is
not well acquainted with ontology engineering methods, tasks and tooling.
Focusing the research project on this user group is a deliberate decision,
stemming from the author’s interest in enabling greater industry adoption
of semantic and ontology-based technologies.

The attentive reader will note that none of the research questions could
realistically be answered in an exhaustive manner within the scope of a PhD
project. The work presented in this dissertation does not aim for the sort
of completeness required to provide exhaustive answers—instead, the work
is inductive in nature, with the empirical data gathering and analysis per-
formed within the project contributing new pieces of knowledge to different
facets of ODP use, but not necessarily providing absolutely delineated, com-
plete, and certain answers to each research question. For further discussion
on the merits and consequences of inductive research, the reader is referred
to Chapter 3.

1.3 Contributions

This work contributes to new academic knowledge within understudied ar-
eas, namely the real-world usability of ODPs, ODP support tooling, and
ODP methods. Additionally, the project has addressed practical issues that
are of importance to industry and will support industry uptake of semantic
technologies, specifically the improvement of those same ODPs, ODP sup-
port tooling, and ODP usage methods. The contributions, and the sections
of this dissertation in which they are detailed, are summarised below.

5



“Dissertation” — 2017/8/15 — 10:53 — page 6 — #20

Chapter 1. Introduction

• Contributions to Ontology Engineering Research:

– A conceptual understanding of quality as it relates to Ontology
Design Patterns (Section 4.4.1).

– A catalogue of quality characteristics and quality indicators com-
pliant with the above, and methods for measuring the latter (Sec-
tions 4.4.2 and 4.4.3, and Appendix A)

– Increased understanding of the requirements that inexperienced
ontologists have on ODP usage methods and tools (Section 5.3).

– Improved algorithms and heuristics for finding, specialising and
instantiating ODPs (Sections 5.1, 5.2, and 5.3).

– A partial evaluation of the XD methodology in real-world on-
tology engineering projects involving non-academic ontologists,
and updates to the XD methodology based on said evaluation
(Chapter 6, primarily Section 6.4).

• Contributions to Ontology Engineering Practice:

– Development tools and associated services designed to support
key ontology engineering tasks with ODPs (Section 5.4).

– Recommendations on improvements to the features and data qual-
ity of the community ODP portal, supporting increased use of
ODPs and ODP-based tooling (Section 7.2.1).

– A set of recommendations on which values that ODP quality
indicators should assume, aiding inexperienced ontologists in se-
lecting ODPs that are compliant with their project requirements
(Appendix A).

1.4 Summary of Publications

The following peer reviewed workshop papers, conference papers and an-
thology contributions were produced and published during the author’s PhD
project. They detail many of the project results that are also presented in
this dissertation. The papers are listed in an ascending chronological order,
and are each accompanied by a brief description of how they contribute to
the dissertation.

• K. Hammar, F. Lin, and V. Tarasov. Information Reuse and Interoper-
ability with Ontology Patterns and Linked Data. In W. Abramowicz,
R. Tolksdorf, and K. Wecel, editors, BIS 2010: Business Information
Systems Workshops, number 57 in Lecture Notes in Business Informa-
tion Processing, pages 168–179. Springer, 2010

6



“Dissertation” — 2017/8/15 — 10:53 — page 7 — #21

1.4. Summary of Publications

– Contribution: The paper discusses the application of semantic
technologies and ODPs in a project in the Information Logistics
domain. In this project we observe some issues relating to the use
of owl:imports, observations that contribute to the ODP quality
model developed and presented in Chapter 4. The author’s con-
tribution to the work consists of both participation in practical
modelling, and having authored the majority of the paper.

• K. Hammar and K. Sandkuhl. The State of Ontology Pattern Re-
search: A Systematic Review of ISWC, ESWC and ASWC 2005–2009.
In E. Blomqvist, V. K. Chaudhri, O. Corcho, V. Presutti, and K. Sand-
kuhl, editors, Proceedings of the 2nd International Workshop on On-
tology Patterns – WOP2010, number 671 in CEUR Workshop Pro-
ceedings, pages 5–17, 2010

– Contribution: The paper presents a systematic literature re-
view covering ODP-related papers presented at the top three Se-
mantic Web conferences during 2005–2009. The findings indicate
that many papers in this field are lacking in empirical validation,
and that while ODPs are being presented and used, they are
not being sufficiently studied as IT artefacts of their own; conse-
quently, not enough is known about what makes for an efficient,
effective, and usable ODP. These findings motivate the direction
this PhD project has taken and the research questions chosen.
The author’s contribution to this paper includes the majority of
both research and authoring.

• K. Hammar. DC Proposal: Towards an ODP Quality Model. In
L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, and
N. Noy, editors, The Semantic Web – ISWC 2011, volume 2 of Lecture
Notes in Computer Science, pages 277–284. Springer, 2011

– Contribution: This paper, presented and discussed at the ISWC
2011 Doctoral Consortium, describes an early version of this PhD
project, including initial method choices. It also includes the first
draft of the ODP quality metamodel (discussed further in Chap-
ter 4).

• K. Hammar. The State of Ontology Pattern Research. In L. Niedrite,
R. Strazdina, and B. Wangler, editors, Perspectives in Business In-
formatics Research: Associated Workshops and Doctoral Consortium,
pages 29–37. Riga Technical University, 2011

– Contribution: An updated version of the similarly named paper
discussed above, extending the dataset studied to include addi-
tional conferences and journals, and including the years 2010-
2011. The findings confirm those of the previous paper, and the
impact on this PhD is similar.

7



“Dissertation” — 2017/8/15 — 10:53 — page 8 — #22

Chapter 1. Introduction

• K. Hammar. Modular Semantic CEP for Threat Detection. In L. Villa-
Vargas, L. Sheremetov, and H.-D. Haasis, editors, ORADM 2012: Op-
erations Research and Data Mining Workshop Proceedings, Cancun,
Mexico, 2012. National Polytechnic Institute

– Contribution: The paper discusses the use of ODPs as plug-
gable configuration modules for a Complex Event Processing sys-
tem within the IMSK project (see Section 3.2.4). This scenario
and the development of the ontologies and the technology plat-
form described in this paper were the context for the subsequent
paper described just below.

• K. Hammar. Ontology Design Patterns in Use: Lessons Learnt from an
Ontology Engineering Case. In E. Blomqvist, A. Gangemi, K. Ham-
mar, and M. C. Suárez-Figueroa, editors, Proceedings of the 3rd Work-
shop on Ontology Patterns, number 929 in CEUR Workshop Proceed-
ings, 2012

– Contribution: This paper presents an observational case study
of ODP usage in the IMSK project. Key findings include several
features that users prefer or dislike in ODPs, as well as recom-
mendations on improvements to the community ODP portal (see
Chapter 4 for further details).

• K. Hammar. Reasoning Performance Indicators for Ontology Design
Patterns. In A. Gangemi, M. Gruninger, K. Hammar, L. Lefort,
V. Presutti, and A. Scherp, editors, Proceedings of the 4th Work-
shop on Ontology and Semantic Web Patterns, number 1188 in CEUR
Workshop Proceedings, 2013

– Contribution: The paper surveys existing literature on perfor-
mance indicators in ontologies that are also applicable to ODPs,
and studies how those indicators are expressed in published ODPs,
suggesting recommendations on design of ODPs that perform ef-
ficiently (contributes to Chapter 4).

• K. Hammar. Ontology Design Patterns: Improving Findability and
Composition. In V. Presutti, E. Blomqvist, R. Troncy, H. Sack, I. Pa-
padakis, and A. Tordai, editors, The Semantic Web: ESWC 2014
Satellite Events, number 8798 in Lecture Notes in Computer Science,
pages 3–13. Springer, 2014

– Contribution: This paper discusses challenges related to finding
suitable ODPs and to composing ODP-based ontology modules
with a project under development, and proposes some partially
evaluated solutions to overcome these challenges. The solutions
were later integrated into the XDP tools discussed in Chapter 5.

8



“Dissertation” — 2017/8/15 — 10:53 — page 9 — #23

1.4. Summary of Publications

• K. Hammar. Ontology Design Pattern Property Specialisation Strate-
gies. In K. Janowicz, S. Schlobach, P. Lambrix, and E. Hyvönen,
editors, EKAW 2014: Knowledge Engineering and Knowledge Man-
agement, number 8876 in Lecture Notes in Computer Science, pages
165–180. Springer, 2014

– Contribution: The paper presents an analysis of different strate-
gies by which ODPs are typically specialised, evaluates the effects
of this strategy choice, and suggests tool improvements to sup-
port these different strategies. The work contributes to the XDP
tools discussed in Chapter 5.

• K. Hammar. Ontology Design Patterns in WebProtégé. In S. Villata,
J. Z. Pan, and M. Dragoni, editors, Proceedings of the ISWC 2015
Posters & Demonstrations Track, number 1486 in CEUR Workshop
Proceedings, 2015

– Contribution: This paper demonstrates the XDP tooling de-
veloped based on the findings in Chapter 5.

• E. Blomqvist, K. Hammar, and V. Presutti. Engineering Ontologies
with Patterns – The extreme Design Methodology. In P. Hitzler,
A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors, On-
tology Engineering with Ontology Design Patterns - Foundations and
Applications, volume 25 of Studies on the Semantic Web, pages 23–50.
IOS Press, 2016

– Contribution: This anthology chapter describes the eXtreme
Design ontology engineering methodology. The author’s contri-
bution to thte chapter covers the recent methodology develop-
ments that are in this dissertation presented in Sections 5.3 and
6.3.

• K. Hammar. Quality of Content Ontology Design Patterns. In P. Hit-
zler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors,
Ontology Engineering with Ontology Design Patterns - Foundations
and Applications, volume 25 of Studies on the Semantic Web, pages
51–71. IOS Press, 2016

– Contribution: This anthology chapter summarises, in condensed
format, the ODP quality model which is the subject and result
of Chapter 4.

• K. Hammar, E. Blomqvist, D. Carral, M. Van Erp, A. Fokkens, A. Gangemi,
W. R. Van Hage, P. Hitzler, K. Janowicz, N. Karima, et al. Collected
Research Questions Concerning Ontology Design Patterns. In P. Hit-
zler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors,
Ontology Engineering with Ontology Design Patterns - Foundations

9



“Dissertation” — 2017/8/15 — 10:53 — page 10 — #24

Chapter 1. Introduction

and Applications, volume 25 of Studies on the Semantic Web, pages
189–198. IOS Press, 2016

– Contribution: This anthology chapter summarises areas of fu-
ture research for the ODP community, as submitted by researchers
active in the field. The author contributed several research ques-
tions, and compiled the joint chapter.

• K. Hammar. Template-Based Content ODP Instantiation. In K. Ham-
mar, P. Hitzler, A. Krisnadhi, A. Lawrynowicz, A. G. Nuzzolese, and
M. Solanki, editors, Advances in Ontology Design and Patterns, Stud-
ies on the Semantic Web. IOS Press, Forthcoming 2017

– Contribution: The paper presents an alternate template-based
approach to ODP instantiation, evaluates the effects of the pro-
posed approach, and suggests and evaluates a concrete implemen-
tation method. The work contributes to the further development
of the XDP tools discussed in Chapter 5.

• N. Karima, K. Hammar, and P. Hitzler. How to Document On-
tology Design Patterns. In K. Hammar, P. Hitzler, A. Krisnadhi,
A. Lawrynowicz, A. G. Nuzzolese, and M. Solanki, editors, Advances
in Ontology Design and Patterns, Studies on the Semantic Web. IOS
Press, Forthcoming 2017

– Contribution: This paper investigates user preferences and es-
tablished practice for ODP documentation, finding a set of key
documentation fields that ODPs need to display, and further find-
ing that ODPs published in the community ODP portal often lack
these documentation fields. This work contributes to the ODP
Quality Model presented in Chapter 4. The author’s contribution
consists of having designed and performed two out of the three
user surveys discussed, and having authored significant portions
of the paper.

Additionally, an early version of the ODP Quality Model which is the
main topic of Chapter 4 is presented in the author’s Licentiate thesis, To-
wards an Ontology Design Pattern Quality Model (Linköping Studies in Sci-
ence and Technology, Licentiate Thesis No 1606).

1.5 Dissertation Outline

The remainder of this dissertation is structured as follows:

• Chapter 2 introduces basic concepts with which the reader may wish to
familiarise themselves, including knowledge modelling theory, seman-
tic technologies, ontology evaluation, ontology engineering methods,
and Ontology Design Patterns.

10



“Dissertation” — 2017/8/15 — 10:53 — page 11 — #25

1.5. Dissertation Outline

• Chapter 3 discusses issues of method in computer and information
systems research, gives an overview of how such methods have been
applied in this dissertation to answer the research questions, and char-
acterises the cases from which the bulk of the empirical material this
dissertation depends on originates.

• Chapter 4 describes the work performed to answer the first research
question, and the results obtained in so doing, namely an ODP Quality
Model.

• Chapter 5 details the work performed to answer the second research
question, and the results of this work, namely the ODP-based XDP
extension to the WebProtégé ontology engineering environment.

• Chapter 6 presents the work performed to answer the third research
question, and the results of that work, namely, a set of extensions to
the eXtreme Design method.

• Chapter 7 discusses the results that were obtained, the research process
that was followed, and areas open to future work.

• Chapter 8 concludes the dissertation by revisiting the research ques-
tions and summarising the developed answers to those questions.

11



“Dissertation” — 2017/8/15 — 10:53 — page 12 — #26

Chapter 1. Introduction

12



“Dissertation” — 2017/8/15 — 10:53 — page 13 — #27

Chapter 2

Background and Related
Work

The following chapter is intended for the reader who is new to knowledge-
based systems, ontology engineering, the Semantic Web, or Ontology Design
Pattern research. It provides an overview of concepts, technologies and
research in the field, with a special focus on topics that are relevant to the
work presented in this dissertation.

2.1 Knowledge Modelling and Ontologies

Even though some of the technical standards for using ontologies on the
Semantic Web were developed only recently, the use of ontologies for struc-
turing information has a long tradition in the knowledge modelling and
artificial intelligence fields. In this section, some general knowledge mod-
elling and ontology basics are introduced, and the modern-day standards of
RDF, RDFS, and OWL are then briefly described.

2.1.1 Data, Information, and Knowledge

In Chapter 1, ontologies are introduced as formal knowledge models that
can be used in information systems. While the terms knowledge and infor-
mation may appear synonymous to the layman, in knowledge management
and information logistics research these two terms are often considered con-
ceptually different, and a brief discussion on their definitions is therefore
warranted.

A commonly used model of the relationship between data, information,
and knowledge in these fields is the Knowledge Hierarchy, or Knowledge
Pyramid, as defined by Ackoff [1] and described by Bellinger et al. [14]. In
this model, displayed in Figure 2.1, several different levels of understanding
of phenomena are defined:

13



“Dissertation” — 2017/8/15 — 10:53 — page 14 — #28

Chapter 2. Background and Related Work

Data

Information

Knowledge

Understanding

Wisdom

Figure 2.1: Ackoff’s Knowledge Hierarchy.

• Data: Raw facts, with no greater meaning or connection to other facts.
A spreadsheet holding cells of numbers, with no context, relation, or
labelling to signify meaning, is data.

• Information: Data given meaning by some connection to other data.
Commonly exemplified by a relational database in which foreign keys
link different data rows into coherent information.

• Knowledge: Information collected and structured in such a way as to
be appropriate or useful for some human purpose.

• Understanding: An understanding implies being able to analyse the
underlying factors and principles behind some information or knowl-
edge, and being able to extend and generate new knowledge based
upon this.

• Wisdom: The highest level of consciousness, involving deeper analysis
and probing of phenomena.

At the time of writing, treating the two highest levels of this model,
understanding and wisdom, is outside of the realm of the computationally
feasible, even if we knew how to go about it conceptually, and we shall
therefore leave them aside.

As indicated by the model, these levels build on and refine one another,
such that without data, we have no information, and without information,
no knowledge. Furthermore, as also indicated by the model, a relatively

14



“Dissertation” — 2017/8/15 — 10:53 — page 15 — #29

2.1. Knowledge Modelling and Ontologies

large amount of data can be required in order to infer a relatively modest
amount of information or knowledge.

There are competing schools of thought concerning the meaning of the
“knowledge” level in this model. There are scholars who put forward the
opinion that knowledge is something which can only exist internalised in the
human mind, and that it cannot be stored in some artificial construct such
as a computer system. Examples include Tsoukas and Vladimirou [162] and
Stacey [150], who argue that in order for knowledge to be useful in guiding
human action (as per the above definition), a context is required that a
computer cannot provide.

Another perspective is that of Newell [122], who reasons that knowl-
edge certainly can be modelled and represented in a computer system and
acted upon by software, in a fully automated deterministic manner. In the
latter perspective, the dividing line between information and knowledge is
slightly fuzzier, but essentially comes down to a matter of intent and use of
information. In this dissertation and in his research, the author sides with
the latter perspective. Data is considered to be simple raw facts without
context; information is data that is linked to provide a greater understand-
ing; knowledge is information that is reasoned upon by either a human or
a machine, to perform some task. As we will see in the following sections,
ontologies are well suited for use in such reasoning tasks.

2.1.2 Terminological and Assertional Knowledge

In knowledge representation tasks, it is often useful to distinguish between
two types of knowledge with differing characteristics and uses. There is
terminological knowledge, which describes concepts and properties in the
general case but without specifying individual instances of such concepts or
properties. For instance, the sentences “all cars have three or more wheels”,
or “voltage is an attribute that describes batteries” are both typical examples
of such terminological knowledge. When these concepts and properties are
then used to describe instances of things, we speak of assertional knowledge.
Examples of assertional knowledge include “my Audi A6 is a car”, or “this
type D battery puts out 1.5 volts” [6].

In any computer system dealing with information or knowledge this dis-
tinction is made between the general (a database schema, a vocabulary, a
class definition) and the specific (database rows, RDF instance data, in-
stantiated objects). The former are used to structure operations on and
presentations of the latter. The word conceptualisation is sometimes used
as a synonym for the terminological knowledge of a certain domain. In
Gruber’s words:

“A body of formally represented knowledge is based on a con-
ceptualization: the objects, concepts, and other entities that are
presumed to exist in some area of interest and the relationships
that hold them. A conceptualization is an abstract, simplified

15



“Dissertation” — 2017/8/15 — 10:53 — page 16 — #30

Chapter 2. Background and Related Work

view of the world that we wish to represent for some purpose.
Every knowledge base, knowledge-based system, or knowledge-
level agent is committed to some conceptualization, explicitly or
implicitly.” Gruber [65, p. 1]

The line demarcating terminological from assertional knowledge is often
context and use dependent. For instance, had the car example given ear-
lier instead read “an Audi is a car”, then the usage context would define
which way the term Audi should be modelled: as an individual car manufac-
turer (i.e., assertional knowledge), or as a classification of all car instances
matching a certain manufacturer (i.e., terminological knowledge).

Revisiting Studer et al.’s [153] ontology definition from Chapter 1 (a
formal, explicit specification of a shared conceptualisation) the value of on-
tologies in software engineering may now be more apparent. By grouping
together all the relevant terminological knowledge describing a certain area
in a formal machine-processable way, an ontology provides a vocabulary with
which data within this area can be organised, queried for, and operated upon
in an unambiguous, structured way, by humans or software programs.

2.1.3 Ontology Components

Different ontology languages support different types of features, and even
to the degree that they share features, often use different terminology for
describing them. In this dissertation, the author uses the Semantic Web
stack of languages and standards, as described in Section 2.1.4. Within
these languages, the basic building blocks are description logic axioms that
define classes, properties, and individuals [64]. The following sections de-
scribe these constructs in brief. Figures 2.2 and 2.3 are used to graphically
illustrate the concepts. In these figures, rectangles denote classes, rounded
rectangles denote properties, ellipses denote individuals, and diamonds de-
note simple data values. For the sake of simplicity, uses of the core properties
defined in the RDF, RDFS, or OWL standards (introduced in Section 2.1.4)
are displayed in the figures as in-line labels.

Classes

Classes are a way of grouping things that are similar in some respects.
Depending on which type of ontology language is employed, classes can
be viewed as extensional (i.e., sets that are defined by their constituent
individuals) or as intensional, (i.e., with a defined meaning independent of
any member individuals). In the latter case, one might assert that the class
Car has the intensional definition “a four-wheeled vehicle with an internal
combustion engine”. This definition then holds true no matter whether
there are zero or one million individuals asserted to be cars. In the OWL
language, the class concept is defined as being intensional, as per the latter
perspective. One of the main tasks of the type of software known as a

16



“Dissertation” — 2017/8/15 — 10:53 — page 17 — #31

2.1. Knowledge Modelling and Ontologies

owl:Thing

Course Person

teachesectsCreditsowl:Datatype 
Property

owl:Object 
Property

xsd:
float

rdfs:range

rdf:type

rdfs:domain

owl:subClassOf owl:subClassOf

rdfs:range rdfs:domain

rdf:type

Figure 2.2: Course ontology example.

PersonCourse

TCHR_JoDo
_34221

CRS_Prog_1
01

7.5

rdf:typerdf:type

”Programming 101”

rdfs:label ”John Doe”

rdfs:label

ectsCredits teaches

Figure 2.3: Course data expressed using the ontology in Figure 2.2.

17



“Dissertation” — 2017/8/15 — 10:53 — page 18 — #32

Chapter 2. Background and Related Work

reasoner is to sort individuals into classes based on the properties that they
exhibit and the intensional definitions of the classes [125, 5].

Classes can be related to one another through equivalence or subsump-
tion relations, such that a certain class can be defined as being a subclass
of another class, or as being extensionally equivalent to it. The notion of
subclasses and subsumption is closely related to the view of a class as a set
of individuals, in that the individuals belonging to a subclass are a subset
of the individuals belonging to the superclass. Sub- and super-classing is
transitive, such that if a superclass A has a subclass B, and B in turn has
a subclass C, then it holds that C is also a subclass of A, transitively. In
many languages, there is a defined top class (called Thing, Top, or something
similar) which all other classes are subclasses of and which, consequently,
all individuals are members of. In Figure 2.2 the classes Course and Person
are defined to be direct subclasses of the top-level class Thing [125, 5].

In other knowledge modelling languages classes are known varyingly as
concepts, types, categories, etc. In this dissertation, the terms “class” and
“concept” are used interchangeably.

Properties

Properties (or relations as they are also known) define the links that can
hold between two individuals of different classes or between an individual
and a data value. They are, together with the class subsumption hierarchy,
the main way of defining the semantics of the domain of discourse.

Some languages, including OWL, differentiate between properties that
relate individuals to data values (datatype properties) and properties that
hold between two individuals (object properties) [5]. Other languages, such
as Protégé-Frames, do not distinguish between the two types of properties,
but treat both as simple slots in a class definition that can be filled by an
individual or a data value. In both formalisms, properties are defined to
hold over some domain(s) (i.e., be applicable to certain classes) and have
some range(s) (i.e., are satisfied by links to instances of some other classes,
or data types). In Figure 2.2, the properties ectsCredits and teaches are
defined. The former is a datatype property with the domain Course and
range float (from the XML Schema Datatypes1 definitions, as used by W3C
ontologies). The latter is an object property with the domain Person and
range Course.

Individuals

Individuals are the basic entities in an ontology-backed knowledge base,
and represent some individual fact or resource. While they are most often
treated and modelled as assertional knowledge rather than as terminological
knowledge, there are some cases when it makes sense to refer to individuals in

1https://www.w3.org/TR/xmlschema-2/

18



“Dissertation” — 2017/8/15 — 10:53 — page 19 — #33

2.1. Knowledge Modelling and Ontologies

Identifiers: IRI

Character set: UNICODE

Syntax: XML

Data interchange: RDF

Syntax: TTL

Querying: SPARQL
Taxonomies: RDFS

Ontologies: OWL Rules: RIF

Unifying logic

Proof

Trust

Cryptography

User interface and applications

Figure 2.4: The Semantic Web layer cake (adapted from [15]).

an ontology. One such case is when defining classes extensionally, that is, by
defining an explicit listing of member individuals. Another is when defining
classes based on value restrictions, that is, saying that a class consists of
all individuals that have some relation R to a specific defined individual.
Individuals are sometimes, in other works and in the following text, referred
to as instances or entities. In Figure 2.3 two individuals are defined to
exist, are labelled in a human-readable manner (John Doe and Programming
101 ), are stated to belong to the relevant classes, and to be connected
via the teaches property such that John Doe teaches Programming 101.
Furthermore, it is stated that Programming 101 covers 7.5 ECTS credits,
via the ectsCredits property.

2.1.4 RDF, RDFS, and OWL

For a long time in the 1980s and 90s there were multiple competing and
non-interoperable knowledge representation formats and knowledge bases,
representing different directions of research taking place at research groups
and systems vendors. Then, in 2001, Tim Berners-Lee et al. published the
article calling for development of a new Semantic Web [17], via which hu-
mans and computers alike could find, consume, and reason using published
knowledge. What Berners-Lee saw was that this vision of the future Web
could never come to fruition unless decentralised and open knowledge rep-

19



“Dissertation” — 2017/8/15 — 10:53 — page 20 — #34

Chapter 2. Background and Related Work

resentation systems were developed, systems in which no single node should
be required to hold all knowledge, but where knowledge could be merged
from different systems each holding different parts of the truth. For such a
process to work, interoperability standards were obviously required, and the
W3C set about developing such standards over the course of the following
decade. The existing RDF data model was used as a foundation, and was
developed further along with the SPARQL, RDFS, OWL, and RIF stan-
dards, among others. Figure 2.4 gives an overview of the structure of the
Semantic Web stack as it stands today. The following section introduces
some of the layers of the stack.

RDF

The Resource Description Framework (RDF) standard was originally re-
leased as a W3C Recommendation in 1999, and was updated in 2004, and
again in 2014. The RDF standard consists of two major components: a
data model and language for representing distributed data on the Web, and
syntax standards for expressing, exporting, and parsing said data model and
language [103, 37].

The RDF data model is based on graphs, as opposed to the tuples that
underlie traditional relational data models. In RDF, a data graph is con-
structed by the union of a number of three part assertions called triples.
A triple consists of a subject, a predicate, and an object, in which the sub-
ject is an entity about which some data is expressed, the predicate can be
seen as the typing of the related data, and the object is the actual related
data relevant to the subject. For example, Listing 2.1 shows (in an entirely
non-standard simplified syntax intended for illustrative purposes) the six
triples making up the graph displayed in Figure 2.3. Programming 101 and
John Doe are subjects, rdf:type, rdfs:label, ectsCredits, and teaches

are predicates, and Course, ‘‘Programming 101’’, 7.5, Person, ‘‘John

Doe’’, and Programming 101 (when used on the right hand side of a triple)
are objects.

Listing 2.1: RDF triples example

Programming_101 rdf:type Course

Programming_101 rdfs:label ‘‘Programming 101’’

Programming_101 ectsCredits 7.5

John_Doe rdf:type Person

John_Doe rdfs:label ‘‘John Doe ’’

John_Doe teaches Programming_101

As illustrated in this example and in Figure 2.3 subjects and objects
make up the nodes in the RDF graph, and predicates make up the edges
linking the nodes together. We can also see that there are two types of
nodes in such a graph: resources (entities such as Course and John Doe)
and literals (data values, including floating point values such as 7.5, strings

20



“Dissertation” — 2017/8/15 — 10:53 — page 21 — #35

2.1. Knowledge Modelling and Ontologies

such as “John Doe”, or other XML schema datatypes). Predicates are in
fact also resources, enabling them to act as subjects or objects (i.e., nodes)
when needed for meta-modelling purposes. RDF also defines a particular
predicate, rdf:type, which implies a type relationship between the two
resources it links. However, the semantics of typing in pure RDF are rather
vague, and one must go to more complex languages such as RDFS and OWL
to model class extensions as discussed in Section 2.1.3.

In RDF all resources are referenced using IRIs (not shown in the exam-
ple), enabling global lookup of distributed knowledge via HTTP, FTP, or
other distribution mechanisms supported by the IRI standard. To simplify
modelling, namespace prefixes are often used to group related content. This
also provides an easy extension mechanism to RDF, which is used by RDFS,
OWL, and other standards (covered in the following sections), each of which
are defined in their own namespaces.

The RDF syntax standards describe how these triples are serialised into
files. There are several such RDF serialisations, designed for different use
cases. The original standard, XML/RDF, was defined at the time RDF
was developed, and works on the principle of embedding RDF structures in
XML. This provides interoperability with existing XML-based infrastructure
and tools, but generates rather complicated files that are difficult to parse
and understand by human readers. In this dissertation, to the extent that
RDF data is shown, the more recent Turtle syntax will be used, due to its
superior readability [134].

RDFS and OWL

The RDF Schema (RDFS) standard, released along with the second gener-
ation of RDF in 2004 (and updated in 2014), defines classes and properties
that extend the base RDF vocabulary and provides support for more expres-
sive knowledge modelling semantics. Some of the key additions in RDFS
include [27, 28]:

• Classes: Defines the concept of classes to which resources may belong,
strengthening the definition of the RDF type predicate.

• Subclasses: Classes may be subsumed by superclasses, in which case
all instances of the subclass are also instances of the superclass.

• Domain: Defines the class of instances that may act as subjects to a
certain predicate.

• Range: Defines the class of instances that may act as objects to a
certain predicate.

Using the RDFS vocabulary it is possible to model complex data struc-
tures, including basic ontologies. The language allows for some reasoning
and inferencing, based on domains and ranges of employed properties, or

21



“Dissertation” — 2017/8/15 — 10:53 — page 22 — #36

Chapter 2. Background and Related Work

subclass and subproperty assertions. As pointed out by Lacy in [104], the
RDFS language does however have some restrictions in expressivity that
prevent it from being able to express richer ontologies. For instance, RDFS
provides no way of expressing limitations on property cardinalities, or class
extension equivalences. The Web Ontology Language (OWL) was developed
simultaneously with RDFS to provide better support for such higher-level
expressiveness. OWL is built on both RDF/RDFS, and on description logic
(a derivative of predicate logic) foundations—in fact, classes, properties, and
individuals in OWL are defined formally by way of description logic axioms.
From the latter foundation the OWL language has inherited the use of an
Open World Assumption, that is, the assumption that absence of fact does
not imply negation of fact. This makes OWL logic and ontologies particu-
larly well-suited to modelling situations where knowledge is distributed over
a network where not all nodes are reachable at all times, such as the Internet.
However, the open world assumption also comes with some drawbacks, in-
cluding the inability to model default values or relations. Some key features
of OWL include [118]:

• Class and property equivalences: Defining that two classes or two prop-
erties are synonymous, such that all instances of one are also instances
of the other. This is a key feature in implementing integration between
distributed ontologies where classes or properties are defined by dif-
ferent IRIs at different knowledge sources, but are in fact semantically
equivalent.

• disjointWith: Defines class disjointness, that is, that two defined classes
may not have any joint individuals.

• sameAs and differentFrom: Defines individual equivalence or disjoint-
ness. As with the above point, this is important in integrating dis-
tributed datasets where individuals may have different IRIs but in
fact refer to the same information.

• Inverse, transitive, and functional properties: In OWL, a great deal
can be said about the semantics of properties that is not possible to
express in RDFS. Transitive properties in particular are important
in modelling classification trees, where they allow descendant nodes
many steps down the tree to be inferred to be related to higher nodes.

• Property cardinality restrictions: Delimits the number of times a pred-
icate may occur for a given subject, such that for instance a car can
be defined to have a maximum of four wheels, or a parent a minimum
of one child.

Since its original release, OWL has seen widespread adoption as an on-
tology engineering language in the research community and industry alike.
Several new features (keys, property chains, datatype restrictions, etc.) were
added to the standard when it was updated in 2009 [168].

22



“Dissertation” — 2017/8/15 — 10:53 — page 23 — #37

2.2. Ontology Applications

2.2 Ontology Applications

As previously touched upon, ontologies are of use in various tasks related to
the organisation and distribution of information. The following section de-
scribes different types of ontologies, and exemplifies how ontologies are being
used for various purposes. The usage areas exemplified have been selected
because of the potential benefit that ODP usage could bring to them—they
all concern situations where modelling and management of knowledge could
be performed by domain experts rather than ontology engineers. In pub-
lishing Linked Data, or applying Semantic Search engines, these domain
experts have an understanding of the types of gains that could be had by
integrating, reusing, or searching their information, which an ontology en-
gineer would not necessarily have. In deploying different types of reasoning
systems, whether it be for purposes of Complex Event Processing or ubiqui-
tous computing, system users and administrators being able to develop the
ontologies that govern system behaviour by themselves, would be superior
to handing off such configuration tasks to an ontology engineer.

2.2.1 Ontology Types

When classifying or structuring ontologies, one approach is to organise them
by intended usage domain. This is likely the result of different academic dis-
ciplines picking up ontology modelling for different purposes. When dealing
with reuse and patterns, such a view of ontology classification can be coun-
terproductive. After all, a pattern is supposed to be a reusable component,
ideally reusable across domain boundaries.

The categorisation presented by Guarino in [67] is of another kind, differ-
entiating between ontologies based on their level of generality. The top-level
ontologies in the model cover very general things such as space, time, tangi-
ble or intangible objects, and so on, independent of any specific use case or
usage domain. These top-level ontologies can then be used as a foundation
to construct either domain or task ontologies. The former are ontologies
specialised to cover a given domain (banking or academia, for instance) ir-
respective the task for which they are intended. The latter are ontologies
specified for a generic task (such as content annotation or situation recogni-
tion) irrespective of usage domain. Finally, application ontologies are devel-
oped to help solve particular tasks within particular domains, and therefore
often reuse and build upon both domain and task ontologies.

2.2.2 Linked Data

There are vast amounts of data stored at both government institutions and
private corporations which could be published on the Web for citizens or
customers to access, query, and work with. However, simply publishing
that data online offers less benefit than if a a few more steps are taken.
The goal of the Linked Data community (originally a W3C project) is to

23



“Dissertation” — 2017/8/15 — 10:53 — page 24 — #38

Chapter 2. Background and Related Work

promote the publication of data that follows these Linked Data principles,
as outlined by Berners-Lee [16]:

1. Use IRIs as names for things

2. Use HTTP IRIs so that people can look up those names.

3. When someone looks up an IRI, provide useful information, using the
standards (RDF*, SPARQL)

4. Include links to other IRIs, so that they can discover more things.

Datasets published according to these principles can easily be integrated
with other linked datasets on the Web, helping users query across the to-
tality of the available data (which in the Semantic Web vision is the whole
Web). Several organisations and institutions2 have recognised that by allow-
ing users and customers access to data in this manner, those users can help
in constructing innovative analyses, visualisations, and interpretations of the
data that the host organisations could not have produced themselves. Fur-
thermore, to the extent that the host organisations are government agencies,
there are political and philosophical points to be made that data produced
using tax-payers’ funds should be made available to said tax-payers.

While ontologies are not required, strictly speaking, to develop and pub-
lish linked data, they are essential to doing so in an efficient and interopera-
ble manner. By sharing ground definitions regarding the structure of data,
each linked data provider can use existing ontologies rather than individu-
ally constructing schemas for their data. As an example of this, the FOAF
ontology3 is very widely used when publishing data about individuals or
organisations.

2.2.3 Semantic Search

A common problem for knowledge workers is finding the correct informa-
tion needed for performing some task or fulfilling some role. The two main
options are all too often to either search through some file server directory
structure step by step and try to find a folder or filename that looks reason-
able, or to run a full text search using some document management system,
often returning hundreds of hits. Neither of these two approaches allows the
knowledge worker to query over the information content of the documents
in question. Semantic search methods aim to solve this problem in different
ways.

2Data.gov, the EU Open Data Portal, the Wikimedia movement, etc.
3Friend-Of-A-Friend, http://www.foaf-project.org

24



“Dissertation” — 2017/8/15 — 10:53 — page 25 — #39

2.2. Ontology Applications

Semantic fact search

The semantic search solution by Guha et al. [70] allows users to search over
the Semantic Web to find knowledge triples related to an entity or concept.
Their basic approach to semantic fact search, of first finding a canonical
IRI corresponding to a search string, and then querying known knowledge
bases to aggregate more RDF triples involving this IRI, is still in use in
modern solutions. Uren et al. discuss approaches and methods for semantic
search extensively in [166]. They classify three different types of queries
over semantic facts, which they name the search for entities, searches for
relations, and parametrised searches. Entity search is the search for more
information regarding some RDF resource. This is the simplest type of
semantic query. Relation-based search attempts to find the path connecting
two RDF resources, to learn how two known concepts or individuals are
connected in a dataset. Parametrised search uses templates with parameters
that can be applied to an RDF graph to “stamp out” those parts of the RDF
graph that are consistent with the parametrised search query.

Text-based search with annotations

When using an annotations-based approach, the documents over which a
search is executed are indexed not only by their textual content but by
the semantic meaning of parts of that content. An example of this type of
search is the method presented by Kyriakov et al. in [101]. Their method
allows users to query for both instance data extracted from documents and
for documents that mention particular instance data. Combining these two
types of searches yields a method where users can first search for the facts
that they are interested in and then bring up the documents related to those
facts. Lei et al. [106] present a system that uses a simple Google-like search
interface. This interface makes use of a controlled natural language such
that users can pose queries in pseudo-English, which the system translates
into formal queries. The engine then uses the generated queries to return
results from a knowledge base of metadata extracted from a web portal. The
returned facts include pointers to the source document that this metadata
was originally extracted from, allowing the user to get access to documents
as opposed to only semantic facts. Both systems make use of information ex-
traction techniques to retrieve metadata from published documents. Such
extraction can be simplified significantly if the source documents comply
with some metadata structure to begin with. The schema.org4 vocabulary
(backed by Google, Microsoft, Yahoo and Yandex) standardises such a meta-
data structure by providing a set of simple vocabularies for web content.

4http://schema.org/

25



“Dissertation” — 2017/8/15 — 10:53 — page 26 — #40

Chapter 2. Background and Related Work

2.2.4 Reasoning Tasks

The description logic foundations of Semantic Web ontologies make them
suitable for a variety of uses where the logic consequences of a certain set of
data or knowledge need to be computed. This type of computation is most
often performed using a Semantic Web reasoning engine, which is typically
capable of tasks such as consistency checking, subsumption calculation, in-
dividual realisation, and concept satisfiability checking. The following sec-
tions provide some illustrations of such advanced usages of ontologies and
semantic technology.

Complex Event Processing

Luckham and Frasca [114] introduce the notion of Complex Event Process-
ing (CEP), in which patterns based on temporal or causal links between
events are defined and formalised into mapping rules. When executed over
incoming time-indexed data streams, these patterns connect lower level ba-
sic events to form higher level complex events. CEP is utilised in many
areas, from improving operational efficiency in healthcare [172] to dynamic
adaption of business process models [87]. However, as indicated by Anicic
et al. in [4], traditional CEP approaches have some drawbacks, particularly
in terms of recognising events using background knowledge. To overcome
these limitations, [4] suggests the use of Semantic CEP, in which background
knowledge is encoded into knowledge bases that are accessed by a rules en-
gine to support CEP. Another approach to enabling semantic processing of
time-indexed data is proposed by Barbieri et al. in [10] and further de-
veloped in [9] and [8]. They propose an extension of the SPARQL query
language, enabling continuous querying over timestamped RDF graphs us-
ing configurable sliding windows. They also develop support for reasoning
over such sliding windows.

Ubiquitous computing

Berners-Lee’s original vision for the Semantic Web [17] exemplifies the usage
of a meaningful machine-interpretable Web through a ubiquitous computing
scenario. Several systems have been developed that try to fulfil this vision,
see for instance [135] and [33]. These types of systems generally model two
(sometimes overlapping) areas: a usage domain and a usage context. The
former concerns the types of operations and/or data that the ubiquitous
computing system needs to support. The latter concerns the contexts in
which the operations take place and in which the system needs to be able to
support activities. In both types of modelling the use of ontologies allows for
harmonisation of the formats in which data and knowledge are exchanged
between interacting systems. Inferring the presence of a certain usage con-
text and what consequences this usage context has on an ongoing activity
is a typical use of a semantic reasoner.

26



“Dissertation” — 2017/8/15 — 10:53 — page 27 — #41

2.3. Ontology Development

2.3 Ontology Development

A variety of different methods and practices for ontology engineering have
been developed in academia. While this dissertation does not have enough
room to cover and discuss all of them, a subset of commonly mentioned
and discussed methods is presented below. It is important to note that
nearly all of these methods require that ontologies are created either by
experienced ontology engineers on their own, or by ontology engineers and
domain experts in cooperation. Few of them support domain experts in
developing Semantic Web ontologies in their own, which as we will see in
the next section is one of the motivations behind the development of ODPs.

In all of the presented methods, requirements engineering plays an im-
portant role. In an ontology engineering context, requirements are often
formalised into competency questions (sometimes abbreviated CQs). Com-
petency questions are introduced by Gruninger and Fox [66] as a set of
problems that the logic axioms of an ontology must be able to represent and
solve. In [66] several such competency questions are given as examples, in-
cluding planning questions (“what sequences of activities must be completed
to achieve some goal?” [66, p. 5]) and temporal projection (“given a set of
actions that occur at different points in the future, what are the properties of
resources and activities at arbitrary points in time?” [66, Ibid.]). For sim-
ple communicative purposes such questions are often presented in natural
language format, but according to the Gruninger and Fox perspective, they
must be formalisable into machine interpretable and solvable problems. In
RDFS and OWL ontologies, competency questions are often formalised into
SPARQL queries, and are considered satisfied if said SPARQL query returns
the expected result when executed over the ontology in question.

2.3.1 METHONTOLOGY

The METHONTOLOGY methodology is presented by Férnandez et al. in
[49]. It is one of the earlier attempts to develop a development method
specifically for ontology engineering processes (prior methods often include
ontology engineering as a sub-discipline within knowledge management, con-
flating the ontology-specific issues with other more general types of issues).
Férnandez et al. suggest, based largely on the authors’ own experiences of
ontology engineering, an ontology lifecycle consisting of six sequential work
phases or stages: Specification, Conceptualisation, Formalisation, Integra-
tion, Implementation, and Maintenance. Supporting these stages are a set
of support activities: Planification, Acquiring knowledge, Documenting, and
Evaluating.

To implement this general ontology lifecycle into an actual ontology de-
velopment methodology, the following concrete development activity steps
are proposed (and motivated by reference to empirical or theoretical sources):

27



“Dissertation” — 2017/8/15 — 10:53 — page 28 — #42

Chapter 2. Background and Related Work

1. Specification: In which a requirements specification for the ontology
project is developed, including details on intended usage, level of for-
mality, scope, etc.

2. Knowledge Acquisition: In which various sources of knowledge, in-
cluding experts, books, documents, figures, tables, etc. are studied to
gather the knowledge required to understand the domain and concepts
therein.

3. Conceptualisation: In this step the gathered domain knowledge is
structured in a glossary of concepts, instances, verbs, properties, etc.
METHONTOLOGY proposes a conceptual intermediate representa-
tion format suitable for comparison of different ontologies independent
of whatever implementation language that is eventually used.

4. Integration: To speed up development, the reuse of existing ontologies
and meta-ontologies (i.e., foundational vocabularies) is recommended
whenever possible.

5. Implementation: In this step, the results of the aforementioned steps
is codified into a formal language.

6. Evaluation: In which an ontology is validated against the original
requirements specification, and verified to be formally correct.

7. Documentation: Unlike previously listed activities, the documentation
activity takes place throughout the whole lifecycle process, in which a
variety of documents detailing the work performed and the function-
ality developed are created.

The steps defined are rather coarse-grained and give guidance on overall
activities that need to be performed in constructing an ontology. Fine-
grained and specific task or problem solving guidance is not included, rather
it is assumed that the reader is familiar with the specifics of constructing
an ontology.

METHONTOLOGY does not explicitly define or differentiate between
the different roles involved in an ontology engineering project. In the text
describing the different steps, field experts are mentioned as being involved
in the knowledge acquisition step, but then only as sources of knowledge, not
active participants in the ontology engineering process itself. In this way the
method may prove helpful for ontologists looking to structure their work,
but it is likely less useful in terms of helping improve semantic technology
and ontology adoption among non-ontologists.

2.3.2 On-To-Knowledge

The On-To-Knowledge Methodology (OTKM) [157] is, similarly to METHON-
TOLOGY, a methodology for ontology engineering that covers the big steps,

28



“Dissertation” — 2017/8/15 — 10:53 — page 29 — #43

2.3. Ontology Development

but leaves out the detailed specifics. OTKM is framed as covering both on-
tology engineering and a larger perspective on knowledge management and
knowledge processes, but it heavily emphasises the ontology development
activities and tasks (in [157] denoted the Knowledge Meta Process).

The method prescribes a set of sequential phases: Kick-off, Refinement,
Evaluation, and Application and Evolution. These phases may be iterated
over cyclically in larger or longer-running projects, such that output from
an Application and Evolution phase may be the input into a new Kick-off
phase.

OTKM requires collaboration between domain experts and ontology en-
gineers in the Kick-off phase, where an ontology requirements specification
document (ORSD) and an initial semi-formal model is developed, and where
representatives of both groups need to sign off on these artefacts as suffi-
ciently covering all requirements. In the subsequent Refinement phase an
ontology engineer formalises the initial semi-formal model into a real on-
tology on their own, without aid of a domain expert. Once the ontology
engineer is satisfied that the developed ontology fulfils the requirements,
the phase is finalised and the Evaluation phase begins. In evaluation, both
technical and user-focused aspects of the knowledge based system in which
the ontology is used, are evaluated. The former aspects are assumed to be
evaluated by an ontology or software engineer ([157] leaves this question
unanswered but it is a reasonable assumption to make), while the latter are
to be evaluated together with end-users, from the perspective of whether
the developed solution is as good or better than already existing solutions.
Finally, the Application and Evolution phase concerns the deployment of
said knowledge based system, and the organisational challenges associated
with maintenance responsibilities.

It is interesting to note that in this methodology also, the role of the
domain expert is rather limited. It is assumed that a dedicated ontology
engineer will perform the knowledge modelling tasks, with input from the
domain experts early in the process (when formalising requirements), but
later involvement of said domain experts is limited.

2.3.3 DILIGENT

DILIGENT, by Pinto et al. [129, 128], is an abbreviation for Distributed,
Loosely-Controlled and Evolving Engineering of Ontologies, and is a method
aimed at guiding ontology engineering processes in a distributed Semantic
Web setting. The method emphasises decentralised work processes and on-
tology usage, domain expert involvement, ontology evolution management,
and fine-grained methodological guidance. Pinto et al. differentiate between
ontology engineers and knowledge engineers on the one hand, and ontology
users on the other. In their view, the core of an ontology needs to be created
by the former group of logic and knowledge experts (in cooperation with do-
main experts), but adaptations of the ontology are best performed by the

29



“Dissertation” — 2017/8/15 — 10:53 — page 30 — #44

Chapter 2. Background and Related Work

latter group, the ontology users who have direct personal knowledge of the
specific uses to which the ontology will be put. These implemented user
adaptations may at times need to be back-ported into the core ontology for
maintenance and evolution reasons, and such integration work should, to en-
sure quality and consistency, be performed by a control board of knowledge
experts.

This distributed development process is formalised into five activities:
build, local adaptation, analysis, revision, and local update. In the build
phase, the ontology experts create the initial ontology. In the subsequent
local adaptation phase, ontology users are allowed to copy and update their
local variants on this ontology. In the analysis phase the central control
board analyses the local variants that have been developed, to find similar-
ities and candidate features for inclusion in the shared core. In the revision
phase, the core is updated according to this analysis. Finally, in the local
update phase, the updated core is pushed out to the ontology users, and
their local variants are updated to remain compatible and compliant with
the new version of the core. To support these steps a collaborative ontology
engineering environment is required.

In evaluating this approach in two case studies, Pinto et al. [129, 128]
find the involvement of knowledge or ontology engineers throughout the de-
velopment process to be crucial. In analysing user and group interaction
in ontology engineering using a collaborative ontology engineering environ-
ment, they find that having an experienced moderator restricting and guid-
ing user discussion is beneficial to the process. In studying how ontology
users work in performing local adaptations, they note that these local adap-
tations almost exclusively deal with changes to the subsumption hierarchy.
No new relations were defined, and only a little instance assignment. They
conclude that users do not understand the logic structure or theory of an
ontology: “First of all our users did understand the ontology mainly as a
classification hierarchy or their documents” [128, p. 315]. They also note
that reconciling the local adaptations when attempting to build a new ver-
sion of the core is a task that needs to be performed by a knowledge engineer,
and which cannot be automated.

The NeOn methodology [154] is not actually a single methodology in the
sense that it encodes a single recommended workflow and set of activities.
Instead, NeOn provides guidance and recommendations concerning a variety
of different processes and activities that might be involved in an ontology
engineering project. This approach means that different aspects of the NeOn
methodology can be employed regardless of whether the ontology engineer-
ing project aims to develop a new ontology from scratch, to re-engineer an
existing (ontological or non-ontological) resource, to align ontologies, or for
that matter, to reuse ODPs.

For this purpose, the NeOn methodology provides:

• A glossary of terms relevant in ontology engineering processes and
activities. In total the glossary covers 58 such terms.

30



“Dissertation” — 2017/8/15 — 10:53 — page 31 — #45

2.3. Ontology Development

• A set of nine scenarios exemplifying how some of the processes and ac-
tivities from the glossary might be combined to achieve some ontology
engineering objective (e.g., Reusing and re-engineering non-ontological
resources or Restructuring ontological resources).

• Two life cycle models describing how these processes and activities
might be organised into project phases (the models cover the waterfall
and incremental-iterative approaches).

• Methodological guidelines and recommendations on how to perform
some of the processes and activities from the glossary.

The first three of the above contributions present recommendations and
discussions on a macro level, discussing which overall processes need be
implemented and how they might be organised to achieve some goal. In
contrast, the guidelines provided by the last contribution are more specific
and instead discuss more concrete methods, tasks, and algorithms. These
latter guidelines are presented in the form of individual chapters within
[155]. One such chapter specifically concerns the use of ODPs—that chapter
describes and prescribes the use of the eXtreme Design methodology which is
also studied within this dissertation (and which is presented in Section 2.4.2).

2.3.4 SAMOD

SAMOD [126], or Simplified Agile Methodology for Ontology Development,
is a recently developed methodology that builds on and borrows from test-
driven and agile methods (in particular eXtreme Design).

SAMOD emphasises the use of tests to confirm that the developed ontol-
ogy is consistent with requirements, and prescribes that the developer con-
struct three types of such tests: model tests (testing the ontology module’s
terminological definitions against the requirements scenario, and ensuring
that the terminological definitions are consistent), data tests (testing that
the examples provided in the requirements scenario are covered by the ontol-
ogy module’s assertional definitions, and that those assertional definitions
are compliant with the terminological definitions), and query tests (testing
whether the SPARQL queries intended for use with the ontology module are
well-formed and can be executed against the ontology module yielding such
results as are expected based on the examples provided in the requirements
scenario).

The SAMOD process is very light-weight, consisting of three main steps
that are repeated in a development loop that is iterated once for every
requirements scenario:

1. Collect requirements for one usage scenario, formalise those require-
ments, construct tests based on the requirements, and construct an
ontology module covering the requirements and fulfilling the tests.

31



“Dissertation” — 2017/8/15 — 10:53 — page 32 — #46

Chapter 2. Background and Related Work

2. Merge the ontology module (covering a single scenario) and its tests
with main branch ontology under development (covering several sce-
narios).

3. Refactor the main branch under ontology as needed.

After each of these steps, all the tests defined for the module and/or
main branch ontology are executed. The developer does not proceed to the
next step until all tests are passed.

SAMOD defines two participant roles: domain experts and ontology engi-
neers. The two roles work jointly on collecting and formalising requirements,
but SAMOD explicitly requires that once this work is done, the remainder
of the work within the first step, and the two subsequent steps, should be
performed by ontology engineers only.

SAMOD also requires that the developer adhere to certain design prin-
ciples:

• Develop small ontologies or ontology modules, for the sake of keeping
development and debugging reasonably simple.

• Reuse knowledge in the form of ODPs whenever possible.

• Employ a middle-out development strategy, that is, start working with
ontology entities that are of neither too generic and abstract nor too
specific and concrete.

• Use self-explanatory entity naming on IRI level: names should be hu-
man readable, should be capitalised or in camel-case notation, prop-
erties should use verbs, etc.

Finally, SAMOD suggests that ontology documentation and ontology
alignment to other resources be performed not when developing each module
within the first step of the development loop, but rather at the end of the
loop, when refactoring the main branch to accommodate the newly merged
ontology module.

2.3.5 Ontology Development 101

The Ontology Development 101 guide by Noy and McGuinness [123] does
not present an ontology development methodology as such, but it is often
referred to and recommended as a good introduction to ontology engineering
for beginners, and it does provide a structured overview of required tasks in
an ontology engineering project. Updated to correspond to the OWL ter-
minology used in this dissertation those required tasks are: Scoping, Reuse,
Term enumeration, Class hierarchy construction, Property elicitation, Prop-
erty definition, and Instance creation. Each step is explained and exempli-
fied. Additionally, a section of the document discusses commonly occurring

32



“Dissertation” — 2017/8/15 — 10:53 — page 33 — #47

2.4. Ontology Design Patterns

problems or issues associated with each step, to help the reader avoid the
most common pitfalls.

The Ontology Development 101 guide is aimed at ontology users, domain
experts, and students. It does not take any prior knowledge of ontology
theory or practice for granted. It also gives very concrete and applicable
guidance on practical issues of ontology engineering, such as the difference
between subclassing and typing, or the difference between concepts and the
labels of said concepts. In this way, it fills some pedagogical gaps that
the previously discussed methods (which give big-picture guidance aimed at
people who are already ontologists) do not cover. However, due to the limi-
tations in size of this guidance document it obviously cannot cover the entire
set of easy mistakes and bad or good practices. Additionally, due to the lim-
itation in scope (it is a general guideline, not a domain-specific one) difficult
modelling issues which are usage area-specific are not covered. Finally, the
guide is written to apply to the development of pre-Semantic Web frame-
based ontologies in systems like Protégé 2000, and it consequently does not
make use of the features (imports, resolvable IRI references, namespaces,
etc.) that more recent ontology technology enables.

2.4 Ontology Design Patterns

As illustrated by the methods mentioned above, it is still the case that on-
tology development for the Semantic Web is mostly carried out by ontology
engineers and description logic experts, and most ontology engineering tools
and methods are geared towards this category of developers, not domain
experts. This state of affairs is problematic for two reasons. Firstly, the
additional knowledge elicitation and acquirement steps required when the
roles of domain expert and ontology engineer are separate slows down the
ontology development process in the individual case by requiring additional
tasks to be performed. Secondly, ontology engineers are still most commonly
academics and researchers, and the industrial uptake of semantic technolo-
gies is not as high as it could be. A higher degree of knowledge regarding
these technologies and ontology engineering among non-academics and do-
main experts could go a long way toward furthering adoption of semantic
technologies among practitioners.

Further, as the methods discussed also illustrate, established guidance
and methods in ontology engineering has focused on the big picture, that is,
the overall phases or large granularity tasks that need to be performed in an
ontology engineering task. Except for the Ontology Development 101 guide,
none of the discussed methods go down to the level of detail of how to solve
more concrete commonly occurring tricky modelling issues. While several
methods mention reuse of existing ontologies, none give specific guidance
regarding how such reuse is best achieved.

Ontology Design Patterns were introduced as potential solutions to these
types of issues at around the same time independently by Gangemi [55] and

33



“Dissertation” — 2017/8/15 — 10:53 — page 34 — #48

Chapter 2. Background and Related Work

Blomqvist and Sandkuhl [25]. The former defines such patterns by way
of the characteristics that they display, including examples such as “[an
ODP] is a template to represent, and possibly solve, a modelling problem”
[55, p. 267] and “[an ODP] can/should be used to describe a ‘best practice’
of modelling” [55, p. 268]. The latter describes ODPs as generic descrip-
tions of recurring constructs in ontologies, which can be used to construct
components or modules of an ontology. Both approaches emphasise that
patterns, in order to be easily reusable, need to include not only textual
descriptions of the modelling issue or best practice, but also some formal
ontology language encoding of the proposed solution. The documentation
portion of the pattern should be structured and contain those fields or slots
that are required for finding and using the pattern. For an example of what
an Ontology Design Pattern description might look like, see Figure 2.5.

Gangemi [55] motivates the need for ODPs by noting how useful similar
constructs have been in practical cases where domain experts were involved,
both in terms of simplifying knowledge acquisition from these experts, and in
terms of enabling said experts to perform basic ontology engineering them-
selves. Blomqvist and Sandkuhl [25] on the other hand support the need for
patterns by referring to the potential for reuse that they bring, particularly
in automatic or semi-automatic ontology engineering scenarios. In subse-
quent work [133, 18, 60] these two sets of motivations for Ontology Design
Patterns have come together, such that at the time of writing, patterns are
considered to produce benefits with regard to both reusability and guidance.
Additionally, as pointed out by Blomqvist in [18] communication benefits
can also be achieved by such patterns, in that having a shared vocabulary of
commonly occurring modelling problems and associated solutions can help
simplify ontology engineering in a team environment.

It is important to note that the issue of pattern quality is strongly con-
nected to the motivations for pattern use, which can vary, as shown above.
If one considers reuse to be the main and only reason for the development
and use of ODPs, then the associated ontology language encoding is likely
to be the main object of study, whereas if one considers guidance and com-
munication to be more important reasons, then the pattern documentation
may be of greater importance. From a philosophical perspective it can be
argued that both parts of the pattern are just different representations of
an abstract phenomenon, the coupling of a problem and solution, which
exists as a purely mental construction or idea. In this dissertation the philo-
sophical debate is sidestepped, and Ontology Design Patterns are taken to
consist of both a documentation portion and a reusable code module por-
tion, and are taken to be intended for supporting reusability, guidance, and
communication.

Since their introduction, Ontology Design Patterns have been the subject
of a fair amount of research, see for instance the deliverables of the EU
FP6 NeOn Project5 [133, 40] and the work presented at instances of the

5http://www.neon-project.org/

34



“Dissertation” — 2017/8/15 — 10:53 — page 35 — #49

2.4. Ontology Design Patterns

Name Context dependant information

Intent To model the case when some information is deemed especially 
relevant for a particular role performing a particular action.

Competency 
questions

What information is available that in some way deals with task X?
What documents are available that are relevant only for an 
Astronomer (role) doing task Y?
I am a PhD Student (role). What documents are there that I could 
be interested in, of any topic?

Solution 
description

One or more roles are assigned to a person. The activities that 
are performed in the target domain are modelled as Activity 
instances. Both Role and Activity can be subclassed depending 
on one’s needs. Roles and Activities are joined by context, for 
instance ”Doctor doing diagnosis” or ”Medically unskilled person 
doing diagnostics”. What Information instance is deemed relevant 
for each context is decided by way of the 
”informationIsRelevantInContext” property.

Reusable OWL 
building block

http://www.infoeng.se/~karl/images/f/f5/
Context_Dependant_Information.owl

Consequences No known consequences.

Scenarios Medical doctors using different diagnostics manuals than non-
medically trained people when diagnosing illnesses.
Car mechanics using different guidelines when servicing exhaust 
systems than brake pedals.

Context

Information

Role

Activity

context 
Includes 

Role
rdfs:domain rdfs:range

context 
Includes 
Activity

rdfs:domain

rdfs:range

information is 
relevant in 

context

rdfs:range

rdfs:domain

information 
has location

xsd: 
stringrdfs:rangerdfs:domain

Figure 2.5: Context Dependant Information ODP.

35



“Dissertation” — 2017/8/15 — 10:53 — page 36 — #50

Chapter 2. Background and Related Work

LexicoSyntactic 
ODP

Presentation 
ODP

Naming ODP Annotation ODP

Reasoning ODP Content ODPCorrespondence 
ODP Structural ODP

Alignment ODPReengineering 
ODP

Schema 
Reengineering 

ODP

Refactoring 
ODP

Transformation 
ODP

Logical Macro 
ODP

Architectural 
ODP

Ontology Design 
Pattern

Logical ODP

Figure 2.6: NeOn ODP typology (adapted from [133]).

Workshop on Ontology Patterns6 [26, 19, 20, 58, 42, 23] at the International
Semantic Web Conference. To the author’s best knowledge there are no
studies indicating ontology engineering performance improvements in terms
of time required when using patterns, but results so far indicate that their
usage can help lower the number of modelling errors and inconsistencies in
ontologies, and that they are perceived as useful and helpful by inexperienced
users [21, 44].

2.4.1 ODP Typologies

The use and understanding of Ontology Design Patterns has been heavily
influenced by the work taking place in the NeOn Project, the results of
which include a pattern typology [133] shown in Figure 2.67, and the eX-
treme Design collaborative ontology development methods, based on pattern
use [40]. The typology of patterns has been developed further within the
OntologyDesignPatterns.org initiative and is used as a classification schema
for this initiative’s pattern repository. The typology is based on the uses to
which patterns are put, whether they represent best practices in reasoning,
naming, transformation, content modelling, etc. In this view, certain cate-
gories of patterns are subcategories of one or several other categories. While
the work in this dissertation concerns only Content ODPs, all the top-level

6http://ontologydesignpatterns.org/wiki/WOP:Main
7The figure shown here is based on an updated version of the typology as published

on the ODP community portal, http://ontologydesignpatterns.org, in which Mapping
patterns have been renamed Alignment patterns.

36



“Dissertation” — 2017/8/15 — 10:53 — page 37 — #51

2.4. Ontology Design Patterns

pattern categories from the NeOn typology are presented below for the sake
of completeness, with brief descriptions of their purpose and structure.

• Content ODP: Content ODPs solve modelling issues regarding ontol-
ogy content, either in the general domain or in one specific domain of
study. They provide solutions to problems that are known to be diffi-
cult to model correctly, or problems that are known to occur frequently
and for which a conceptual harmonisation can be of use.

• Structural ODP: Structural ODPs are patterns that concern either
design problems regarding ontology language insufficiencies and limi-
tations or the overall structure and shape of an ontology. The former
class of patterns are known as Logical ODPs, and include for example
the nary relation ODP, which suggests a reification solution to the
problem that many ontology languages only support binary relations.
The latter class provide suggestions for the structure of an ontology
as a whole, and include examples such as Taxonomy or Modular Ar-
chitecture.

• Correspondence ODP: Correspondence ODPs deal with issues of reengi-
neering and alignment of ontologies. Patterns that deal with reengi-
neering consist of sets of transformation rules that can be applied to
change an existing model (either an ontology or a non-ontological re-
source) into a new ontology. Patterns that deal with alignment are
written as a set of semantic relations between classes and individuals
in two different ontologies, in order to provide interoperability without
discarding the existing models.

• Reasoning ODP: Reasoning ODPs model tasks that a reasoning en-
gine could perform (such as subsumption hierarchy materialisation or
restriction de-anonymising). The idea behind this type of pattern is
that it can be useful in ontology normalisation and standardisation.
At the time of writing no reasoning patterns fitting the above defini-
tion have been published, however, [167] presents task-based patterns
for the Semantic Web employing reasoning and ontologies, for instance
Service selection and Semantic enrichment.

• Presentation ODP: Presentation ODPs are recommendations and best
practices on how to name, annotate, graphically illustrate, and oth-
erwise document ontologies in a way that promotes their learnability
and usability.

• Lexico-Syntactic ODP: Lexico-Syntactic ODPs are mappings of lan-
guage structures to ontology structures, intended to simplify Ontol-
ogy Learning tasks. Examples include traditional Hearst patterns [85]
mapped to ontology constructs.

37



“Dissertation” — 2017/8/15 — 10:53 — page 38 — #52

Chapter 2. Background and Related Work

Ontology 
Module

<owl:Ontology ...>         
  ... </owl:Ontology> 

<...> < >…< > </...> 

<owl:...>…</...>

Ontology 

Ontology 
Module

Ontology 
Module

Application 
pattern 

Complete 
ontology 

 
Ontology requirements and interface, possibly 
described in a software architecture description 
language. 
 

Architecture 
pattern 

Complete 
ontology 

 
Overall ontology organisation 
and parts, possibly described in 
an ontology architecture 
description language. 
 
 
 

Part of the 
ontology 

  
        Ontology Module 

An ontology part, e.g. module, and its over- 
all organisation, possibly described in an 
ontology architecture description language.  

Design  
pattern 

Complete 
ontology 

 
 
 
Restrictions on the modelling of the 
overall ontology, described through  
an ontology modelling language. 

Part of the 
ontology 

 
An ontology part solving a 
specific modelling problem, 
described through an ontology 
modelling language. 

Elements of the 
ontology 

 
Individual ontology element, described through an 
ontology modelling language. 
 

Syntactic 
pattern 

Complete 
ontology 

 
 
Pattern guiding the represen tation of a complete 
ontology in an ontology representation language. 

Part of the 
ontology 

 
Representation of  parts of  an ontology in  
an ontology representation language. 
 

Elements of the 
ontology 

 
Representation of individual element in 
an ontology representation language. 
 

Element 
representation 

  
Primitive patterns of the representation 
language itself. 

 

 

 

<owl:Class  rdf:about=""> 
   <rdfs:subClassOf  rdf:resource=""/> 
</owl:Class> 

 
<owl:Class>…</...> 

    
 

<owl:Class>     
       ...     </owl:class> 
   < >…< > 
<owl:ObjectProperty>   </...> 

<owl:Class  rdf:about=""> </owl:Class> 

Concept

Concept

Concept Concept

Concept

Concept

Concept

Concept Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept

Concept Concept

Concept

Concept

Concept

Concept

Concept

Abstraction Granularity Illustration of level

Figure 2.7: Blomqvist’s ODP typology (source: [18]).

38



“Dissertation” — 2017/8/15 — 10:53 — page 39 — #53

2.4. Ontology Design Patterns

While the NeOn view is influential and its accompanying typology is ref-
erenced frequently, it is neither universally accepted nor the only perspective
on the issue—for instance, Blomqvist [18] presents a different typology based
on the level of abstraction and granularity of the reusable solution. Accord-
ing to this categorisation structure, shown in Figure 2.7, there are four levels
of ontology pattern abstraction that restrict the scope of the pattern and
the granularity of the constructs that it concerns: Application patterns,
Architecture patterns, Design patterns, and Syntactic patterns.

Application patterns concern the overall scope and purpose of an on-
tology with an application context, and describes how an ontology works
together with executable code to provide some set of functionalities. A
pattern on this level treats the ontology as a unit or a component in a soft-
ware system, but does not break the ontology apart further. Architecture
patterns do break apart the ontology further, and concern the internal struc-
ture of the ontology and the modules that make it up. Patterns on this level
may include restrictions on design patterns or modules used in the ontology.
However, they do not deal with specific low level modelling issues. Those
types of issues are instead dealt with in Design patterns (this meaning of the
term Ontology Design Pattern differs from its use in the NeOn typology and
in the rest of this dissertation). Design patterns do deal with how to handle
specific modelling challenges concerning the logical structure of difficult-to-
model content. Design patterns work on the level of logical axioms and
constructs, but do not delve into syntactical or ontology language-specific
issues. This last category of problems is the domain of Syntactic patterns,
which deal with the actual serialised on-disk representation of an ontology,
that is, string and character combinations.

2.4.2 ODP-based Ontology Construction

eXtreme Design (XD) is defined as “a family of methods and associated
tools, based on the application, exploitation, and definition of Ontology De-
sign Patterns (ODPs) for solving ontology development issues” [132, p. 83].
The method is influenced by the eXtreme Programming (XP) agile software
development method, and like that method, emphasises incremental devel-
opment and continuous requirements management (as opposed to the more
traditional method of separating requirements engineering and development
phases). Like XP it also recommends pair development, test driven devel-
opment, refactoring, and a divide-and-conquer approach to problem-solving
[131].

Conceptually, XD describes approaches for selecting ODPs for reuse
based on the notions of problem space and solution space. The problem
space consists of the set of modelling problems (Local Use Case, LUC) that
an ontology engineer comes across during a project. The solution space is
the set of reusable solutions to common problems, that is, ODPs. Included
in each pattern is a description of the Generic Use Case (GUC) in which

39



“Dissertation” — 2017/8/15 — 10:53 — page 40 — #54

Chapter 2. Background and Related Work

Solution Space Problem Space

Ontology Design 
Pattern

Generic Use 
Case

Ontology Design 
Pattern

Generic Use 
Case

Generic Use 
Case

Ontology Design 
Pattern

Generic Use 
Case

Generic Use 
Case

Ontology Design 
Pattern

Generic Use 
CaseGeneric Use 

Case
Generic Use Ontology Design 

Pattern

Generic Use 
Case

CaseOntology Design Ontology Design Ontology Design 

Generic Use 

Ontology Design 
Pattern

Generic Use 
Case

Local Use 
CaseCase

Local Use 
Case

Local Use 
Local Use 

Case
Local Use 

Casematches

matches

Figure 2.8: XD pattern selection approach (source: [132]).

it is applicable. By mapping LUC to GUC, the ontology engineer finds
appropriate patterns that solve the modelling problems that occur in their
problem space, as indicated in Figure 2.8 [132, 131].

The proposed selection method is appropriate for finding patterns that
satisfactorily solve a certain problem from a larger set of patterns. It may
also be possible to formalise and automate, provided that an appropriate
logical vocabulary for describing LUCs and GUCs is developed. However,
it does not guide the user in selecting, from a given set of functionally ap-
propriate patterns, the one that is best suited for use in their particular
situation. The right choice could then depend on non-functional require-
ments on the ontology (expandability, performance, testability, etc.), or it
could depend on quality attributes of the pattern itself (how easy is it to
apply, how well is it documented, if there is an example ontology using it,
etc.). In this scenario, an ODP quality model could guide the developer
in selecting patterns to use that, apart from solving the functional require-
ments of their modelling problem, also has features and qualities that are
appropriate and helpful to them.

The XD method consists of a number of tasks, as illustrated in Fig-
ure 2.9. The first three tasks deal with establishing a project context (i.e.,
introducing initial terminology and obtaining an overview of the problem),
identifying a set of candidate ODP portals on the Web, and collecting initial
requirements in the form of a prioritised list of user stories (describing the
required functionality in layman’s terms). These steps are performed by the
whole XD team together with the customer, who is familiar with the domain
and who understands the required functionalities of the resulting ontology.
The later steps of the process are performed in pairs of two developers (these
steps are in the figure enclosed in a grey box). They begin by selecting the
top prioritised user story that has not yet been handled, and transform that

40



“Dissertation” — 2017/8/15 — 10:53 — page 41 — #55

2.4. Ontology Design Patterns

Project initiation 
and scoping

Identify CODP 
catalogues

Collect 
requirement 

stories

Select story

Elicit 
requirements

Select set

Match and 
select ODPs

Reuse and 
integrate ODPs

Test module

Release module

Integrate partial 
solutions, 

evaluate, revise

Release new 
version

All req:s 
covered?

All stories 
covered?

No

No
Yes

Figure 2.9: XD workflow (adapted from [132]).

story into a set of competency questions, contextual statements, and reason-
ing requirements. Competency questions (introduced in Section 2.3) can be
understood as example questions that the resulting ontology should be able
to answer, and may be written in natural language, or in a more formal no-
tation such as the SPARQL query language. Example competency questions
are included in Figure 2.5. Contextual statements are general axioms that
should hold within the modelled domain. Reasoning requirements are such
requirements regarding reasoning capability of the resulting ontology and/or
system that are difficult to express in competency question form. Customer
involvement at this stage is required to ensure that the user story has been
properly understood and that the elicited competency questions, contextual
statements, and reasoning requirements are correctly understood. The de-
velopment pair then selects one or a small set of interdependent competency
questions for modelling [132, 131].

In the development process, a pattern matching the competency ques-
tions is selected by matching LUC to GUC as described earlier. There
may be multiple matching ODPs found, in which case the development pair
must select one based on their understanding of the problem domain and the
modelling consequences associated with each matched pattern. The selected
pattern is then adapted and integrated into the ontology module under de-
velopment (or, if this iteration covers the first requirements associated with
a given user story, a new module is created from it). The module is tested
against the selected requirements to ensure that it covers them properly. If
that is the case, then the next set of requirements from the same user story
is selected, a pattern is found, adapted, and integrated, and so on. Once all
requirements associated with one user story have been handled, the module

41



“Dissertation” — 2017/8/15 — 10:53 — page 42 — #56

Chapter 2. Background and Related Work

is released by the pair and integrated with the ontology developed by the
other pairs in the development team. The integration may be performed
either by the development pair themselves, or by a specifically designated
integration pair [132, 131].

Deliverables from the NeOn project prescribe ways of finding or de-
veloping patterns [133], including reengineering from other data models,
specialisation/composition of existing patterns, extraction from reference
ontologies, and a method consisting of sequentially combining extraction,
specialisation, generalisation and expansion. However, the proposed meth-
ods of pattern generation/extraction are not described in any detail, and in
particular they leave out a discussion on the desired or beneficial attributes
of patterns (while a set of pragmatic ODP features is presented in [60], these
features are quite general and do not provide measurable design criteria).
The choices of the type of pattern to create, which characteristics to empha-
sise, how to compose and document the pattern, and so on, when employing
these methods are left to the pattern developer. In such ODP development
work, an ODP quality model (such as the one developed and presented in
Chapter 4 of this dissertation) would be useful in guiding the developer in
producing high-quality patterns.

2.4.3 Other Perspectives on ODPs

Falbo et al. [47] argue for a different perspective on ODPs and their use,
and Ruy et al. [137] extend upon this argument. Per this view, ODPs8 can
be divided into those that are extracted from ontologies covering founda-
tional concepts (FOPs), and those that are extracted from domain-related
ontologies (DROPs). Neither FOPs nor DROPs have language-specific im-
plementations (e.g., OWL building blocks)—rather, they attempt to solve
a modelling issue in a reusable manner, regardless of the technology stack
used. Per this perspective, FOPs would typically be reused by analogy, while
DROPs would typically be reused by extension. The former is analogous to
Template-based ODP instantiation as discussed in Section 5.3, whereas the
latter is analogous to Specialisation-based ODP instantiation.

While [47] and [137] exemplify both types of ODP use, they do not eval-
uate the consequences of either approach, nor do they propose any specific
method including concrete steps a person (or machine) should take to per-
form either. Further the FOP-analogy and DROP-extension pairing might
not necessarily hold in all cases—in fact, in many cases it would be quite
useful for interoperability purposes to extend foundational concepts—while
cloning (i.e., reuse by analogy) may be very useful when adapting a domain-
specific ODP to a related domain.

8The cited works argue that ontology patterns that include concepts or content are
disjoint from patterns that concern design issues, so they prefer the use of the term
Ontology Conceptual Pattern, rather than Ontology Design Pattern or Content Ontology
Design Pattern—but for the sake of not confusing the reader unduly, here we will stick
with the abbreviation ODP.

42



“Dissertation” — 2017/8/15 — 10:53 — page 43 — #57

2.5. Quality Frameworks

Yet another approach to formalising and using ODPs was developed in
the CO-ODE project. This approach builds on the Ontology Pre-Processing
Language (OPPL), a macro language that was initially designed to simplify
rapid transformation of large ontologies [45]. The OPPL macro engine can
add and remove ontology entities and axioms based on variables that are se-
lected from and conditions that are evaluated against the existing ontology -
in this way changes to ontology structure can easily be performed repeatedly
with precision.

The same technique has been extended to formalise ODPs as OPPL
macros [93]. These ODP macros contain unbound variables that the ontol-
ogy developer fills with existing or new ontology entities before executing
the OPPL engine that instantiates the ODP structures into the target ontol-
ogy. Additionally, the ODP version of the OPPL language and tooling adds
features and syntax required to better support ODP use cases, including
user-friendly textual representation of ODP macros, syntax allowing macros
to call one another, and annotation properties to embed metadata about
ODP macro usage in target ontologies.

The OPPL-based approach to ODP use is technically impressive and
from a feature perspective it would likely complement the XD method very
well. All the same, OPPL-based ODP use has seen limited uptake in prac-
tice. This is likely due to some drawbacks that the use of OPPL entails,
namely the need to learn yet another language in addition to RDFS/OWL
and the lack of tool support for developing and maintaining OPPL ODPs.

2.5 Quality Frameworks

The following section presents and discusses existing approaches for evalu-
ating the quality of models, systems, and patterns, which have been used as
input in the development of the ODP Quality Model discussed in Chapter 4.

2.5.1 MAPPER

The MAPPER validation framework [139, 32] was developed within the
MAPPER project, the overall goal of which was to develop model-based ap-
proaches to improving product and process engineering. Within the MAP-
PER project, the validation framework served to help harmonise communi-
cation regarding and evaluation of the different project artefacts, be they
objectives, processes, conceptual models, or other types of deliverables. The
framework is consequently rather complex, as it aims to cover many use cases
and tasks related to evaluation. For this reason, while key perspectives of
this framework as presented below have influenced the development of the
ODP quality metamodel (presented in Section 4.1.1), the entirety of the
validation framework or its metamodel has not been adopted outright, nor
is it exhaustively covered here.

43



“Dissertation” — 2017/8/15 — 10:53 — page 44 — #58

Chapter 2. Background and Related Work

Hypothesis Objective

Criterion Method

MeasureAction

Aspect

Perspective

ContextResult

is refined by

refers torefers to

is refined by includes is condition of

is used in

determines
is used in

is captured by

is expressed by

is applied inresults in

is used in

Figure 2.10: MAPPER validation framework metamodel (source: [32]).

The MAPPER validation framework [139, 32] is represented as a visual
model in which different quality-related concepts are linked by relation-
ships. The typing of the concepts and the relations allowed between them
adheres to the MAPPER validation framework metamodel (illustrated in
Figure 2.10). In evaluating an objective, criterion, hypothesis, etc., this
metamodel is instantiated and each metamodel concept “filled” with one
or more quality-related concepts. In the metamodel validation aspects are
based on validation criteria, which in turn are associated with measurement
methods. Per this perspective there is a distinction between more general
and not directly measurable quality aspects (exemplified by “Resource use”)
and the more tangible and directly measurable quality criteria (exemplified
by “Average POI length”). In following measurement methods for these
criteria (that is, in performing evaluations) certain actions are performed,
actions that are affected by case context, and give rise to results. The more
general quality aspects can be refined in such a manner that a hierarchy
of quality aspects can be established. The metamodel also indicates that
development objectives refer to criteria, that is, that validation of artefacts
cannot be seen as independent of intended artefact usage objectives.

2.5.2 Conceptual Model Quality

Ontologies are essentially models of the world, or at least, a domain of
discourse. ODPs can therefore be considered as small reusable models of a

44



“Dissertation” — 2017/8/15 — 10:53 — page 45 — #59

2.5. Quality Frameworks

recurring concept or set of concepts. It is therefore reasonable to assume that
existing conceptual model quality research is to some degree transferrable
to the field of Ontology Design Patterns.

The PhD thesis On the Quality of Feature Models [161] by Christer Thörn
deals extensively with how to study and ascertain the quality of conceptual
models. The artefacts studied in his thesis are feature models (or variabil-
ity models), that is, models for displaying dependencies and requirements
between different component parts or subsystems in a product, commonly
a software system. Such models are different from ontologies and ODPs in
certain respects, but similar to them in others. While feature models do
employ certain language semantics, these are relatively simplistic and spe-
cific to feature modelling [38, 156]. The models are primarily intended for
supporting requirements engineering and design work, as opposed to struc-
turing large amounts of data or inferring knowledge using reasoning engines.
Like ontologies, however, feature models are artefacts that are used collab-
oratively in performing engineering tasks. Like ontologies, they can grow
very large and become difficult to interpret, and like ontologies they do em-
ploy a certain semantics, expressing a real-world problem or case according
to those semantics. Feature models have been used for variability modelling
in industry for many years, by users of varying technical background and
skills [46, 146, 12]. Ontology Design Patterns are intended to support users
of varying technical background and skills in conceptual modelling, a not
entirely dissimilar task.

Thörn develops and presents a quality model containing six quality fac-
tors believed to be most relevant for feature models [161, p. 152]:

• Changeability: Ability to evolve the model while maintaining the uses
of previous versions.

• Reusability: Ability to reuse (parts of) the model when evolving or
developing other models.

• Formalness: Ability to manage the model in a formalised manner, e.g.
for machine management.

• Mobility: Ability to be moved, transferred and integrated with other
systems.

• Correctness: Correspondence (mapping) between the model and the
modelled artefacts.

• Usability: User-friendliness and ease of learning and communication
to new users.

These quality factors were selected from an initially larger set of factors
and attributes based on a thorough case study observing which qualities
practitioners prioritised in real world modelling cases. Each of the quality
factors is associated with a textual definition and a set of indicators that

45



“Dissertation” — 2017/8/15 — 10:53 — page 46 — #60

Chapter 2. Background and Related Work

are observed to affect the quality factor. While the quality factors are more
general in nature and possibly applicable to ODPs as well, the indicators
in this model are specific to feature models and unsuitable for reuse in an
ODP context.

Thörn’s quality model [161] does not define a generally applicable priori-
tisation of quality factors, nor a method for establishing such prioritisation
based on established context/case types—instead, in each feature model de-
velopment case, stakeholders are required to select which quality factors are
deemed most important in the given context, based on a method of pair com-
parison. Several developmental principles are presented that are intended
to guide feature model developers in constructing models adhering to the
defined prioritisation of quality factors.

2.5.3 Entity Relationship Model Quality

Entity Relationship (often abbreviated ER) models are a type of conceptual
model specifically used to model relational (i.e., tabular) datasets and the
relations between such datasets. While many types of conceptual models
(including, to a certain degree, the variability models discussed in the pre-
vious section) are intended as visualisations and communicative artefacts,
ER models are formalised to the degree that they can be used to generate
database schemas. These models are in broad use in both industry and
academia, and are clearly considered useful by practitioners. Consequently,
developed indicators for measuring ER model usage are likely to be well
grounded in empirical evidence, and therefore extra relevant for study and
possible inclusion in an ODP quality model.

In [61] Genero et al. study a set of metrics believed to affect the learn-
ability and modifiability of ER models. This study was performed in a
small-scale experimental setting with 40 participant subjects. The partici-
pants were given a set of ER models that differed in the metrics being stud-
ied, and were tasked with first filling out a questionnaire to evaluate their
understanding of the ER model, and secondly, to modify the ER model in
accordance with a newly introduced set of additional requirements. In anal-
ysis, the incorrect responses and modifications were discarded, and the time
taken to respond to the questionnaire and to perform the model changes
was instead studied to ascertain the relative understandability and modifi-
ability of the ER models that exhibited different values for the metrics of
study. Genero et al. find a significant correlation between high values for
certain studied metrics and an increased understandability and learnability
time. While the metrics studied are specific to ER models, the approach
to evaluating understandability and modifiability is clearly also applicable
outside of this domain.

Moody and Shanks [120] discuss the issue of redundancy and simplicity,
arguing that a simpler model is proven to be more flexible, easier to imple-
ment, and easier to understand. They suggest that if the size of a model is

46



“Dissertation” — 2017/8/15 — 10:53 — page 47 — #61

2.5. Quality Frameworks

calculated from the number of entities and relationships in the model, the
simplest solution is the one that minimises this size. However, it is impor-
tant to note that the model must still be suitable for its intended purpose.
This mirrors the views expressed by Lindland et al. in [110]: a high-quality
model is constrained by both completeness and relevance criteria, such that
it should be as small as possible, yet not so small as to not fulfil its purpose.

Moody and Shanks [120] also suggest that usability-related should qual-
ities be ascertained by user evaluation and rating. While not detailed by
the authors, such a rating could in many cases be performed via question-
naire surveys or interviews. Moody and Shanks emphasise the importance
of capturing the opinions of several different stakeholders, with different
perspectives. They suggest that these perspectives should be captured via
rating by three categories of users, depending on their roles: business user
rating, data administrator rating, and application developer rating. The first
category of user can verify that the data model is consistent with business
requirements; the second category can verify that the model is compati-
ble with and can be integrated with existing data models in the enterprise;
and the third category must be able to verify that the data model can be
implemented in system development.

In summary, while much of the work on quality metrics and indicators in
the ER field is specific to the features and structure of Entity Relationship
models, certain methods for evaluating practical work using these artefacts
(e.g. survey and interview methods for measuring usability, or measuring the
time required for performing work), and certain general quality indicators
(e.g., size, completeness) are also likely to be suitable for reuse in studying
Ontology Design Pattern quality.

2.5.4 Information System Quality

Ontologies are almost always used as components within an information sys-
tem. As such, research on software artefact quality is likely to be useful and
relevant in understanding the demands on an ontology from an information
system perspective. This field has seen considerable work going back to the
1970s [169, 117, 94]. While some of this work deals with technical measures
and metrics that is only relevant to executable code (branching points, func-
tion lengths, and so forth), there are also quality frameworks that include
more general aspects of quality in software systems. In particular, the ISO
standard 25010 [94] introduces quality models for software artefacts that are
reused in the latter portions of this thesis.

ISO 25010 defines two quality models supporting different uses and arte-
facts in a software engineering context, the Quality in Use Model, and the
Product Quality Model. The former model defines quality in terms of out-
comes of interaction with a complete information system by humans, or-
ganisations, or other information systems. The latter model defines quality
in terms of characteristics of a software product or computer system that

47



“Dissertation” — 2017/8/15 — 10:53 — page 48 — #62

Chapter 2. Background and Related Work

includes a certain piece of software. The two quality models are expressed
according to a framework that defines certain basic concepts, which is also
used in the related standards in the SQuaRE series (ISO 25000–25099).
These definitions include, among other things [94]:

• Software Quality Characteristic: Category of software quality attributes
that have some bearing on software quality. Software quality charac-
teristics can be refined into multiple levels of sub-characteristics and
finally into software quality attributes.

• Quality Measure Element: Measure defined in terms of an attribute
and the measurement method for quantifying it, optionally including
the transformation by a mathematical function.

• Quality Measure: Measure that is defined as a measurement function
of two or more values of quality measure elements.

Per this view, the concepts of quality characteristic and quality mea-
sure are disjoint, though linked by quality attributes. As the name implies,
measures are measurable and quantifiable. Quality characteristics are more
abstract and general.

The Quality in Use model is displayed in Table 2.1. It consists of three
top level quality characteristics and eleven quality sub-characteristics. Each
of these top level and sub-characteristics are associated with textual descrip-
tions, written from a general usage perspective. For instance, efficiency is
defined as “resources expended in relation to the accuracy and completeness
with which users achieve goals” [94, p. 8]. These quality characteristics are
affected by and measure factors relating to the individual software product,
the information system of which the product is a part, the usage environ-
ment of that information system, and the categories of users that make use
of the information system—in short, the Human-Computer System. There
is consequently a certain degree of overlap between the quality character-
istics defined in this model and the quality characteristics of the Product
Quality Model, which focuses exclusively on the effects associated with a
software product and the computer system in which that software product
executes.

The Product Quality Model [94] is displayed in Table 2.2. It defines
a set of eight quality characteristics, each composed of two to six sub-
characteristics. These quality characteristics have definitions written from
a system or product perspective. For instance, the quality characteristic
availability is defined as degree to which a system, product or component is
operational and accessible when required for use. These types of definitions
are much narrower and more specific than those used in the Quality in Use
model. They are, however, still not at the level of granularity where they are
measurable by some defined metric. It is interesting to note that several of
the quality characteristics defined in the Quality in Use model, if reformu-
lated as requirements on a system rather than qualities of that system, would

48



“Dissertation” — 2017/8/15 — 10:53 — page 49 — #63

2.5. Quality Frameworks

Table 2.1: ISO 25010 quality in use model (adapted from [94])

Quality characteristic Subcharacteristic
Effectiveness

Effectiveness
Satisfaction

Usefulness
Trust
Pleasure
Comfort

Context coverage
Context completeness
Flexibility

Efficiency
Efficiency

Freedom from risk
Economic risk mitigation
Health and safety risk mitigation
Environmental risk mitigation

be fulfilled by achieving “high marks” on the Product Quality Model quality
characteristics. For instance, high levels of reliability, security, and main-
tainability (all Product Quality Model characteristics) would help achieve
Economic risk mitigation (a Quality in Use characteristic). While ISO 25010
[94] as mentioned also defines the existence of concrete and quantitatively
measurable quality attributes contributing to these quality characteristics,
no specific instances of such quality attributes are introduced or formalised.

ISO 25010 [94] is a complete standard for IT software systems, that
is widely used in practice. Since, as mentioned, ontologies and ODPs are
used in such systems, it is quite likely that parts of this standard will be
suitable for reuse and adaptation in modelling the quality of Ontology Design
Patterns. While the ISO 25010 Quality in Use model may be less suitable
for this purpose (as it concerns interactive information and software systems
of a different nature than ODPs, which are by comparison rather passive
components), the Product Quality Model holds many quality characteristics
that could apply to ODPs also, and is a strong candidate for reuse.

2.5.5 Pattern Quality

Ontology Design Patterns are a sort of design pattern, that is, packaged
solutions to commonly occurring problems. In this, they share purpose (if
not domain) with other types of software design patterns, the most common
of which are object oriented design patterns. It is reasonable to assume
that quality indicators associated with such design patterns could also be
applicable to design patterns in the ontology domain.

The usefulness of object oriented design patterns in software engineering
has been shown many times, see for instance [13, 116, 34]. These patterns
encode common best practices for how to solve different types of tricky tasks
in the design and programming of software systems, and they have been
found to aid in producing flexible, maintainable, and extensible software.

49



“Dissertation” — 2017/8/15 — 10:53 — page 50 — #64

Chapter 2. Background and Related Work

Table 2.2: ISO 25010 product quality model (adapted from [94])

Quality characteristic Subcharacteristic
Functional suitability

Functional completeness
Functional correctness
Functional appropriateness

Performance efficiency
Time behaviour
Resource utilisation
Capacity

Compatibility
Co-existence
Interoperatbility

Usability
Appropriateness recognisability
Learnability
Operability
User error protection
User interface aesthetics
Accessibility

Reliability
Maturity
Availability
Fault tolerance
Recoverability

Security
Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

Maintainability
Modularity
Reusability
Analysability
Modifiability
Testability

Portability
Adaptability
Installability
Replaceability

50



“Dissertation” — 2017/8/15 — 10:53 — page 51 — #65

2.6. Ontology Quality Evaluation

However, there are fewer results relating to the quality of such patterns,
how to evaluate them, quality models for them, etc. The below section
presents some work in this area.

Prechelt et al. [130] report on two experiments in which the charac-
teristics of design pattern code implementations (specifically, the number
of pattern comment lines, PCL, associated with each such implementation)
affect the maintainability of software products in which the patterns are
used. Their experiments take place in a software engineering setting, with
some 96 students as test subjects, tasked with performing software mainte-
nance work. They find that in this context, the more well documented and
explicit design pattern usage in software code is (i.e., the higher the PCL
value), the faster and better (in terms of rarity of errors made) maintenance
tasks are performed on that software code. Semantic Web ontologies and
ODPs also encode comments in the pattern implementation (in the form of
rdfs:comment annotations), possibly making this finding on the importance
of documenting patterns transferrable to an ODP context.

2.6 Ontology Quality Evaluation

One perspective on ODPs is to consider them as being simple, small, and
reusable modular ontologies. The following sections introduce work on ontol-
ogy evaluation frameworks, methods, and indicators that have been studied
during—and in several cases influenced—development of the ODP quality
model discussed in Chapter 4. In addition to the ontology evaluation work
introduced below, the interested reader is referred to [63], in which Goméz-
Peréz et al. summarise and discuss several types of common taxonomical
errors and anti-patterns in ontologies.

2.6.1 O2 and oQual

A thorough study on the evaluation of ontologies is performed by Gangemi
et al. in [56] and [57]. Their approach is based on two perspectives of on-
tologies, formalised into two meta-ontologies for understanding, classifying,
and selecting ontologies, O2 and oQual.

To begin with, the O2 meta-ontology views ontologies as semiotic ob-
jects, that is, information objects with intended conceptualisations to be
used in communication settings. O2 holds concepts such as Rational agent,
Conceptualisation, Graph, and so on—representing the settings in which
ontologies are used, the users of said ontologies, the intended meaning of
the ontologies, their actual implementation (i.e., graph models), and so on.
This model also holds the concept QOOD, or Quality Oriented Ontology De-
scription, which is intended to capture the roles and tasks associated with
processes and elements of the ontology—in essence, a type of requirements
specification for part of, or for a whole, ontology engineering project.

51



“Dissertation” — 2017/8/15 — 10:53 — page 52 — #66

Chapter 2. Background and Related Work

Based on the concepts in O2, three dimensions of quality or evalua-
tion, each associated with its own group of measures, are presented and
discussed—structure, functionality, and usability. The first group of mea-
sures treat the ontology as a directed graph (which is consistent with the
RDF data model) and concern the structures present in this graph. This
includes measures like subsumption hierarchy depth, breadth, fan-out, cycle
ratios, density, etc. The second group of measures concern the intended
functionality of the ontology, and include such examples as precision, cover-
age, and accuracy, which are all measured against some set of requirements
over the ontology. The third group of measures, finally, concern the commu-
nication aspects of the ontology, such as how it is documented, annotated,
and understood by users. This includes measures related to recognition, ef-
ficiency, and interfacing. While the structural measures included in [57] are
presented using formal definitions (in many cases even mathematic formu-
las) the functionality measures are less formally defined (giving some specific
indicators, but mostly general method suggestions), and usability measures
are even less defined (given almost entirely as examples or areas for future
development).

The oQual formal model for ontology validation (and its associated meta-
ontology) provides the bridge connecting the ontology engineering situation
and context (modelled according to O2) with the aforementioned measures,
enabling validation that a certain ontology is sufficient and appropriate for
the use for which it was developed. oQual includes concepts like value spaces
and parameters over ontology elements, ordering functions for selecting pa-
rameters from different QOODs to prioritise, trade-offs that may need to be
made, etc.

2.6.2 ONTOMETRIC

ONTOMETRIC, introduced in [113], is an approach for formalising ontology
suitability for different tasks, heavily influenced by the Analytic Hierarchy
Process (AHP) [138], an established method for aiding decision-making when
dealing with multi-criteria problems. Per this method, a multi-criterion
problem is broken down into the different criteria that need to be met (some-
times including sub-criteria, organised in a so-called decision tree structure
or decision hierarchy). These criteria are sorted using a comparison matrix,
such that the “competing” criteria on each level of the decision hierarchy
are easily and intuitively compared pairwise, and the resulting prioritisation
used to calculate a weighting of the total set of criteria with respect to the
problem. When selecting between the available alternatives, the weighting
can be used to calculate a total suitability score for each option. In an
optimally performed AHP process, the alternative that receives the highest
suitability score represents the best alternative given the character of the
problem and the prioritisation of the criteria (in the case of ONTOMET-

52



“Dissertation” — 2017/8/15 — 10:53 — page 53 — #67

2.6. Ontology Quality Evaluation

RIC, the highest score would be associated with the most suitable ontology
for reuse).

To support this method, ONTOMETRIC [113] provides a set of cri-
teria for ontology suitability that can be used to populate an AHP deci-
sion hierarchy. These general criteria of ontology suitability are divided up
into five different dimensions, representing different aspects of an ontology
suitability problem: content, language, methodology, tool, and costs. In em-
ploying ONTOMETRIC, an ontology engineer will characterise the problem
that their ontology aims to solve by using these five dimensions as top-level
branches in their AHP decision hierarchy, and the individual ONTOMET-
RIC criteria as child nodes. The criteria will then be compared pairwise, a
weighting generated, and the alternatives compared based on this weighting.

For the intended usage (i.e., ontology selection guidance for ontology en-
gineers) ONTOMETRIC [113] seems very suitable. However, the method
does have some drawbacks: it requires extensive ontology engineering knowl-
edge to begin with, in order to perform the weighting of the provided (very
technical) criteria, which are not in themselves associated with any predicted
positive or negative effects. Furthermore, ONTOMETRIC does not in it-
self suggest which criteria are useful in which situations, it merely provides
them as examples of things that can be measured and prioritised by the
user. Finally, the process is rather complicated—while this might not be a
drawback in a case where one is choosing one out of a set of (potentially
rather large) candidate ontologies for reuse, it adds significant overhead in
the ODP-based scenario, where one must more frequently choose between a
set of (smaller) ODPs to reuse.

2.6.3 OntoClean

One of the most well-known methodologies for evaluating the conceptual
consistency of ontologies is OntoClean by Guarino and Welty [170, 68, 69].
OntoClean uses a logical framework including very general ground notions
and definitions from philosophy that are believed to hold in any reasonable
representation of the world, including an ontology model. The framework
includes the notions of rigidity, identity, and unity as characteristics ap-
plicable to classes in an ontology, and a set of definitions regarding which
taxonomic relations may exist between classes that exhibit these different
characteristics. The listed characteristics are denoted in OntoClean parlance
as metaproperties. Below these metaproperties are explained and exempli-
fied (examples are taken from [68] and [69]):

• Rigidity: Rigidity is related to essence. A class is considered essential
for some individual entity if the entity must logically be a member
of said class at all times. Essence can be exemplified by the class
HardThing, which is essential for a hammer (every hammer must al-
ways be hard), but not for a sponge (not every sponge must be hard all
the time, though some might be at some times). By this definition, a

53



“Dissertation” — 2017/8/15 — 10:53 — page 54 — #68

Chapter 2. Background and Related Work

class is rigid if it is essential to all its instances. The class Human can
be considered rigid, because every instance of it must be part of it at
all times—it is not possible to cease being a human and still exist. The
class Student can be considered anti-rigid, that is, being a student is
non-essential for every student—all students can cease being students
and still exist. Finally, Semi-rigid classes are those that are essential
to some instances, but not to others. As illustrated, HardThing is a
semi-rigid class, as it is essential to hammers but not sponges.

• Identity: A class exhibits some identity criterion if that criterion (i.e.,
a property) can be used for recognising whether individual entities
are the same or different. In database terms, this is a unique key
for said class. A distinction is made between classes that carry their
own identity criterion and classes that inherit identity criteria from
super-classes.

• Unity: Unity concerns whether instances of a class are considered
whole entities. Consider the entity 5 cl of water, which can be part of
an ontology, but which cannot be said to be a whole object or entity of
its own, and contrast it to the entity Atlantic Ocean, which is clearly a
whole self-standing entity. To distinguish what is meant by whole and
what defines wholeness, a unity criterion is used, examples of which
include topology, morphology, functionality, etc. OntoClean differen-
tiates between three types of classes: those carrying unity (all their
entities are wholes sharing unity criteria), those carrying non-unity
(all entities are wholes, but possibly with different unity criteria), and
those carrying anti-unity (not all entities are required to be wholes).
By this definition, the class Ocean would carry unity and the class
AmountOfWater would carry anti-unity. Non-unity can be exempli-
fied by the class LegalAgent, provided that its instances could include
both people and companies (which have different unity criteria).

Given these definitions, a set of constraints on the subsumption hierarchy
are then defined [69]:

1. If a superclass is anti-rigid, then its subclasses must be anti-rigid.

2. If a superclass carries an identity criterion, then its subclasses must
carry the same criterion.

3. If a superclass carries a unity criterion, then its subclasses must carry
the same criterion.

4. If a superclass has anti-unity, then its subclasses must also have anti-
unity.

By annotating the classes in an ontology using the OntoClean metaprop-
erties and checking whether the above constraints hold, a developer can test

54



“Dissertation” — 2017/8/15 — 10:53 — page 55 — #69

2.6. Ontology Quality Evaluation

whether their ontology is conceptually and philosophically consistent with
regards to the notions of rigidity, identity and unity. It should be noted
that this is not a guarantee that the ontology is sound with respect to real
world phenomena or requirements. The methodology has been applied ben-
eficially in several projects [149, 59, 43, 86]. Plugins supporting the use of
OntoClean in different ontology engineering environments have also been
developed, including WebODE [48] and Protégé 20009.

2.6.4 Terminological Cycle Effects

In [105] Lefort et al. study the structures of ontologies, in particular those
structures that result from adhering to the W3C Semantic Web best prac-
tices workgroup recommendation for meronomy modelling, and the effect of
said structures on the computability of an ontology. Using different state-of-
the-art reasoning engines they find that, to a large degree, reasoner perfor-
mance over large ontologies is dependent on the structure of the Ontology
Design Patterns within, and that in particular, the existence of asserted or
inferred terminological cycles is detrimental to performance. Such termino-
logical cycles occur when a concept occurs on both sides of a description logic
equivalency definition, that is, when a concept is defined wholly or partially
in terms of itself. In meronomy this can easily occur in a reasoner inferenc-
ing process if both of the inversely related hasPart and isPartOf properties
are used in class definition restrictions. Furthermore Lefort et al. [105] note
that the computational performance characteristics of a reasoner-ontology
pair is highly dependent on the description logic language used.

2.6.5 ODP Documentation Template Effects

In their master thesis Lodhi and Ahmed [111] study and suggest improve-
ments to the presentation of ODPs, that is, how ODP documentation is
structured and displayed. They focus on three main issues: firstly, resolving
which information in pattern documentation is most important for estab-
lishing an understanding of said patterns, allowing the pattern to be used;
secondly, whether novice and expert pattern users differ with respect to
this question; and thirdly, how existing practice for presenting patterns can
be improved or complemented considering this. The patterns and docu-
mentation templates studied are all taken from the NeOn Ontology Design
Patterns portal10. Lodhi and Ahmed [111] perform two online surveys, tar-
geting novice and expert users respectively. Both surveys indicate that there
are certain fields of ODP documentation that are considered by users par-
ticularly important in understanding a pattern, and that those fields include
the graphical representation of the pattern, pattern scenarios (i.e., example
usages), an OWL building block, competency questions, etc. Fields which

9http://protege.stanford.edu/ontologies/ontoClean/ontoCleanOntology.html
10http://ontologydesignpatterns.org

55



“Dissertation” — 2017/8/15 — 10:53 — page 56 — #70

Chapter 2. Background and Related Work

are not considered to be as important in these regards (though still relevant)
include textual descriptions of ODP elements and ODP domain classifica-
tion.

56



“Dissertation” — 2017/8/15 — 10:53 — page 57 — #71

Chapter 3

Research Method

One of the key differentiators between ad-hoc trial-and-error and a planned
research project is the selection and application of methods suitable to
the research task at hand. Throughout this PhD project, several meth-
ods have been employed. In the following chapter, Section 3.1 introduces
well-established methods that are frequently used within the computing dis-
ciplines. Section 3.2 then details how those methods have been selected
and employed to gather and develop the knowledge required to answer the
project’s research questions.

3.1 Applicable Methods in the Computing Dis-
ciplines

Before entering into a discussion on method, it is relevant to frame the
work performed in this dissertation in terms of the academic tradition to
which it adheres and the methods employed within said tradition. The
following section gives a brief introduction to the relevant disciplines and
some commonly used methods.

In academia, the development and use of computer and information sys-
tems are studied within several related academic disciplines, each with their
own academic traditions including perspectives on epistemology and philos-
ophy of science, preferences regarding methods and methodological issues,
and well known and oft-quoted figurehead names. On a coarse-grained level,
the computer-related sciences can be divided into three such disciplines (each
of which can be subdivided many times): Computer Science, Software En-
gineering, and Information Systems [62]1.

1While in some perspectives the latter two disciplines are considered to be sub-
disciplines within Computer Science topic-wise, for the purpose of method tradition enu-
meration it is sufficient to consider them to be distinct.

57



“Dissertation” — 2017/8/15 — 10:53 — page 58 — #72

Chapter 3. Research Method

Of these three, the work performed in this thesis aligns most closely
with Software Engineering: the work concerns the utility and quality of IT
artefacts from which software systems are built (i.e., Ontology Design Pat-
terns), from both a technical and usage-oriented perspective. Consequently,
the methods described and discussed below are approached from a Software
Engineering perspective. As illustrated by Basili [11], research in Software
Engineering that has to do with products, processes, or people is best per-
formed using an inductive as opposed to a deductive approach, using either
quantitative or qualitative methods. For the benefit of the layman reader,
these terms are briefly explained below.

In the deductive paradigm, hypotheses are derived from a predictive
theory. These hypotheses are tested empirically, and if they are invalidated
by the testing, the theory is disproven. In this paradigm, the scholar applies
general theory to a specific case [11, 147]. The deductive paradigm is most
clearly exemplified by a physics experiment, in which a natural sciences
theory (for instance the Newtonian law of universal gravitation) is used to
develop a hypothesis (a falling object will accelerate towards the earth at
approximately 9.81 m/s2), which can be evaluated via experiment, possibly
disproving the original theory.

On the other hand, in the inductive paradigm, individual empirical obser-
vations about some phenomenon are used as grounding for the postulation
of general laws and generalisations regarding said phenomenon [147]. The-
ories generated inductively are developed in an evolutionary manner, and
updated as more observations and experiments are made, supporting parts
of them and disproving other parts. In this perspective, a theory can be
viewed as a model of reality that the researcher, through various means,
tries to capture and understand [11].

In performing research within either of these two paradigms, the scholar
may employ quantitative or qualitative data-gathering and analysis meth-
ods. In quantitative research, empirical investigation is performed via (often
large scale) numerical/statistical study and analysis of some phenomena.
The data gathered is most commonly structured and homogenous. Exam-
ples include measuring the performance metrics of some piece of software,
using a survey form with graded questions (e.g., “How do you rate this fea-
ture on a scale of 1-5”), or studying the prevalence of some characteristic
in a large population of entities. In these types of approaches, the scholar
prepares the data gathering activity, but does not intervene in the actual
data collection process, instead remaining as an impartial observer [96]. Be-
cause of this, there is little risk that the data is tainted by the researcher’s
own opinions or prejudices. However, this “hands-off approach” also means
that quantitative method approaches cannot easily be used for exploratory
research in a new field, in which the scholar adapts data gathering based
on what comes up in the process. Instead, a theory or hypothesis must be
established already [96].

Such quantitative methods can be contrasted with qualitative methods,

58



“Dissertation” — 2017/8/15 — 10:53 — page 59 — #73

3.1. Applicable Methods in the Computing Disciplines

in which the emphasis is not on the volume of the gathered data, nor the
homogeneity and structure of it, but rather its depth and explanatory po-
tential. In employing these methods, the researcher studies the “hows” and
the “whys” of some phenomenon under study [121, 39]. Examples include
in-depth interviews with experts, observation studies within software engi-
neering projects, or usability evaluation of design prototypes. The emphasis
on depth of observations as opposed to volume makes qualitative results
difficult to generalise to a broader population, but for illuminating a single
case, or a set of cases, within a limited scope or domain, qualitative method
approaches can prove superior to shallower quantitative studies [136]. Also,
this problem can be partially overcome if the researcher takes care to support
any assertions made with multiple data sources, such that for instance inter-
view material, observation logs, and document studies support one another
and point in the same direction regarding the aspect of the phenomenon
under study that a researcher’s assertion concerns. This is known as trian-
gulation, and it is common in case study research, which: “[...] relies on
multiple sources of evidence, with data needing to converge in a triangulating
fashion [...]” [173, p. 18].

When evaluating research, we typically expect research activities to dis-
play different qualities or attributes depending on how they are classified per
these dichotomies. Exactly which qualities those are or should be is sub-
ject to ongoing debate within the academic community, but certain terms
or ideas are more or less established - these include the attributes general-
isability, reliability, and validity.

• Generalisability, as the name implies, concerns the degree to which
the findings of the research can be generalised to a wider context or
applied to related contexts or fields. This quality is sometimes referred
to as external validity or transferability. Questions one might ask to
evaluate the degree of generalisability of some research work include
Is the method based on existing theories? and Are there limitations to
the evidence collected that might suggest limited generalisability of the
findings?

• Reliability concerns how stable the findings or results are, for instance
over time, over functionally equivalent datasets, or over different re-
searchers or research groups. Somewhat synonymous terms include
dependability and consistency. Control questions for reliability include
Are methods, experiments, and procedures described in sufficient de-
tail? and Is it clear which data is used for testing and experiments?

• Validity (sometimes internal validity) is perhaps the most important
quality of research. It concerns how truthful the presented findings are.
In quantitative approaches this is typically indicated by the strength
of causal relationships between independent and dependent variables;
in qualitative approaches validity relates to the credibility of findings,

59



“Dissertation” — 2017/8/15 — 10:53 — page 60 — #74

Chapter 3. Research Method

which is strengthened by, for instance, multiple subjects or partici-
pants expressing similar sentiments, or by deeper embedding of the
researcher in the context or case under study. Control questions for
validity might include Does the method actually solve the problem?
Completely or only partly? or Does the evidence support the claims
for the research results sufficiently?

In addition to the distinctions of deductive versus inductive knowledge
gathering and quantitative versus qualitative methods, methods can also be
grouped based on scope. Some methods encode large and overarching the-
ories, making rather general recommendations that sometimes include per-
spectives on philosophical ontology (not to be confused with Semantic Web
ontologies) and epistemology. Examples of these include Hermeneutics, De-
sign Science Research, Mixed Methods Research, etc. Other methods have a
narrower focus, recommending how to approach a certain problem in terms
of selecting and employing data gathering methods to answer research ques-
tions, or how to work with, or study, concrete situations. This level can be
exemplified by research method approaches like case studies, ethnographies,
etc. Finally, at the lowest and most detailed level, we have concrete methods
prescribing how to gather and analyse data in practice, by using interviews,
questionnaires, experimental procedures, participant observation logs, etc.

In the following sections the different research methods employed in this
thesis are introduced and classified in terms of the dimensions discussed
above. Note that these classifications are somewhat simplified views of
an often rather complex reality—in many categorisation schemes, research
methods may fit into several different boxes, and many times researchers
do not even agree on what those boxes should be (see, for instance, the
divergent classifications used by [62] and [124]).

3.1.1 Design Science—A Pragmatic Approach

The aforementioned research paradigms and dichotomies (deductive ver-
sus inductive, quantitative versus qualitative) are largely grounded in and
derived from the deeply philosophical and rather thorny dichotomy of posi-
tivism versus interpretivism. The positivist philosophical perspective postu-
lates that there are an objective reality and objective truths that a researcher
may study and learn about by way of observations and logical reasoning.
Positivists argue that the observer should distance themselves from the ob-
served in order not to affect the reality under observation, that universal laws
govern the world, and that ideally findings should generalise to all contexts
[127, 96]. Interpretivists suggest that the positivist paradigm is unsuitable in
studies involving humans as social actors. Instead, they suggest that given
that each person constructs their own understanding of reality, it is practi-
cally impossible to establish an objective truth. Consequently, context-free
generalisations are neither useful nor possible to reach. Further, they sug-

60



“Dissertation” — 2017/8/15 — 10:53 — page 61 — #75

3.1. Applicable Methods in the Computing Disciplines

gest that the researcher cannot disentangle themselves from the subject of
study [127, 96].

Obviously these two schools of thought are largely incompatible. The
finer points of both perspectives and their impacts on method have been
debated endlessly by senior scholars; indeed, in some fields it would not
be possible to attain a professorship without first penning a substantial
article on the subject. At present, there’s little reason to believe that the
debate will be settled shortly. As the computing disciplines typically involve
both natural sciences and maths problems on the one hand, and the usage
of computer systems by human actors on the other hand, selecting which
philosophical foundation to adhere to is difficult for researchers in these
fields. There is however a third option open to such researchers, namely
pragmatism.

The pragmatist perspective ignores much of the fundamental ontological
and epistemological debate, and instead emphasises the impact of developed
research theory and findings. As put by Burke Johnson & Onwuegbuzie [96]:

The pragmatic rule or maxim or method states that the current
meaning or instrumental or provisional truth value [...] of an
expression [...] is to be determined by the experiences or practical
consequences of belief in or use of the expression in the world.

This clear focus on what works, rather than just how or just why some-
thing works, has many advantages. To begin with, a pragmatic researcher
is not married to either an inductive or deductive paradigm, or to quanti-
tative or qualitative method choices. Instead, a pragmatic researcher can
select among established paradigms and methods and choose those that
are relevant to achieving a specific research outcome, that is, to studying
some situation or concept, developing some theory or deliverable, etc. Many
times, pragmatists combine different research paradigms and methods to ar-
rive at stronger and more well-founded conclusions, as advocated by Mixed
Method Research proponents [96, 97]. Secondly, the pragmatic perspective
is arguably analogous to and derived from how most people naturally oper-
ate and prefer to operate: that is, we try out different solutions to see which
ones work. While this problem-solving mind-set may be too simplistic to
be optimal in very large research endeavours such as the development of a
Grand Unified Theory of physics, the large majority of research projects,
particularly in the computing disciplines, are much smaller and more ap-
plied. Thirdly and relatedly, theories and results developed in pragmatic
research naturally tend to be applied and practical, that is, they serve to
inform and develop practice outside of academia.

The Design Science methodology, formalised and described by Hevner
et al. [89], aligns well to such a pragmatist perspective2. This methodol-
ogy, which is common in Information Systems research, traces its roots to

2Though [89] does not propose such a linkage, later work by the same author presented
in [88] positions Design Science as drawing from pragmatist philosophy.

61



“Dissertation” — 2017/8/15 — 10:53 — page 62 — #76

Chapter 3. Research Method
Hevner et al./Design Science in IS Research

80 MIS Quarterly Vol. 28 No. 1/March 2004

Additions to the 
Knowledge Base

Environment IS Research Knowledge Base

People

ïRoles
ïCapabilities
ïCharacteristics

Organizations

ïStrategies
ïStructure & Culture
ïProcesses

Technology

ïInfrastructure
ïApplications
ïCommunications 
Architecture
ïDevelopment 
Capabilities

Foundations

ïTheories
ïFrameworks
ïInstruments
ïConstructs
ïModels
ïMethods
ïInstantiations

Methodologies

ïData Analysis 
Techniques
ïFormalisms
ïMeasures
ïValidation Criteria

Develop/Build

ïTheories
ïArtifacts

Justify/Evaluate

ïAnalytical
ïCase Study
ïExperimental
ïField Study 
ïSimulation

Assess Refine

Business 
Needs

Applicable 
Knowledge

Application in the 
Appropriate Environment

Relevance Rigor

Additions to the 
Knowledge Base

Environment IS Research Knowledge Base

People

ïRoles
ïCapabilities
ïCharacteristics

Organizations

ïStrategies
ïStructure & Culture
ïProcesses

Technology

ïInfrastructure
ïApplications
ïCommunications 
Architecture
ïDevelopment 
Capabilities

Foundations

ïTheories
ïFrameworks
ïInstruments
ïConstructs
ïModels
ïMethods
ïInstantiations

Methodologies

ïData Analysis 
Techniques
ïFormalisms
ïMeasures
ïValidation Criteria

Develop/Build

ïTheories
ïArtifacts

Justify/Evaluate

ïAnalytical
ïCase Study
ïExperimental
ïField Study 
ïSimulation

Assess Refine

Business 
Needs

Applicable 
Knowledge

Application in the 
Appropriate Environment

Relevance Rigor

Figure 2.  Information Systems Research Framework

tified business need.  The goal of behavioral-
science research is truth.2  The goal of design-
science research is utility.  As argued above, our
position is that truth and utility are inseparable.
Truth informs design and utility informs theory.  An
artifact may have utility because of some as yet
undiscovered truth.  A theory may yet to be devel-
oped to the point where its truth can be incorpor-
ated into design.  In both cases, research assess-
ment via the justify/evaluate activities can result in
the identification of weaknesses in the theory or

artifact and the need to refine and reassess.  The
refinement and reassessment process is typically
described in future research directions.

The knowledge base provides the raw materials
from and through which IS research is accom-
plished.  The knowledge base is composed of
foundations and methodologies.  Prior IS research
and results from reference disciplines provide
foundational theories, frameworks, instruments,
constructs, models, methods, and instantiations
used in the develop/build phase of a research
study.  Methodologies provide guidelines used in
the justify/evaluate phase.  Rigor is achieved by
appropriately applying existing foundations and
methodologies.  In behavioral science, methodol-
ogies are typically rooted in data collection and
empirical analysis techniques.  In design science,
computational and mathematical methods are

2Theories posed in behavioral science are principled
explanations of phenomena.  We recognize that such
theories are approximations and are subject to numer-
ous assumptions and conditions.  However, they are
evaluated against the norms of truth or explanatory
power and are valued only as the claims they make are
borne out in reality.

Figure 3.1: Information Systems research framework by Hevner et al.
(source: [89]).

engineering science and the sciences of the artificial [144]. At its core, it
concerns how to develop artefacts for human usage in a manner consistent
with scientific methods and requirements, with an emphasis on the practical
relevance of the developed solution and rigour in its development. Hevner
et al. frame Design Science (and indeed, Information Systems research as
a whole) as drawing relevance from the practical/business environment in
which research is performed (e.g., the technology, organisations, and people
that the research involves), and drawing rigour from the established aca-
demic knowledge base (theories, frameworks, models, methods, techniques,
etc), while contributing back to both, in the form of applied results to prac-
tice, and theory additions to knowledge, as shown in Figure 3.1.

In order to concretise and communicate Design Science and how they
propose Design Science should be performed, Hevner et al. present seven
guidelines of good Design Science research, copied here in full [89]:

• Guideline 1—Design as an Artifact: Design-science research must pro-
duce a viable artifact in the form of a construct, a model, a method,
or an instantiation.

• Guideline 2—Problem Relevance: The objective of design-science re-
search is to develop technology-based solutions to important and rel-
evant business problems.

62



“Dissertation” — 2017/8/15 — 10:53 — page 63 — #77

3.1. Applicable Methods in the Computing Disciplines

• Guideline 3—Design Evaluation: The utility, quality, and efficacy of
a design artifact must be rigorously demonstrated via well-executed
evaluation methods.

• Guideline 4—Research Contributions: Effective design-science research
must provide clear and verifiable contributions in the areas of the de-
sign artifact, design foundations, and/or design methodologies.

• Guideline 5—Research Rigor: Design-science research relies upon the
application of rigorous methods in both the construction and evalua-
tion of the design artifact.

• Guideline 6—Design as a Search Process: The search for an effective
artifact requires utilizing available means to reach desired ends while
satisfying laws in the problem environment.

• Guideline 7—Communication of Research: Design-science research
must be presented effectively both to technology-oriented as well as
management-oriented audiences.

An extensive presentation and exemplification of each guideline is avail-
able in [89]. We will only briefly emphasise two things. Firstly, Guideline
3 requires developed artefacts to be evaluated. Design Science does not
mandate the use of any particular evaluation method, but Hevner et al.
summarise some commonly used and appropriate types of artefact evalua-
tion methods: observational (case studies, field studies), analytical (static
analysis, architecture analysis, optimisation, dynamic analysis), experimen-
tal (controlled experiments, simulations), testing (black box testing, white
box testing), and descriptive evaluation (argumentative or scenario-based)
[89]. Secondly, Guideline 6 discusses design as search process. This is ped-
agogically illustrated in the Develop/Build-Justify/Evaluate cycle at the
centre of Figure 3.1—the Design Science researcher will develop an artefact,
evaluate that artefact against alternatives, requirements, or constraints, and
either improve upon it, or attempt to construct another better solution, in
an iterative manner. This approach is compatible with and essentially a
reformulation of the Generate-Test cycle described by Simon [144], from
whose work the Design Science methodology traces part of its lineage.

3.1.2 Systematic Literature Review

In order to gain an overview of a certain phenomenon, or of the state of
research concerning that phenomenon, systematic literature reviews can be
employed. By this method, a large number of research articles (ideally all
available relevant ones) are found, evaluated, interpreted, and summarised,
either to answer some research question regarding the phenomenon in ques-
tion, or to learn what type of work has been done on researching said phe-
nomenon. Such a study can be very helpful in theory generation, or in isolat-
ing currently unresolved research questions for further study. The method

63



“Dissertation” — 2017/8/15 — 10:53 — page 64 — #78

Chapter 3. Research Method

is frequently used in healthcare, where the same phenomenon or class of
phenomena is often studied in the scope of different projects and research
groups each with their own publications [143].

An important difference between a systematic literature review and other
types of unstructured studies of academic papers, is that the former employs
a highly structured and procedural approach to finding and analysing the
available literature. By being so formal in selecting papers to read, selection
bias (i.e., that researchers only read and use papers that they agree with)
is avoided. What it means in practice is that in each step of the literature
review, search parameters, analysis methods, and extracted metadata must
be defined before search, analysis or extraction takes place. In reporting the
review, these parameters and methods are, for the sake of transparency and
repeatability of the study, published alongside the results of the review itself.
Once the selection parameters and analysis methods have been selected, the
researcher’s role becomes to use their judgement and analysis skill to perform
whatever grouping, coding or analysis of articles is required, within these
confines.

Kitchenham [102] suggests a set of tasks to perform in such a systematic
literature review, covering all steps of the process, from topic definition
and database search to analysis and documentation (the lattermost being
required for the results to be accepted in a peer review context). Kitchenham
also emphasises that this process may often require iterating over steps and
backtracking in the process. For instance, sometimes key parameters for
literature search need to be updated if the found volume of papers is too
low, or if the usefulness of the returned papers in answering the defined
research question is insufficient.

In terms of the aforementioned dimensions of method, systematic liter-
ature reviews occupy an interesting middle ground between qualitative and
quantitative methods. The systematic way in which they are performed
and the shared criteria by which all returned papers are evaluated are to an
extent quantitative and return rather homogenous data, while the analysis
process for each paper requires the use of human judgement and evalua-
tion, which is inherently qualitative. That the method has characteristics of
both traditions means that, to be palatable to scholars on both sides of the
qualitative/quantitative fence, it needs to be extensively documented and
structured to be considered both transparent and trustworthy.

An issue to note is that as a review does not in itself produce new knowl-
edge, but rather depends on what has been published before, employing this
method requires that a sufficient volume of research has already been pub-
lished on the subject under study. Performing a systematic literature review
in a new or young research field is unlikely to yield rich results. Examples
of systematic literature reviews being employed in the Software Engineering
field includes Ivarsson & Gorschek’s review of technology transfer studies in
the Requirement Engineering Journal [95], and Schneider et al.’s review of
solutions to globalisation challenges in Software Engineering [141].

64



“Dissertation” — 2017/8/15 — 10:53 — page 65 — #79

3.1. Applicable Methods in the Computing Disciplines

3.1.3 Interviews

Interview methods are often employed to gather data from stakeholders or
case participants familiar with the phenomenon being studied, without nec-
essarily observing the phenomenon itself. In a software engineering context,
such interviews can be performed, for instance, to gain an understanding
of how an artefact is appreciated by users, or to elicit requirements for a
system or service. Sometimes interviews are used to follow up on an ob-
servational study, in which the interview subject is asked to explain the
observed behaviour, to establish a better understanding of the observations
made [142].

Interviews can be structured, semi-structured, or unstructured. In the
structured interview case, the interviewer has designed questions before-
hand, and asks the questions exactly as written, making no deviations from
the interview script. The resulting interview transcript and recorded an-
swers can then be analysed in a statistical/quantitative manner, much in
the same way as if the interviewee had filled out a questionnaire form. This
type of interview is suitable in the case that the researcher has very clear
and specifically defined information requirements. On the other hand, in
unstructured interviews, the data gathered is of a much more qualitative
nature. Here the interview questions are more open-ended and the inter-
viewer and interviewee can have a rather broad discussion. Such interviews
are suitable for establishing a basic understanding of a new field, where the
researcher cannot know beforehand what type of knowledge they are looking
for. Finally, Semi-structured interviews lie somewhere in between, in that
the interviewer has an interview script, but allows deviations from this to
occur if an interesting and potentially valuable topic of discussion comes up
[142, 145].

When working with data gathered via interviews, the interview record-
ings are first transcribed into text, and those text transcripts are then anal-
ysed in a documented and transparent manner using some established anal-
ysis method. For instance, in analysing qualitative interview material, it
is common to split the transcripts into fragments (i.e., a unit of text of
suitable size for subsequent analysis, typically a sentence, a statement of
one or more sentences, or an answer to a particular question) and tag those
fragments using keyword codes. Once the entirety of the material has been
coded in this manner, the researcher can easily review the material and
summarise the available interview material concerning a theme or aspect
of the phenomenon of study. To reduce the impact of any individual re-
searcher bias, these processes are often performed in parallel by multiple
researchers [31]. Consequently, this transcription and analysis process can
be very time-consuming, and for this reason entirely unstructured interviews
are not common in practice—it is simply not cost-effective to perform such
analysis work without guiding the interview towards topics of interest to the
researcher [142].

65



“Dissertation” — 2017/8/15 — 10:53 — page 66 — #80

Chapter 3. Research Method

The reliability of qualitatively analysed work such as interviews depends
largely on the transparency by which the research process has been per-
formed, and the availability of the source materials. Ideally, another re-
searcher should be able to study the source material, analysing it to develop
similar coding and arrive at similar conclusions. In the real world, this is
unlikely to occur. For one thing, the researcher’s background and bias are
impossible to root out altogether. For another, the source materials may be
subject to restrictions in terms of distribution, making such validation im-
possible in practice. Consequently when evaluating reliability of qualitative
research emphasis tends to be placed on evaluation of how the process was
designed and documented.

3.1.4 Surveys

Surveys are a common method for gathering data from a larger set of re-
spondents, where interviews do not scale well, e.g., for reasons of constraints
in time, the geographic distance to respondents, or other reasons. In a sur-
vey, each such respondent is queried using some appropriate data collection
techniques or tooling. Typically, questionnaires are used, but this is not a re-
quirement of the survey method as such: surveys can also be performed using
structured interviews, database record analyses, etc. However, it is impor-
tant that each respondent be subject to identical data collection methods,
so unstructured or semi-structured interviews are not appropriate to employ
when gathering data for survey purposes. In this dissertation, unless stated
otherwise, the term “survey” is understood to indicate questionnaire-based
surveys. [127]

Surveys typically aim to extract the relations between two specific vari-
ables under study—for instance, in the context of this PhD project, survey
methods could be used to link features of ODPs to perceived usability. Sur-
veys are also sometimes used (possibly less commonly in the computing
disciplines) to study features or characteristics of the respondent population
themselves—for instance, one might use a survey method to query users in
certain age brackets regarding their opinions about Internet banking.

For survey results to be generalisable to a larger population than the
respondent set, that respondent set needs to be a representative sample of
the larger population. Consequently, either a rather large respondent set is
needed or some other method needs be employed to ensure that the survey
population is not biased. If neither of these two conditions can be met,
the survey results cannot be guaranteed to be generalisable [127]. That
does not imply that the results of such surveys are useless; they can still be
valuable input in development processes or as signals for further research.
Also, the generalisability of quantitative style survey results is not a binary
proposition, but rather can be expressed in terms of confidence levels and
confidence intervals, analysed down to the individual question level. Conse-
quently, in the case that a significant enough majority of respondents agree

66



“Dissertation” — 2017/8/15 — 10:53 — page 67 — #81

3.1. Applicable Methods in the Computing Disciplines

on the response to some survey question, such a finding may be indicative of
a trend that holds in the general population also, despite the respondent set
being too small to speak of generalisability of the survey results as a whole.

Most readers are likely already familiar with questionnaires and have
filled out at least a few at some point in their life. Some have probably also
constructed questionnaires. It might come as a surprise to the former group
(and less so to the latter) that questionnaire surveys are notoriously tricky
to get right. There are two main obstacles to constructing such a survey:
firstly, typically the researcher is not personally available to the respondent
and able to answer questions on questionnaire structure or the meaning
of terms or questions. Consequently, the survey needs to be constructed
just right from the very outset. Secondly, regardless of distribution method
(paper questionnaires sent by snail mail, email distribution, web surveys,
etc.), the response rate for academic surveys is typically low. While response
rates can be driven up by way of incentive systems, it is important that
these incentives do not skew the results (i.e., offering monetary rewards
on a public-facing Internet survey might not necessarily result in the most
trustworthy of results).

Given the above challenges, it is particularly important that the ques-
tions asked in the survey are indeed the right ones needed to study the
research question at hand. Some additional important characteristics of a
good questionnaire include that it [127]:

• Is not too long to answer in a reasonable timeframe.

• Is not biased in question selection, nor written with leading or biased
questions.

• Has questions that are clear and unambiguous.

• Has a logical progression of questions or themes.

• In the case of branching paths (i.e., if earlier responses affect the se-
lection of later questions), branching should be intuitive. Branching
should not be over-used.

The questions in a questionnaire survey can be either closed or open—in
the former case, the researcher provides a series of answer alternatives for
the respondent to select from, whereas in the latter case, the respondent
is asked to fill in a free text response. Open-ended questions of the lat-
ter variety may be quite useful in that they give the respondents a chance
to comment on something that the researcher did not think of themselves.
This adds a qualitative flavour to the questionnaire, allowing the researcher
to discover and explore entirely new ideas that were not part of the ini-
tial research question or hypothesis. However, as no follow-up questions
can be posed, and as deeper context or narrative is lacking, open-ended
questionnaire responses are a very shallow form of qualitative material in

67



“Dissertation” — 2017/8/15 — 10:53 — page 68 — #82

Chapter 3. Research Method

comparison to interview transcripts or observational studies. Also, question-
naire respondents typically do not like to answer such open-ended questions;
they generally require more thought and more time to respond to. For this
reason, there are typically only a few open-ended questions in most surveys
[127]. Some findings indicate that prefacing the question with a more ex-
tensive (though possibly redundant or repetitive) introduction can lead to
respondents providing more information [52].

Closed questions, on the other hand, are more common. There are sev-
eral categories of such questions. In single-choice questions the respondent
selects only one option out of a provided set of alternative answers. For such
questions, it is important that the answer set either be exhaustive (i.e., the
alternatives are dichotomous, such as “Yes” and “No”), or that a catch-all
response such as “Other” be included, to ensure that the respondents find at
least one suitable alternative to select [127]. It should be noted that single-
choice questions cannot be strictly enforced in a paper-style questionnaire,
so in such surveys they may be a cause of error. Multiple-choice questions
allow for multiple choices and thus avoid this risk. However, they too may
make use of an “Other” response category (possibly combined with a free
text entry field), to cater to respondents who do not find any of the pro-
vided alternatives suitable. Note however that the use of free text responses
can complicate analysis significantly. Ranking questions gauge respondent
preference or prioritisation among provided alternatives, by assigning an or-
dering over all of the alternatives. Scale questions, finally, ask respondents
to select a value from a given response scale for each question. There are
a variety of methods for constructing scale questions and response scales;
perhaps the most commonly used one is the Likert scale [109], per which
respondents are asked to how large a degree they agree with a given state-
ment, such as “I find the system easy to use”, typically employing a scale of
five or seven steps, ranging from “Strongly agree” to “Strongly disagree”.

The validity of survey results depends primarily on whether the par-
ticipants have responded to the survey questions in accordance with their
actual opinions, experiences, or beliefs. Proving this conclusively is of course
impossible, but provided that respondents have no incentives to lie or exag-
gerate, it is reasonable to assume that most respondents will be honest in
their responses. However, it is important to note that such incentives are
not limited by anonymising responses; it may well be the case that research
subjects who know the researcher (such as university students taking part
in their professor’s survey study) would want to help the researcher obtain a
successful result. Generalisability of survey results, much like other quanti-
tative results, require that the respondents be representative of the greater
population to which the results are intended to be generalised, which can
be deduced either by way of sampling strategy, or by way of having a large
enough number of respondents.

68



“Dissertation” — 2017/8/15 — 10:53 — page 69 — #83

3.1. Applicable Methods in the Computing Disciplines

3.1.5 Researcher Logs or Participant Diaries

The use of participant diaries or researcher’s logs (for the sake of simplic-
ity, “diaries” will be used in the following to indicate both approaches) for
data collection is relatively unusual in the computing disciplines—possibly
because the format eschews the traditional divide between the observer and
the subject of observation. By necessity, the researcher or the participant
who writes such a diary applies a certain structuring and filtering or pri-
oritisation of their observations (possibly subconsciously) when writing a
diary entry. This encodes subjectivity into the data on a rather fundamen-
tal level, which one must be aware of in subsequent analysis. Data gathered
in this manner might, for instance, not be suitable as the foundation for a
new theory. Nevertheless, provided one takes care and is mindful of their
limitations, diaries can be very useful in developing insight into thought
processes, ideas, methods, etc. that might otherwise remain unexplored or
forgotten. They allow the gathering of data in immediate proximity to the
event or process that is being studied, even if the researcher is not present
themselves. They can also be useful for gathering data pertaining to the
evaluation of new artefacts, or for triangulation of other data sources. [127]

Working with participant diaries poses some additional challenges that
researcher logs do not have, namely that the participants must be comfort-
able with the data collection process and structure, and that any ethical
issues with regard to how the data is to be treated must be thoroughly
settled beforehand. While it is always important to treat participant data
in an ethical manner, it becomes particularly important when that data
is gathered via a method as potentially intimate and personal as a diary.
Essentially, the participants need to trust the researcher to a much larger
extent than if they had simply submitted a questionnaire or responded in
an interview.

In addition to the ethical and trust issues, participants also need to be
comfortable with the process of writing diary entries. Preferences regarding
this process vary: some people prefer to be provided with structured diary
sheets that they fill out, containing a series of questions that they answer
(not entirely unlike answering a series of open-question surveys). Others
prefer writing their own diary entries in an entirely free-form way. The
latter might be more complex to subsequently analyse, but can on the other
hand provide richer and more unexpected data. Either way, it is important
that participants be given instructions and examples of how to use the diary.
Such instructions should cover the frequency with which entries should be
penned (upon the occurrence of some event, once daily, once weekly, etc.),
which are the most important aspects to note down or reflect upon in each
entry (checklists can be useful for this), what terms and definitions are used
in the project or research community (to aid participants in finding a shared
vocabulary), etc. [127]

For researcher’s logs, the issues of instructions, ethics, and the observing
party being comfortable with the format of the observation protocol, are of

69



“Dissertation” — 2017/8/15 — 10:53 — page 70 — #84

Chapter 3. Research Method

less importance, as the researcher is the observer. However, to the extent
that entries in the log discuss or identify other people involved in the research
process, such issues of course remain.

Schatzman and Strauss identify three types of researcher log entries [140]:

• Observational notes: These log entries contain statements about events
the researcher observed through watching and listening to some event
or process. Observational notes are (consciously) interpreted as lit-
tle as possible by the researcher. In penning an observational note,
the researcher might be guided by the classic questions of journalism:
Who, What, When, Where and How.

• Theoretical notes: Attempts to derive meaning from observational
notes, that is, to analyse, deconstruct, and create theory from ob-
servation. This may in many cases require the researcher being self-
conscious about their own perspectives and biases.

• Methodological notes: Such notes cover the planning or execution of
some method or task within a research project. Examples might be a
note to oneself, a reminder, an instruction, or something of that nature,
that might not make it into some final publication, but is useful to keep
for posterity all the same. Schatzman and Strauss remark that, on a
meta-level, a methodological note could be considered an observational
note of the researcher’s own research process [140].

The format of a researcher’s log can vary from the very comprehensive
(i.e., one giant document containing a great number of notes taken through-
out the course of some large research project) to a more ad-hoc style (i.e.,
a scrapbook of different notes taken at different times and in different con-
texts). There is no one prescribed way that works for all researchers [127].
While the former makes for significantly simpler structuring and analysis,
the latter of course requires less overhead to initially set up and get started
with.

3.1.6 Experimentation

A typical experiment in the natural sciences is characterised by the testing of
a hypothesis by studying the effect on a set of output parameters (dependent
variables) of changes to some input parameters (independent variables). In
a controlled experiment, the assignment of research subjects to experimen-
tal input conditions is randomised, and any environmental variables that
are not being studied are kept identical between different groups of sub-
jects. Furthermore, such an experiment features at least one control group,
in which the research subjects are not subjected to changing independent
variables.

70



“Dissertation” — 2017/8/15 — 10:53 — page 71 — #85

3.2. Research Process

Basili [11] argues that the Software Engineering research community is
lacking in such experimental maturity and that it needs to establish meth-
ods for how to apply experimental procedure in practice. He suggests a
differentiation between evolutionary experiments, in which some model’s or
tool’s suitability as a solution to a problem is evaluated for the purpose of
improving said solution, and revolutionary experiments, in which entirely
new solutions are developed. In both approaches experiments are used not
to test hypotheses in the classical deductive sense, but to develop under-
standing by refinement, through an inductive process; by developing better
tools and models, the researcher develops a better understanding of the un-
derlying problem. Experiments of this nature may take place in the lab or
in the field, and the results may be descriptive (some patterns in the data
are found), correlational (correlations between independent and dependent
variables are observed), or cause-effect (a causal relationship can be traced
between independent and dependent variables).

Basili emphasises that for an activity to be considered an experiment
rather than an observational study or a simple development activity, cer-
tain criteria need to be fulfilled. Firstly, there must be a goal of developing
a new, deeper understanding of the underlying model or problem, that is,
there must be thorough evaluation, measurement and analysis taking place.
Secondly, there needs to be some defined treatment or researcher-controlled
variable identified. Aside from these restrictions, [11] does not define many
constraints on what may be considered an experiment or not—for instance,
by this understanding there is no requirement that data resulting from Soft-
ware Engineering experiments need necessarily be quantitative in nature.
The author finds this perspective on what constitutes an experiment to map
very well to the realities of Software Engineering research, and has adopted
Basili’s perspective on experimentation in this dissertation.

3.2 Research Process

As discussed already in Chapter 1, the knowledge generated within the
context of this PhD project has been developed primarily in an inductive
manner3. That is to say, based on several different data gathering and re-
search activities, the author has developed empirical material, which has
subsequently been treated and analysed, in order to try to develop an un-
derstanding of the phenomena under study, with the goal of answering the
proposed research questions. Per this paradigm, it is difficult to exhaustively
answer the research questions with precision—instead, the researcher aims
to develop new theories that cover the study objects and which hopefully
generalise to other cases also.

3Though some individual research activities have in fact been organised as quantita-
tive/deductive experiments, the overall thrust of the work has been inductive.

71



“Dissertation” — 2017/8/15 — 10:53 — page 72 — #86

Chapter 3. Research Method

Furthermore, the work has been planned and performed in a pragmatic
manner, adhering to the Design Science guidelines introduced in Section 3.1.1
[89]:

• Guideline 1—Design as an Artefact: All three research questions have
been explored via the development of and improvements to one or
more artefact(s), namely an ODP Quality Model (Research Question
1), the XDP ODP usage tooling (Research Question 2), and ODP
usage methodology (Research Question 3).

• Guideline 2—Problem Relevance: As shown in Chapter 1, ODPs show
promise in simplifying ontology engineering for non-academic uses.
This PhD project aims to fill known knowledge gaps regarding ap-
propriate ODP qualities, tools, and techniques, with an emphasis on
usage by inexperienced ontologists (i.e., people who are not ontology
researchers). The end goal of this work is thus to enable and support
the uptake of ontology-based technology (which has been shown to
be a viable solution to a great many applied information management
problems) by practitioners outside of the Semantic Web academic con-
text.

• Guideline 3—Design Evaluation: Two of the three main artefacts de-
veloped within this PhD project have been evaluated; the contents of
the ODP Quality Model have been evaluated iteratively through both
experimental and practically applied approaches, and the XDP ODP
usage tooling has been evaluated through separate evaluation of both
its components and a usability evaluation of the tooling as a whole.
However, due to lack of time and lack of sufficient study cases, the
contributions to the XD methodology have not been evaluated.

• Guideline 4—Research Contributions: The research contributions of
this work include a conceptual understanding of quality as it relates
to ODPs, a catalogue of quality characteristics, quality indicators,
and recommendations compliant with this conceptual understanding,
partial evaluations of the XD methodology in real world Ontology En-
gineering projects, and improved algorithms and heuristics for finding,
instantiating and composing ODPs.

• Guideline 5—Research Rigour: The rigour of the work is guaranteed
through adherence to established research practices and methods, as
discussed and evaluated in Section 3.3.

• Guideline 6—Design as a Search Process: The ODP Quality Model
was developed in an iterative manner in three loops of generation and
evaluation. Likewise, several of the components of the XDP ODP us-
age tooling were developed in a similar process of trial-and-error, most
notably the template-based ODP instantiation heuristics (Section 5.3)
and the CompositeSearch component (Section 5.1).

72



“Dissertation” — 2017/8/15 — 10:53 — page 73 — #87

3.2. Research Process

• Guideline 7—Communication of Research: This is the guideline that
the presented work follows least: while the author has taken care to
communicate the work in as applied and practitioner-friendly a manner
as possible (e.g., the checklists, decision trees, etc., in Section 6.4, or
the poster publication presenting the XDP tooling [79]), the main
audience of this PhD dissertation remains an academic/technical one,
rather than a management-oriented one. For that academic/technical
audience, the work has been communicated in several publications, see
Section 1.4.

In keeping with the inductive/pragmatic theme of the work, neither the
project’s research questions nor method choices, were set in stone at project
initiation; rather, both the research questions and the methods employed
to explore those questions were selected and developed in the context of
the author’s involvement with five ontology engineering projects (detailed
in Section 3.2.4). Figure 3.2 illustrates this development of the research
questions4. The first research question, which initiated the whole PhD
project, concerned the quality of ODPs (Which ODP features or qualities
are important in supporting pattern understanding and use? ). This ques-
tion was developed from the findings of two systematic literature surveys
that the author performed, covering the key Semantic Web conferences and
journals [84, 72]. To develop an understanding of quality in an ODP con-
text, the author constructed and evaluated a quality model, through three
Generate/Test-iterations. During the first evaluations, the author observed
that the quality of ODPs is not the only barrier hindering their adoption—
lack of tooling, particularly tooling targeting novice developers, is also a
considerable problem. This generated the second research question (How
can the features and functionality of ODP usage tools be improved to support
inexperienced ontologists? ). To develop and evaluate such tooling, the au-
thor was invited to participate in four ontology engineering projects. While
working on those projects, the author observed yet another issue hindering
ODP use, namely, the need for improved methodology support. This in
turn lead to the third research question (How can ODP usage methodology
be improved to support inexperienced ontologists? ), which was subsequently
explored within three of the same projects.

These three questions were studied via a variety of research and data-
gathering activities. Some of these activities were initiated and developed
entirely by the author; others were in fact part of the ongoing work within
the projects in question, into which the author was given the opportunity
to immerse himself to observe people and processes.

The remainder of this section first gives an introductory overview of the
data-gathering activities and how they contribute to answering the research
questions. This introduction is split into subsections corresponding to each

4This figure glosses over some details, which are covered in the more detailed fig-
ures 3.3, 3.4, and 3.5.

73



“Dissertation” — 2017/8/15 — 10:53 — page 74 — #88

Chapter 3. Research Method

O
DP

 Q
ua

lit
y 

M
od

el
 G

en
 1

Ev
al

ua
tio

n
RQ

1
O

DP
 Q

ua
lit

y 
M

od
el

 G
en

 2
O

DP
 Q

ua
lit

y 
M

od
el

 G
en

 3
Ev

al
ua

tio
n

RQ
2

To
ol

 d
ev

el
op

m
en

t/ 
ev

al
ua

tio
n

XD
P 

To
ol

in
g

VA
LC

RI

RQ
3

VA
LC

RI
O

ST
AG

eC
ar

e
SS

yn
cA

HD

Li
te

ra
tu

re
 

Su
rv

ey
s

SU
S 

Ev
al

ua
tio

n

M
et

ho
d 

ev
al

ua
tio

n 
an

d 
de

ve
lo

pm
en

t
XD

 1
.1

Le
ge

nd

Pr
oj

ec
t

Re
se

ar
ch

 
Ac

tiv
ity

Re
se

ar
ch

 
Q

ue
st

io
n

Ar
te

fa
ct

Figure 3.2: Research question evolution and interrelations.

74



“Dissertation” — 2017/8/15 — 10:53 — page 75 — #89

3.2. Research Process

research question under study, each including a further graphical illustration
indicating the relations between data gathering activities and results. Most
of the descriptions on how the work was performed are included together
with the discussion of analysis and results in the subsequent chapters 4
through 6—those chapters are intended to be relatively free-standing. How-
ever, since certain data gathering activities have contributed to answering
more than one research question, this section also introduces the research
projects in which those cross-cutting activities took place and the data gath-
ering and analysis methods employed.

3.2.1 Answering Research Question 1

Figure 3.3 presents an overview of the research process and the included
research activities performed to answer Research Question 1: Which ODP
features or qualities are important in supporting pattern understanding and
use? Answering this question necessitated the development of an ODP
Quality Model. This model was developed in three iterations, with the
latter two development iterations evolving and refining the model developed
in the previous ones.

First Iteration

The first generation of the quality model consisted of a quality metamodel
and constructs to populate said metamodel. The metamodel is best ex-
plained as a conceptual model of how to think of quality-related phenomena
in an ODP context, including concepts such as quality characteristics, qual-
ity indicators, measurement methods, scales, etc. As previously mentioned,
the first iteration quality model also includes an initial set of constructs,
that is, concrete quality characteristics, quality indicators, etc. Both the
metamodel and the initial constructs were developed from existing theory
within research on artefact quality, including results from the MAPPER
project [32], the ISO 25010 software quality standard [94], the work on fea-
ture model quality presented by Christer Thörn in his PhD dissertation
[161], and several other pieces of literature relating to ontology quality, ER
quality, etc.

Second Iteration

The first generation of the quality model was then evaluated within three dif-
ferent studies, as indicated in Figure 3.3, the results of which lead to certain
refactoring of the model, and the release of a second-generation model5.

Firstly, a two-day workshop within the IMSK project (Section 4.2.1)
enabled the author to evaluate structural quality indicators affecting ODP

5It should be noted that the entire model was not evaluated—rather, only a subset
of the model (those quality characteristics and indicators that could be tested within the
confines of the listed studies), were evaluated.

75



“Dissertation” — 2017/8/15 — 10:53 — page 76 — #90

Chapter 3. Research Method

M
od

el
 te

st
in

g

M
od

el
 d

ev
el

op
m

en
t

M
AP

PE
R

IS
O

 2
50

10

O
th

er
 lit

.

M
et

am
od

el

1s
t G

en
. 

Q
ua

lit
y 

M
od

el

IL
O

G
 C

ou
rs

e 
St

ud
y

Re
as

on
in

g 
Pe

rf.
  

St
ud

y

2n
d 

G
en

. 
Q

ua
lit

y 
M

od
el

3r
d 

G
en

. 
Q

ua
lit

y 
M

od
el

O
E 

Su
rv

ey

SS
yn

cA
HD

 
W

or
ks

ho
ps

O
ST

AG
 

W
or

ks
ho

ps

Le
ge

nd Re
se

ar
ch

 
Ac

tiv
ity

Ar
te

fa
ct

O
DP

 D
es

ig
n 

Pr
ef

. S
ur

ve
y

An
al

ys
is 

/ 
Ad

ap
ta

tio
n

Th
ör

n 
Ph

D

IM
SK

 
W

or
ks

ho
p

VA
LC

RI
 

W
or

ks
ho

ps

Figure 3.3: Overview of research process for answering RQ 1.

76



“Dissertation” — 2017/8/15 — 10:53 — page 77 — #91

3.2. Research Process

usability, by way of observations of workshop participant behaviour and
practice, and through interviews with participants about that behaviour.
These data gathering methods were chosen due to their suitability in the
given project context, where the participants were interested in receiving
guidance on and testing out the use of ontologies and ontology engineering
in practical work, but were not as keen on taking the role of research subjects
in a more structured experimental setup.

Secondly, a combination of experiment and survey approaches was em-
ployed within a master course in Information Logistics at Jönköping Uni-
versity (Section 4.2.2), enabling the evaluation of further structural and
documentation quality indicators contributing to usability and learnability.
For this study, the goal was to evaluate several hypothesised effects of quality
indicators, and thus, an experimental approach of testing these indicators
(i.e., independent variables) against effects (i.e., dependent variables) was
suitable, and in the context also feasible.

Finally, an evaluation of quality indicators believed to affect the rea-
soning performance over resulting ontologies was carried out by way of a
literature study and via study of how indicators triggering such effects are
displayed in ODPs published on the Internet (Section 4.2.3). The litera-
ture study method was selected based on the author’s intent to expand the
coverage of the quality model as efficiently as possible with regard to this
rather important aspect of quality, and the prevalence of sufficient amounts
of prior work within the area.

The resulting second generation of the quality model is the topic of the
author’s 2013 Licentiate thesis [76].

Third Iteration

The third generation of the quality model was developed by a process of
evaluation and adaptation based on five data gathering activities: two sur-
veys, and observations (in the form of researcher logs, interviews, and audio
recordings of participant interaction) at three sets of modelling workshops.

The two surveys (with a total of over 100 respondents) studied user
preferences regarding ODP documentation (including aspects such as pre-
ferred visualisation format, preferred example syntax, relative importance
of different documentation fields, etc.). These surveys are presented in Sec-
tions 4.3.1 and 4.3.2. The use of surveys for data-gathering was determined
by the author’s wish to increase the credibility of findings, by grounding
them in a larger dataset (in terms of participants) than the smaller studies
from the previous iteration of the work.

The data gathered at the workshops primarily concerns similar aspects
of ODP documentation quality, but also touches upon issues such as the
need for quality assurance (of both ODP documentation and solution), and
the trade-off between generalisability and usability. This work is covered
in Section 4.3.3. As with the IMSK project, the choice to observe and
participate in hands-on development work in workshop format was based on

77



“Dissertation” — 2017/8/15 — 10:53 — page 78 — #92

Chapter 3. Research Method

the requirement to combine the author’s research interests and the project
participants’ more practically oriented development needs.

3.2.2 Answering Research Question 2

Answering Research Question 2, How can the features and functionality of
ODP usage tools be improved to support inexperienced ontologists?, involved
a number of independent research processes (see Figure 3.4). This is because
there are so many orthogonal aspects of ODP support tooling to consider,
where the findings of a particular development or evaluation task does not
necessarily contribute to any other aspect of the problem, and where mar-
rying different results together into one joint theory is next to impossible.
Consequently, the work on answering this research question (detailed in
Chapter 5) consisted of several development projects all approaching the
research question from different angles. The constituent deliverables, the
motivation for their development, and the process by which they were eval-
uated, are summarised below:

• Section 5.2 describes how, through study of published uses of ODPs, a
set of three previously unstudied strategies for property specialisation
were discovered and formalised. The usage of these strategies in ODPs
and ontologies published on the Internet was studied by way of down-
loading and analysing a large set of such ontologies. The reasoning
performance effects of employing two of the strategies were evaluated
by way of an experiment.

• Section 5.1 describes CompositeSearch, a search engine allowing ontol-
ogists to find suitable ODPs based on an input query string. The need
for an improved ODP search feature such as this was observed in the
IMSK project. The CompositeSearch solution was evaluated by way of
an experiment comparing its performance to an existing standard sys-
tem with queries sourced from the QALD (Question Answering over
Linked Data) evaluation campaign.

• Section 5.3 describes a set of template-based ODP instantiation heuris-
tics, allowing for the instantiation of ODPs into target ontologies by
way of cloning of pattern design, rather than pattern concept sub-
sumption. The need for such an alternate way to instantiate ODPs
was observed in several projects, including VALCRI, IMSK, and E-
care@Home. The template-based approach was evaluated by way of
an experiment in the OSTAG project, featuring workshop participants
testing and comparing both this approach and the more established
specialisation-based approach to ODP instantiation.

• Section 5.4 describes the XDP (eXtreme Design for WebProtégé) plu-
gin, supporting the above listed property specialisation strategies,

78



“Dissertation” — 2017/8/15 — 10:53 — page 79 — #93

3.2. Research Process

Se
ct

io
n 

5.
1

O
DP

 s
ea

rc
h 

ne
ed

Co
m

po
sit

e 
Se

ar
ch

Q
AL

D 
Ex

pe
rim

en
t

Im
pr

ov
em

en
t 

on
 X

D-
SV

S

De
ve

lo
pm

en
t

Le
ge

nd Re
se

ar
ch

 
Ac

tiv
ity

Ar
te

fa
ct

Re
se

ar
ch

 
Fi

nd
in

g

Se
ct

io
n 

5.
4

XD
P

VA
LC

RI
 

W
or

ks
ho

ps

IM
SK

 
W

or
ks

ho
p

eC
ar

e 
Pr

oj
ec

t

Se
ct

io
n 

5.
2

O
DP

 S
pe

ci
al

isa
tio

n 
St

ud
y

St
ra

te
gy

 e
ffe

ct
 

ev
al

ua
tio

n
St

ra
te

gy
 e
ffe

ct
s

Sp
ec

. 
st

ra
te

gi
es

St
ra

te
gy

 u
sa

ge
 

ev
al

ua
tio

n
St

ra
te

gy
 u

sa
ge

O
E 

Su
rv

ey

Se
ct

io
n 

5.
3

Te
m

pl
at

e 
ap

pr
oa

ch
 n

ee
d

Te
m

pl
at

e 
He

ur
ist

ic
s

De
ve

lo
pm

en
t

Pr
ef

er
re

d 
by

 
pa

rti
ci

pa
nt

s

Ac
ce

pt
ab

le
 

sc
or

es

SU
S 

Ev
al

ua
tio

n

O
ST

AG
 

Ex
pe

rim
en

t

Figure 3.4: Overview of research process for answering RQ 2.

79



“Dissertation” — 2017/8/15 — 10:53 — page 80 — #94

Chapter 3. Research Method

template-based ODP instantiation, CompositeSearch, and collabora-
tive XD across geographical distances. XDP was evaluated using the
well-known System Usability Scale.

3.2.3 Answering Research Question 3

Research Question 3, How can ODP usage methodology be improved to sup-
port inexperienced ontologists?, was answered by way of the process illus-
trated in Figure 3.5.

The existing eXtreme Design (XD) method for Ontology Engineering
with ODPs was introduced in three different research projects. Observations
of how participants in those projects then worked with or deviated from
XD were made by way of participation and observation at development
workshops, interviews with project participants, and researchers’ logs on
any XD method adaptations that were applied. The experiences of trying
to use XD in these projects showed several shortcomings in the method. As
prior research on ontology engineering methods did not sufficiently cover or
resolve these shortcomings, a set of method improvement suggestions were
developed.

Traditional eXtreme Design does not specify different roles within the
XD project, such as “developer”, “release engineer”, “tester”, etc., with
differing responsibilities. Instead, all developers are assumed to be able to
perform the different tasks involved in the XD process. Findings from the
VALCRI, OSTAG, and SSyncAHD projects indicate that this situation is
not typical. In these projects, there was a clear differentiation in ontol-
ogy engineering skill or interest, motivating the need for defined roles, role
allocation processes, and task-role mappings.

Further, traditional XD does not give any explicit guidance about reuse
of existing ontological resources apart from ODPs. In every one of the
projects the author was involved with, the issue of reuse was deemed highly
important by management or developers. Consequently, traditional XD
needs to be extended with recommendations on concrete methods for ontol-
ogy reuse.

Finally, traditional XD assumes an ideal ontology engineering case that
may not be typical. In the studied projects, challenges were observed re-
garding the distance (organisational and/or physical) to the customer, the
geographic distribution of the development team, and the proficiency of that
team. These findings support the development of project adaptation guid-
ance, so that XD can more easily be adapted for use in such cases that are
not ideal.

Based on these observations the author developed a set of guidelines, for-
malised into artefacts such as recommendations, checklists, decision trees,
workflows, etc. (see Section 6.4 for a summary and the whole of Chapter 6
for details). These artefacts formalise many of the practical solutions to XD
shortcomings that were implemented in the VALCRI, OSTAG, and SSync-

80



“Dissertation” — 2017/8/15 — 10:53 — page 81 — #95

3.2. Research Process

M
et

ho
d 

te
st

in
g

M
et

ho
d 

de
ve

lo
pm

en
t

O
ST

AG
 

W
or

ks
ho

ps

XD
 1

.0

SS
yn

cA
HD

 
W

or
ks

ho
ps

XD
 1

.1

Le
ge

nd Re
se

ar
ch

 
Ac

tiv
ity

Ar
te

fa
ct

VA
LC

RI
 

W
or

ks
ho

ps

XD
 S

ho
rtc

om
in

gs
An

al
ys

is 
/ 

De
ve

lo
pm

en
t

O
n-

To
-

Kn
ow

le
dg

eM
ET

HO
N-

TO
LO

G
Y

Ne
O

n 
M

et
ho

d

DI
LI

G
EN

T

Re
se

ar
ch

 
Fi

nd
in

g

Figure 3.5: Overview of research process for answering RQ 3.

81



“Dissertation” — 2017/8/15 — 10:53 — page 82 — #96

Chapter 3. Research Method

AHD projects, but it should be noted that they have not yet been thoroughly
evaluated, neither in these projects nor in other project contexts.

3.2.4 Projects

Over the course of the PhD project, the author has been invited to observe
and/or participate in five research projects where ontology engineering work
took place. This has enabled the validation and evaluation of theories and
artefacts through observational study, interviews, surveys, and experiments,
with the projects as study cases. These five projects, and the author’s
participations within them, are introduced below.

IMSK

The goal of the IMSK project6 was to integrate technologies for security and
surveillance to provide an easily reconfigurable system capable of providing
area security for law enforcement agencies or security services. The author
participated in development work within the project together with colleagues
from a partner research institute (hereafter denoted RI7). The project work
packages hosted at RI focused on development of a rule-based complex event
processing subsystem intended to help isolate and correlate critical situations
and threats based on incoming data, to support human operators in decision
making and guidance on response force deployment.

The author was involved in two workshops at RI, both of which had
the goal of developing prototype functionality mirroring the functionality
in the complex event processing subsystem, but using Semantic Web-based
technologies like ontologies and description logic reasoners. The reasons
for hosting these workshops from RI’s perspective were twofold: first, they
wanted to see if they could achieve higher flexibility of knowledge modelling
and reasoning by using description logic languages as opposed to the more
low-level pre-compiled rules used in the existing system. Second, they be-
lieved that using ODPs as preconfigured modules of functionality to plug in
and out of the system could support reconfigurability, particularly by less
experienced users.

The first workshop, in late 2011, served primarily to introduce the author
to the project in question, the staff involved, and the technology stack used,
and did not result in much empirical material relevant to this PhD project.
The second workshop, held in the middle of 2012, included joint modelling
work, as well as a group interview. This workshop was recorded by audio
and video. Notes on participant and group behaviour were taken by two
independent observers. The total size of the resulting data (after audio
transcription) was some 21 600 words, or roughly 85 pages of text (of which
16 are researcher notes, and 59 are audio and video transcriptions).

6Integrated Mobile Security Kit, EU FP7 project 218038.
7For reasons of integrity and confidentiality, the case description and published data

have been partially anonymised.

82



“Dissertation” — 2017/8/15 — 10:53 — page 83 — #97

3.2. Research Process

VALCRI

VALCRI8 intends to develop a system providing Visual Analytics capabil-
ities for law enforcement analysts, supporting investigative analysis (i.e.,
the solving of individual or strings of related crimes) as well as intelligence
analysis (i.e., broader crime trends, guiding short- to medium-term force
deployment as well as long term strategy). Linköping University is a par-
ticipant partner in VALCRI, together with 17 other partners throughout
Europe.

In VALCRI, ontologies are used for a variety of purposes, including data
integration, provenance representation, and as vocabularies supporting event
detection in data streams. The majority of the ontology engineering work
has taken place in a work package specifically intended to develop an on-
tology library for use by the various software components that make up the
finished VALCRI system. Therefore, a key requirement for those ontologies
is that they need to be easily understandable by software developers. An-
other key requirement is that the developed system and its ontologies should
be easy to modify for deployment in different contexts.

The author has participated in and contributed to a multitude of meet-
ings and workshops within this project. The most important ones in terms
of this PhD project were three two-day modelling workshops held from the
middle of 2015 through the middle of 2016. At each of these workshops the
goal was to develop an ontology or an ontology module supporting some re-
quired system feature. At one of the workshops, the entire modelling session
was recorded and transcribed (yielding some 80 000 words, or 220 pages of
text), whereas at the other two, the data gathered was in the form of the
author’s notes on participant behaviour, or survey responses.

E-care@Home

The E-care@Home project9 aims to improve home healthcare for the el-
derly by using ICT-rich environments to measure, record, and infer facts
about people and their environment, which can be used for health recom-
mendations, medication reminders, alerts to healthcare services, etc. This
requires, among other things, the development of suitably non-invasive sen-
sor systems and actuators, Internet of Things infrastructure supporting such
sensors and actuators, integration with legacy healthcare systems (possibly
requiring NLP and/or data mining technologies to extract information from
patient records), and semantic integration between both hardware device
output/input and health record systems. In this project, ontologies are
used as a shared language to achieve such data integration.

The author has been involved in a variety of tasks within this project,
providing data to different parts of the PhD project. These tasks include

8Visual Analytics for Sense-making in Criminal Intelligence Analysis, EU FP7 project
608142.

9http://ecareathome.se

83



“Dissertation” — 2017/8/15 — 10:53 — page 84 — #98

Chapter 3. Research Method

requirements development and management work (which provided findings
regarding the suitability of developed requirements management tooling),
leading an ontology engineering tutorial and workshop (at which surveys on
ODP features and tooling were answered by participants), and supporting
another ontology developer in a quality assurance role (subsequent inter-
views with the developer giving insights into method issues).

The project runs from 2015 through 2020, but the work contributing to
this dissertation primarily took place during the spring of 2016.

OSTAG

The goal of the OSTAG project (Ontology-based Software Test Case Gen-
eration) is to improve automation of software test-case generation and test
data. The project attempts to achieve this by developing formal models (on-
tologies) of the system requirements specification of the system for which
tests are to be developed, as well as the general domain of that system, and
then to semi-automatically generate tests using novel programming tech-
niques (inference rules, genetic programming, and ontology reasoning).

In this project, the author has helped project management establish
methods for ontology engineering work, and tutored project participants in
applying these methods and suitable support tooling for them. In so do-
ing, the author has had the opportunity to observe participants performing
ontology engineering during development workshops, which has provided in-
put into the method development covered in Chapter 6. Additionally, an
experiment studying the advantages of template-based ODP instantiation
(discussed in Chapter 5) has also been performed within the project con-
text. Finally, interviews with two ontology developers in the project were
also performed, to confirm the validity of the author’s observations earlier in
the project. The ontology development workshops took place in the spring
of 2015, while the experiment and interviews were performed in the spring
of 2016.

SSyncAHD

The SSyncAHD project
’

lead by Sweden’s National Veterinary Institute
(Statens Veterinärmedicinska Anstalt, hereafter SVA), concerns the develop-
ment of ontologies supporting animal health data and other related types of
data in semantically interoperable ways, in turn supporting data integration
for syndromic surveillance systems. Syndromic surveillance systems track
early syndrome indicators associated with animal health crises (outbreaks of
contagious diseases, environmental toxins, etc.), enabling oversight author-
ities such as the SVA to respond to these crises immediately, rather than
after time-consuming formal lab test diagnoses have been performed. The
input data to such systems (i.e., the syndrome signals or markers) varies
greatly in structure, degree of formality, language, and assumptions. Addi-
tionally, not only does the input vary depending on input source or type,

84



“Dissertation” — 2017/8/15 — 10:53 — page 85 — #99

3.2. Research Process

but it also varies internationally, due to differences in legislative frameworks
or agricultural practices and history—none of which are constant. Conse-
quently, the goal of SSyncAHD is to develop an ontology standard integrat-
ing these different perspectives, that can be maintained and updated by
the syndromic surveillance community of researchers and practitioners to
supporting changing conditions.

The author was asked to tutor project participants on suitable ontology
engineering practices and tools, and to this end, chaired two workshops at
SVA, in the spring of 2015 and the spring of 2016 respectively. Both work-
shops were recorded, providing a rich empirical material (after transcription
around 73 000 words, or 190 pages) concerning features and drawbacks of
ontology engineering methods and tooling. At the latter workshop, partic-
ipants also contributed to the PhD project by performing several exercises
and participating in surveys on the tooling developed by the author.

3.2.5 Research Logs

In addition to recording participant interactions and discussions within mod-
elling workshops in the involved projects, the author also kept his own logs
of important observed behaviours and reflections on those behaviours, as
well as broader reflections on the projects, and success or failure criteria of
the projects. Per the definitions given in Section 3.1.5, these notes can be
classified as observational notes and theoretical notes. Some methodologi-
cal notes were also taken, but these were primarily used as mental “sticky
notes” for the author, and have not been analysed further. In total these
logs comprise around 11 000 words, or around 26 pages of text, covering all
the projects discussed above.

Given the limitations inherent to researcher’s logs, as discussed in Sec-
tion 3.1.5, this material has not been used to develop new theory. Instead
it has been used to confirm the validity of the findings developed when
analysing other qualitative empirical material.

3.2.6 Qualitative Data Analysis

The qualitative material collected in the above discussed projects initially
consisted of both audio recordings of workshops and interviews, and written
researcher logs. After transcription of the audio files into textual repre-
sentation, both the transcripts and the researcher logs were analysed us-
ing qualitative methods as described in Section 3.1.3, through a process of
fragment-based coding and analysis.

The recordings from the IMSK project were transcribed by the author,
while most recordings from VALCRI, OSTAG, and SSyncAHD (except for
those including sensitive content) were transcribed by an external company
specialising in such work. The resulting transcripts consisted of a sequence
of individual statements ranging from single word utterances through rather

85



“Dissertation” — 2017/8/15 — 10:53 — page 86 — #100

Chapter 3. Research Method

extensive monologues. Each such statement was tagged with a speaker label
and a timestamp.

Table 3.1: IMSK project qualitative analysis: distribution of fragments to
codes

Code label Fragments Code label Fragments
DL/semantics limitations 8 ODP structure 1
Efficiency 11 ODP usage prerequisites 11
Implicit ontology effects 1 ODP-attributable errors 8
Method/metamodel adequacy 6 ODPs-as-error-control 7
Modelling errors 1 ODPs-as-ground ontologies 8
ODP catalogue and selection 28 ODPs-as-guidance 21
ODP complexity 1 OE method observations 8
ODP effects 3 Pattern insufficient 12
ODP imports 10 Top-down/bottom-up choices 7
ODP method observations 19 Usefulness 13
ODP size 3

The transcript and research logs were coded and analysed using different
coding strategies, depending on the purpose of the analysis. For RQ1 (devel-
oping an understanding of ODP quality), an emergent coding strategy was
used in the initial datasets from the IMSK project. The coding consisted of
the author reading through the transcripts and organising a coding structure
(i.e., a set of labelled tags) based on the content of the transcripts, before
reading through the material again, this time applying those codes to the
transcript content. Per this emergent approach, the codes were developed
from the material in a grounded manner, which maps well to the need for
developing a first set of indicators for the quality model. The distribution
of codes to transcript fragments (each fragment includes one or more state-
ments) is summarised in Table 3.1. The fragments were then grouped by
code, and the collected material relating to each code analysed to see what
conclusions could be drawn regarding participant experiences, opinions, and
behaviour.

In the subsequent analysis of data from the VALCRI, OSTAG, and
SSyncAHD projects, a predefined coding strategy was employed instead,
where the codes used were developed from the partially developed ODP
quality model. Specifically, the previously developed quality indicators were
used as codes. However, new codes were added when this set was insuffi-
cient, and so we might in fact label the approach “partially emergent”. The
final coding structure for the latter analysis is illustrated in Figure 3.6. Just
as before, the fragments associated with each code were then grouped and
studied, to develop trustworthy findings.

For answering RQ3 (concerning development of the eXtreme Design ODP
usage methodology), an emergent strategy was again employed. The tran-
scribed texts were studied, codes established, the texts were re-read, and the
codes applied, before analysis based on the codes was finally performed. The
emergent coding structure covering RQ3 issues is illustrated in Figure 3.7.

86



“Dissertation” — 2017/8/15 — 10:53 — page 87 — #101

3.2. Research Process

Quality Model

Documentation 
Indicators Model Indicators In-Use Indicators

Example uses 
(DI05/DI06)

Text Description
(DI01)

Competency 
Questions

(DI03)

Verbosity
(recommendation)

Coverage
(new indicator)

Unambigious
(recommendation)

Visualisation
(DI05/DI07)

Entity Naming
(new indicator)

Annotations
(MI21)

Search engine 
consequences 

(effect)

Property chain 
commenting

(recommendation)

Human-readable 
for debugging

(recommendation)
Avoid homonyms 
(recommendation)

Abstraction level
(IU03)

Semantic Distance
(new indicator)

Reusability
(effect)

Understandability
(effect)

Functional 
appropriateness

(effect)

Validation/QA 
Stamp

(new indicator)

Clarify 
subsumption

(effect)

Imports
(MI25) Size

(MI20)

Figure 3.6: VALCRI, OSTAG, and SSyncAHD qualitative analysis coding
structure for RQ1.

Methodology

Roles

User acceptance

Core team vs 
follower

Emergent

Project size

Reuse

Methods

Consequences
Need

Integration / QA & 
Release

Integrated 
integration

Internal vs external 
release

Pair work Requirements

Data/document-
drivenTool support

Customer 
proximity

Uncertain 
requirements

Figure 3.7: VALCRI, OSTAG, and SSyncAHD qualitative analysis coding
structure for RQ3.

87



“Dissertation” — 2017/8/15 — 10:53 — page 88 — #102

Chapter 3. Research Method

It should be noted that not all initially developed codes as displayed
in Figures 3.6 and 3.7 are associated with results presented in Chapters 4
and 6: as discussed in Section 3.1, for findings developed using qualitative
methods and analysis to be generalisable, triangulation of the findings may
be required. For this reason, only such codes and themes as were identified in
multiple project contexts were used in the subsequent analysis and solution
development described in those chapters.

In addition to the thematic coding and analysis, in one case a more quan-
titative style—of analysis of speaker involvement or speaker role within two
workshops—was also carried out (see the description of SSyncAHD project
observations in Section 6.1.1). For this analysis, trivial one-word utterances
were first filtered out of the dataset, before the remaining statements were
grouped and summed by speaker, providing an image of the degree to which
each of the involved speakers participated and drove discussion in the stud-
ied workshops.

3.2.7 Surveys Employed

In addition to the qualitative methods and analysis, three surveys have also
been employed within the PhD project, to gather data of a more quantita-
tive nature. In several cases, this data complements the gathered qualitative
data, and in other cases validates the qualitative analysis (through triangu-
lation, as discussed in Section 3.1).

In addition to the surveys detailed here, surveys using the System Usabil-
ity Scale (SUS) have also been used to evaluate the XDP tooling developed
within this project. The SUS scale is a very simple tool to rapidly evaluate
usability of IT systems. While limited in scope, the ease with which an SUS
survey can be deployed and analysed has lead it to see significant adoption
in practice. More information about the SUS surveys employed is available
in Chapter 5. For some respondent groups, these SUS evaluation surveys
were integrated with or given simultaneously with either the second or third
survey listed here.

Ontology Engineering Survey

The Ontology Engineering Survey was constructed and distributed in the
autumn of 2014, after the second iteration of the ODP Quality Model had
been developed, with the the goal of gathering data supporting both the
further development of that quality model (i.e., RQ1) and the need for
developments in ODP support tooling (i.e., RQ2). The survey contained a
total of 44 questions, though six questions varied in such a manner that each
respondent only responded to 38 questions—this was to ensure that users
who responded that they had little or no experience of using ODPs were
not asked about ODP usage, but about more generic ontology engineering
instead.

88



“Dissertation” — 2017/8/15 — 10:53 — page 89 — #103

3.2. Research Process

The survey10 consists of six questionnaire pages (in addition to the open-
ing and closing pages). The first page asks for background information about
the respondent (age, academic degree, knowledge of semantic web standards,
number of projects participated in, etc.). The second page asks about per-
ceived industry uptake problems for semantic web technologies. The third
page asks about the users’ familiarity with and perceptions of ODPs. The
fourth page asks about ODP usage challenges and user preferences regard-
ing ODP tooling (or, in the case users have no experience of ODPs, similar
questions about reuse of ontologies). The fifth page asks about user pref-
erences about ontology visualisation, serialisation syntax, and what they
use ontologies for. Finally, the sixth page asks about method issues, what
type of tooling users prefer and what type of tooling they actually do use
(these differ, as it turns out), and how their development teams are typically
structured.

The survey was initially distributed during ISWC 2014, where it was
marketed with an incentives program for participating, allocating (by lot-
tery) Amazon gift cards to certain respondents. A total of 81 responses were
received.

ODP Design Preferences Survey

The ODP Design Preferences Survey was developed as a follow-up to the
Ontology Engineering Survey, with the goal of gathering more specific re-
sponses to questions from the previous survey with responses that proved
to be interesting, but where the previous survey did not go into sufficient
detail.

After the first page (gathering background information about the re-
spondents), the survey contains one page with questions on user preference
regarding how to find ODPs (what features users prioritise in an ODP search
engine, what categories are most helpful in an ODP portal, etc.), followed
by a page on how users prefer ODP documentation be constructed (which
descriptive text fields are most important, which type of graphical notation
is preferred, etc.).

The survey was distributed via projects that the author participated in
from early 2015 through early 2016, and at an ODP tutorial the author
tutored at the International Semantic Web Conference 2016. In total, it
received 20 responses. Due to the relatively low number of responses, the
resulting data was primarily used to elicit ideas and requirements for the
development of ODP support tooling described in Chapter 5. However, some
of the resulting data also feeds into the ODP Quality Model as discussed in
Chapter 4.

10Available at http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138724

89



“Dissertation” — 2017/8/15 — 10:53 — page 90 — #104

Chapter 3. Research Method

XD Workflow Survey

The last, and in terms of number of responses smallest, survey was the XD
Workflow Survey. This survey sought to gather opinions from users who had
applied the XD method, about how well they thought certain tasks in the
XD workflow had worked in practice, how confident they were in perform-
ing those tasks, and how easy or difficult they found certain ODP features
to be to work with. The survey consisted of eight questions with Likert
scale answers. It was given in conjunction with modelling workshops within
the VALCRI, E-care@Home, and SSyncAHD projects, for a total of nine
responses. Due to the relatively low number of responses, the data resulting
from this survey was primarily used as supporting evidence confirming the
validity of analysis and findings from other data gathering activities in the
project.

3.3 Attributes of the Research Process

Section 3.1 introduces three attributes (validity, reliability, and generalis-
ability) commonly used to evaluate research tasks. The subsequent section
discusses the different types of research activities that have been performed,
in terms of these attributes. While each type of activity is discussed sepa-
rately below, it is important to keep in mind that the findings presented in
this dissertation are typically sourced from multiple independent research
activities that support one another, as detailed in chapters 4–6.

3.3.1 Workshop Observations

The workshop contributions consist of researcher logs and coded audio tran-
scripts (for details, see Sections 3.2.4–3.2.6). These datasets have been used
to develop theory regarding user opinions and requirements for ODPs and
ODP quality, tooling, and methodology. The workshops have shared certain
features, namely that they included relatively inexperienced users perform-
ing ontology engineering tasks, where the developed ontologies were intended
to be used in some computational system. While a single observation from
such a workshop might not achieve an acceptable degree of validity, the
observations that have been presented and discussed in this dissertation as
results are all based on recurring features or themes in the datasets, typi-
cally triangulated not only in terms of data source type (log or transcript)
but also in terms of cross-case triangulation. Such triangulation guarantees
an acceptable degree of internal validity for the findings.

The methods by which the workshops were performed and analysed are
described in Sections 3.2.4 and 3.2.6, providing transparency to the research
process and contributing to the reliability of the work. Unfortunately, owing
to the sensitivity of some of the recorded materials and the ethical consid-
erations of making semi-private conversations public, the source recordings

90



“Dissertation” — 2017/8/15 — 10:53 — page 91 — #105

3.3. Attributes of the Research Process

or transcriptions will not be made available to the world at large. While we
might suspect that some findings from these workshops (e.g., emergent roles,
challenges in reusing existing artefacts, etc.) could be generalised beyond
the ontology engineering domain, such generalisability cannot be guaranteed
without further study.

3.3.2 Surveys

The three surveys employed within this project, along with their contribu-
tions to answering the research questions, are presented in Section 3.2.7. The
respondents to the surveys were anonymous and were not known to be close
social acquaintances of the author, so they would have no obvious incentive
to answer untruthfully. Consequently, the validity of the responses (i.e., the
alignment of responses to respondents’ actual opinions and experiences) is
likely to be acceptable. Concerning the matter of reliability, the question-
naires that were used and the responses that were received have all been
made available for download and validation by other researchers. However,
for reasons of respondent integrity, the responses have been anonymised.

With regard to generalisability of survey results, we note that the largest
survey in this PhD project (introduced in Section 3.2.7) elicited answers from
the Semantic Web research community, and was marketed at research con-
ferences and on the associated mailing lists. The respondents to this survey
are thus likely to be representative of the Semantic Web research community,
but this cannot be guaranteed. In total, this survey garnered 81 responses,
which implies that for some questions, the margin-of-error may be around
±12 percentage points. However, many questions had fewer responses, as
did the other two surveys in this PhD project. While the findings that are
based on survey responses are also supported by other evidence in most
cases (quantitative or qualitative), the author cannot, based on the above,
claim that the survey findings in total are statistically generalisable to the
whole population of ontology engineers. Before employing methods or rec-
ommendations developed in this work, the reader is advised to test whether
or not they appear valid in their usage context.

3.3.3 ODP Feature Studies

The ODP feature studies concern how certain performance-affecting indi-
cators (Section 4.2.3) or specialisation strategies (Section 5.2) vary over a
certain set of ODPs and ontologies that have been published on the web. The
validity of these activities is depends on design and quality of the employed
measurement methods. Those methods have been thoroughly reviewed as
part of prior publications11—the former method has also been developed
into an open source tool that is available for download and use12. Given

11Performance-affecting indicator measurement method via the author’s Licentiate dis-
sertation [76], specialisation strategy measurement method via [77].

12https://github.com/hammar/OntoStats

91



“Dissertation” — 2017/8/15 — 10:53 — page 92 — #106

Chapter 3. Research Method

the availability of both the datasets and of the formally defined methods for
measuring over the datasets, other researchers should be able to replicate
the same findings—consequently, these findings can be considered reliable.

The results of these research activities are not inherently generalisable
beyond the ODPs or ontologies that have been studied. However, it is likely
that those results or effects which can be explained as resulting from formal
logical structures in the OWL ontology language, can be generalised to other
ontologies that use the same language.

3.3.4 Experiments

The experimental research activities performed within this project have at-
tempted to test various hypotheses by evaluating them against the real
world. Examples include testing whether certain ODP features correlate
with improved user understandability (Sections 4.2.2 and 5.3), whether cer-
tain search strategies improve search engine results when operating over
ODPs (Section 5.1), and whether the ODP specialisation strategy that is
employed affects reasoning performance characteristics (Section 5.2).

Validity, in a quantitative experimental process, can be defined formally
by way of statistical methods that measure the p value, that is, the likeli-
hood of the observed result occurring by chance, rather than being caused
by the experimental treatment. The experiments performed within this dis-
sertation do not aspire to such degrees of validity. This is partly due to
the relatively small scale at which the experiments have been performed
(i.e., the dearth of participants or data), and partly due to an imperfect fit
between the research problems being studied and the classical dependent/in-
dependent variable experimental structure. For instance, some experiments
that show the feasibility of a method or an improvement over an existing
method do not necessarily conform to this structure, nor do they generate
large enough data sets for statistical analysis to apply.

The datasets used for each experiment, and the method used for the
experiment, have all been provided for download or are included in this
dissertation, so the work should be reliable enough for other researchers
to replicate. However, the findings are not guaranteed to be generalisable
beyond the experimental context—again, this is a consequence of the limited
scale of the experiments in terms of subjects and datasets.

92



“Dissertation” — 2017/8/15 — 10:53 — page 93 — #107

Chapter 4

ODP Quality Model

To answer the research question “Which ODP features or qualities are im-
portant in supporting pattern understanding and use?”, the author devel-
oped a quality model for Ontology Design Patterns, covering and including
both general quality characteristics relevant to ODP development, and con-
cretely measurable quality indicators contributing to those quality charac-
teristics. Observing Hevner’s guidelines for Design Science Research (par-
ticularly Guideline 6—Design as a Search Process)1, the quality model was
developed over three iterations of evaluation and refinement, described in
Sections 4.1–4.3. The final quality model is presented in Section 4.4 and its
indicators are further detailed in Appendix A.

4.1 Initial Model

Rather than develop the quality model entirely from scratch, the author de-
cided early on to take as input and inspiration established work on similar
topics from neighbouring research fields, adapting that work to fit the spe-
cific characteristics and uses of Ontology Design Patterns. Such an approach
grounds the initially proposed model in established theory and practice, and
provides a solid starting point for further development. The following sub-
sections describe this process, which contributed three distinct components
to the quality model:

• A conceptual understanding or metamodel of quality as it applies to
ODPs, influenced by the MAPPER [139, 32] metamodel (Section 4.1.1).

• A set of initial quality characteristics and subcharacteristics sourced
from the ISO 25010 [94] Product Quality Model and from Thörn’s
work on feature model quality [161] (Section 4.1.2).

1See Sections 3.1.1 and 3.2 for more details and discussion on Design Science Research.

93



“Dissertation” — 2017/8/15 — 10:53 — page 94 — #108

Chapter 4. ODP Quality Model

• An initial set of quality indicators contributing to the above quality
characteristics, sourced from prior work on ER quality and ontology
evaluation, as well as smaller studies with students at Jönköping Uni-
versity (Section 4.1.3).

4.1.1 Quality Metamodel Development

Many quality models have been proposed for various types of IT artefacts,
as discussed in Chapter 2. These differ not only in their content (i.e., which
specific instances of qualities, indicators, attributes, methods, or other con-
cepts that they include and relate) but also in their metamodel, that is,
how they conceptualise and represent quality as it relates to whichever type
of artefact they are intended to support. Thus, establishing such a meta-
model structure upon which to build the ODP quality model was considered
important from the outset, both in terms of structuring the problem and
developing design and evaluation methods, and in terms of communicating
the results to the research and practitioner communities.

Ontology Design Patterns are inspired by both traditional software engi-
neering design patterns and reusable software components. Like the former,
they can emphasise the logical solution to a type of problem, and express
this problem-solution mapping in text and diagrams. Like the latter, they
can, and often do, include implementation modules ready to plug in and
adapt. A general conceptualisation of ODP quality must cover both of
these aspects, allowing for both modelling of design pattern-style qualities
that are intangible or difficult to measure using purely quantitative metrics,
and of more traditionally quantifiable software component-style qualities.
Furthermore, since ODPs are used in the creation of IT artefacts, such a
conceptualisation also needs to allow for the modelling of the IT artefact
construction contexts in which the patterns are used.

The design of the first iteration of the quality metamodel was influ-
enced by perspectives on how to model quality aspects originating from the
MAPPER project [139, 32], introduced in Section 2.5.1. In this project, a
metamodel is formalised which supports the development of a project result
validation framework. While the domain of study in MAPPER is different
from the one studied in this dissertation, the metamodel used is general
enough to capture broader understanding of quality concepts in different
fields. The most relevant perspectives taken from the MAPPER metamodel
concern:

• The differentiation between measurable indicators and immeasurable
general quality characteristics.

• The possibility of nesting different quality characteristics into a hier-
archy.

• The idea that the metamodel is instantiated into a “filled out” quality
model when applied.

94



“Dissertation” — 2017/8/15 — 10:53 — page 95 — #109

4.1. Initial Model

• The importance of representing use case and context in modelling
artefact quality.

These metamodel perspectives are compatible with the other quality
models supporting this work, that is, the Thörn quality model for variability
models [161] and ISO 25010 [94].

Development of the metamodel and the quality model with which it is
populated was roughly sequential in that the metamodel was designed first
and the quality model thereafter. However, some minor shortcomings in the
metamodel, discovered during evaluation and development in the latter half
of the work, were rectified and the metamodel was updated accordingly. The
final metamodel, after these minor modifications, is presented in Figure 4.5
and in Section 4.4.1.

4.1.2 Initial Quality Characteristics

While the MAPPER deliverables influenced the metamodel design, the arte-
facts developed in that project were too different to from ODPs for the
remainder of that framework to be reused. Instead, the initial quality char-
acteristics were sourced from the ISO 25010 software quality standard [94]
and from the PhD thesis “On the Quality of Feature Models” by Christer
Thörn [161], as described below.

ISO 25010 Adaptation

The ISO 25010 [94] Product Quality Model (PQM) is introduced in Sec-
tion 2.5.4. The majority of the quality characteristics of PQM are suitable
for describing ODP quality as well, requiring only slight changes to quality
definitions to replace software- or information systems-specific terminology
or uses with ontology-specific equivalents. However, certain quality charac-
teristics required more adaption to be reused. One example of this is the
characteristics related to performance efficiency—since an Ontology Design
Pattern is rarely, if ever, used on its own, these quality characteristics had
to be rephrased to refer to the performance efficiency of reasoning over the
resulting ontologies created using patterns. Another example is the quality
characteristic compatibility and its corresponding sub-characteristics, orig-
inally dealing with how well a system can co-exist with other systems in
terms of resource allocation and message passing. In an ODP context, com-
patibility relates more closely to interoperability in terms of shared base
concepts and lack of definition duplication, thus the quality characteristic
definitions were revised accordingly.

Some quality characteristics were deemed too tightly coupled to the con-
cepts of software and systems, and inapplicable in an ODP context. Such
characteristics include:

• Functional correctness: In a software context it makes sense to speak of
functional correctness and functional completeness as disjoint qualities—

95



“Dissertation” — 2017/8/15 — 10:53 — page 96 — #110

Chapter 4. ODP Quality Model

a system can perform only part of a specified task, but can still perform
that part correctly. However, in an ODP context this quality charac-
teristic is redundant: a pattern can be considered correct only if it
fulfils the requirements by which it is defined, that is, if it exhibits
functional completeness.

• Security: This characteristic and its sub-characteristics deal with the
behaviour of a system in terms of authentication, authorisation, log-
ging, etc. As both ontologies and ODPs are inactive non-executable
components, they do not exhibit such behaviour.

• Reliability: As with the security characteristics, reliability and its sub-
characteristics deal primarily with executable behaviour at runtime.
Again, ontologies and ODPs, being passive components, do not exhibit
system behaviour and this characteristic is therefore not applicable to
them.

• Capacity: While the other characteristics relating to performance ef-
ficiency can be rephrased to cover resulting ontologies as discussed
above, this sub-characteristic dealing with maximum capacity (exem-
plified in terms of number of users, communication bandwidth, and
transaction throughput) relates more closely to executable programs,
and makes little sense in an ODP context.

Finally, the three ISO 25010 [94] PQM quality characteristics maintain-
ability, portability, and compatibility display a certain overlap when trans-
lated to apply to ODPs. Portability and compatibility are difficult to un-
tangle for ODPs—a pattern that is conceptually compatible with other pat-
terns is also portable in the sense expressed in the ISO standard, and can be
transferred between different usage environments. Patterns which are easy
to adapt and replace are not only portable, but also support maintainability.

In studying the definitions of these qualities present in the ISO standard,
the author found that the ones sorting under the top-level quality compat-
ibility were most applicable to ODPs. The portability sub-qualities were
either inapplicable to ODPs or could, in an ODP context, could be consid-
ered specialisations of other existing qualities. Consequently, portability and
associated sub qualities were removed from the model.

Since, in an ODP context, improved pattern reusability does not nec-
essarily contribute to the maintainability of a pattern or a pattern-based
ontology, but does imply that the pattern can be reused and further inte-
grated with other ontologies (i.e., is more compatible with other ontologies)
the sub-quality reusability was moved from being a sub-quality of maintain-
ability to being a sub-quality of compatibility.

Thörn’s Qualities

The Thörn quality model for feature models [161] is presented in Section 2.5.2.
While the formal language used to create feature models is not as expressive

96



“Dissertation” — 2017/8/15 — 10:53 — page 97 — #111

4.1. Initial Model

as Semantic Web ontologies and Ontology Design Patterns, the two types of
models share certain characteristics (see Section 2.5.2) and intended usages,
suggesting that quality characteristics for one should be applicable to the
other also.

While the Thörn quality model does not include lower level quality char-
acteristics, the preliminary first iteration of that model presented in [161]
does define and argue for the existence of a set of more specific characteris-
tics, several of which deal with issues that make them fit for adaptation and
inclusion in the ODP quality model:

• Accuracy: “This attribute describes how well the model represents the
actual world” [161]. While an ODP may be functionally complete
and correct simply by fulfilling its design criteria (no matter what
those criteria are), for ODPs, Accuracy such as proposed by Thörn
would concern how consistent an ODP is with regards to the generally
accepted understanding of the domain in question. In other words: is
the pattern design criteria reasonable in the real world?

• Consistency: “The attribute that determines the absence of contradic-
tions in the model” [161]. An ODP which holds or suggests conflicting
axioms is obviously going to be difficult to apply in any real-world case
that includes reasoning requirements, though it could still be useful
for simple vocabulary tasks.

• Stability: “This attribute denotes the perceived change expectation”
[161]. A stable ODP is developed with the intention of covering
the foreseeable evolution of the modelled concepts with relatively few
changes to the pattern.

Over the course of the PhD project, only rather minor modifications
(some labelling and phrasing changes) were made to the initially developed
list of quality characteristics. The final set of quality characteristics, includ-
ing those modifications, is detailed in Section 4.4.2.

4.1.3 Initial Quality Indicators

At this stage of development, the ODP quality model held only quality char-
acteristics, that is, abstract concerns or perspectives on ODP quality that
were not directly measurable themselves (Learnability, Reusability, etc.). To
make the model usable by scholars and practitioners, a set of measurable
indicators affecting these quality characteristics was developed, drawn from
existing literature on ER model quality [61, 120, 110] and ontology quality
[56, 57, 105, 83], and from two smaller studies using university students, as
described below.

97



“Dissertation” — 2017/8/15 — 10:53 — page 98 — #112

Chapter 4. ODP Quality Model

Reuse of ER Model Quality Research

Several methods of evaluating ER models are introduced in Section 2.5.3.
Some of these metrics and methods are also strong contenders for inclusion
in an ODP quality model.

In [61] Genero et al. study the learnability and modifiability effects of
a number of metrics on ER models. While the specific metrics studied in
this experiment are, to a large degree, specific to ER models, the method
by which the understandability and modifiability of models are gauged (via
measuring the time taken to respond to a questionnaire on the function-
ality of the model, and the time needed to update said model), is easily
transferrable to an ODP context. Consequently, Functionality Question-
naire Time and Modification Task Time measures were included in the ini-
tial ODP quality model as indicators for the learnability and modifiability
sub-characteristics.

Both Moody and Shanks [120] and Lindland et al. [110] focus on the
importance of reducing unnecessary content (that is, content that is not
required for the model to be functional) in conceptual models. In an ODP
context, unnecessary content would consist of entities that are not required
to fulfil ODP design criteria (as formalised by competency questions). This
type of Minimalism with regards to competency questions was also added
to the model as an indicator.

Reuse of Ontology Quality Research

As has been covered in Section 2.6, a great deal of research has already
been developed on formalising the quality of ontologies. A lot of this work
is applicable to Ontology Design Patterns.

The combination of O2 and oQual by Gangemi et al. [56, 57] presented
in Section 2.6.1 provides a comprehensive ontology evaluation method, in-
cluding a set of indicators for measuring the structural dimensions of an
ontology. While some of those indicators are unsuitable for use with ODPs
(they measure features that are unlikely to occur in small or reuse-oriented
ontology modules), many of them are also quite likely to be applicable to
ODP evaluation, and were therefore added to the model. Listed by the
quality characteristics they affect, those indicators are:

• Usability: Affected by Subsumption Hierarchy Depth, Subsumption Hi-
erarchy Breadth, Tangledness, Anonymous Class Count, Class/Prop-
erty Ratio, and Annotation Ratio.

• Analysability: Affected by Size and Axiom/Class Ratio.

• Resulting performance efficiency: Affected by Class Disjointness Ratio
and Tangledness.

• Compatibility: Affected by Tangledness.

98



“Dissertation” — 2017/8/15 — 10:53 — page 99 — #113

4.1. Initial Model

The effect of the amount of integrated pattern documentation (in the
form of pattern comments) on usability is shown by Prechelt et al. [130], as
described in Section 2.5.5. This measure is roughly translatable to the above
listed Annotation Ratio indicator sourced from [57]. Prechelt et al. also re-
port an experiment showing that this measure influences the maintainability
of produced solutions. Accordingly, a positive effect of a high Annotation
Ratio on maintainability was also added to the initial ODP quality model.

The findings on performance-related indicators associated with the use
of certain types of design patterns by Lefort et al. in [105] discussed in
Section 2.6.4 are natural candidates for inclusion in an ODP quality model.
Those indicators (the Terminological Cycle Count present, and the Com-
plexity of Description Logic Language used) were added to the initial quality
model indicators that affect resulting performance efficiency.

In prior work [83], the author has discussed the effects of the number
of owl:imports statements in an ontology. Since the OWL language lacks
features for partial import, and since imports are transitive, the total import
closure of even a relatively small pattern or ontology can easily become
very significant. Because of this, an ontology or ODP that imports many
other ontologies will likely require significant resources to classify using a DL
reasoner. Furthermore, due to tooling limitations in managing the display
of imported concepts, such an ontology can be difficult to visualise and work
with. Consequently, the effects of Transitive Import Count on usability and
reasoning performance were added to the initial quality model.

As mentioned in Section 2.6.3, the OntoClean [68] methodology is an
established method for ontology evaluation. While applying OntoClean to
larger ontologies is potentially a very time-consuming process, for Ontology
Design Patterns this ought not be as big a problem. OntoClean Adherence
would likely be a suitable indicator for pattern accuracy, and therefore this
indicator was added to the quality model.

A master thesis by Lodhi and Ahmed [111], introduced in Section 2.6.5,
finds that certain fields in ODP documentation are more important than
others in supporting the learnability of the patterns. The author’s intuition
is that in light of this, it is possible that the less important fields (of which
there are quite a few) may be a distraction for ODP users, making it difficult
for them to quickly understand the ODP when first exposed to it. Conse-
quently, the indicator Documentation Minimalism was added to the initial
quality model; this indicator is defined as a limitation on the data fields
displayed in the ODP documentation in accordance with the fields found to
be most important by Lodhi and Ahmed [111].

Student Studies

To elicit additional indicators for the initial quality model, the author also
ran two small studies on the use of ODPs by students at Jönköping Univer-
sity. The students in question were all in the final year of a two-year master
programme, with a bachelor in computer science or computer engineering

99



“Dissertation” — 2017/8/15 — 10:53 — page 100 — #114

Chapter 4. ODP Quality Model

as an entry requirement. They all had some experience with semantic tech-
nologies or ontologies through the courses given in the programme, but none
reported having worked with semantics prior to attending the programme.
Several of the students had work experiences in entry-level programmer po-
sitions, in addition to their educational background.

The first study consisted of interviews with a student performing a mas-
ter thesis project using ontologies and ODPs in the healthcare domain. The
student was provided with two such patterns and references to several more,
and the interviews were performed to gauge his understanding and opinion
of these patterns.

The student strongly preferred task-oriented ODP documentation, prefer-
ably with clear and pedagogic examples included. He suggested that more
than one usage example and corresponding context be included in pattern
documentation, arguing that such pattern usages are often case-dependent
and that an understanding of several types of application scenarios would
often be beneficial. An indicator measuring the Usage Example Count was
thus added to the initial ODP quality model.

In terms of the structure of the pattern documentation, the availability
of graphic illustrations was also heavily emphasised. The student expressed
a preference for doodling architecture diagrams when developing software,
to help structure and understand problems, and found the same type of con-
ceptual diagrams very helpful in understanding patterns and the proposed
solutions to problems they address. He recommended that both a pattern
Structure Illustration and one or more Usage Example Illustrations should
be included in ODP documentation. Both of these indicators were added to
the initial model. The student also emphasised that the graphic illustrations
need to be backed by descriptive text referencing their content rather than
being entirely disconnected artefacts.

The second study took place in an Information Logistics course, where a
group of 29 students were tasked with building an ontology using patterns
and then filled out a survey regarding that pattern usage experience. Re-
sponses indicate that the Competency Question Count and the availability
of graphical illustrations were most important in understanding how to use
and apply the ODPs. When asked to suggest improvements to the patterns
that were used, the most common recommendation from the participants
was to add more usage examples. These findings are in line with those from
the aforementioned student interviews.

A somewhat unexpected result of the survey was the clearly expressed
preference among the participants (82 % of respondents) for object prop-
erties encoded in patterns to be restricted by having defined domains and
ranges, as opposed to not having any such domains or ranges defined. In
comments given in a free form text field accompanying this question, re-
spondents indicate that they think this makes the pattern OWL files a lot
easier to learn and understand. As a result, two indicators measuring Prop-
erty Domain Restriction Ratio and Property Range Restriction Ratio were

100



“Dissertation” — 2017/8/15 — 10:53 — page 101 — #115

4.2. Second Generation Model

added to the initial model. These indicators are also associated with lower
reusability, given that restricting the use of ODP properties to only work
with classes designed within that same ODP will reduce the ways in which
that ODP can be integrated into other ODPs or ontology modules.

4.2 Second Generation Model

The second generation of the ODP quality model was developed via itera-
tive evaluation and development of the initial model within three separate
studies:

• In the IMSK project (Section 4.2.1) effects on ODP Usability and
Compatibility were studied via a workshop exercise with project par-
ticipants.

• In the ILOG Course Study (Section 4.2.2), effects on Usability were
further studied via a combination of experiments and surveys with
master student participants.

• Finally, in the Performance Indicator Evaluation (Section 4.2.3), pos-
sible ODP effects on Resulting Performance Efficiency were studied
via a literature review and via study of how indicators triggering such
effects are displayed in ODPs published on the Internet.

4.2.1 IMSK Workshop

The IMSK project (introduced in Section 3.2.4) provided the author with
the opportunity to gather data on ODP usage via a two-day workshop ex-
ercise involving three participants developing ontology modules for project
scenarios2. In particular, the author aimed to learn about how the partici-
pants found and selected suitable ODPs to use, and which characteristics or
features of ODPs the participants found helpful or harmful when employing
ODPs. For the sake of establishing transparency and trust, this research
motive was presented to the participants of the workshop at the outset, and
they willingly accepted acting as subjects in such observations.

Participants

Three participants attended the modelling workshop, participants A, B, and
C. They were all male, and at the time of the study were all between the ages
of 35 and 55. All three were researchers (two PhDs, one MSc) in software
engineering or conceptual and data modelling within the partner research
institute, and all three had some experience of such modelling. B and C

2The ODPs and modelling scenario descriptions used in this workshop, and the inter-
view manuscript used, are downloadable from http://urn.kb.se/resolve?urn=urn:nbn:

se:liu:diva-138724.

101



“Dissertation” — 2017/8/15 — 10:53 — page 102 — #116

Chapter 4. ODP Quality Model

had little or no prior knowledge of Semantic Web ontologies and semantic
technologies, whereas A had worked on these topics quite extensively, among
other things researching rule languages for reasoning over Semantic Web
ontologies. Their respective specialities were as follows:

• A had published on ontology matching, rule languages, model trans-
formations, semantic technology use cases, etc.

• B had published on information logistics, mobile computing, context-
and task-aware computing, etc.

• C had published on component based software engineering, middle-
wares, service orientation, system architectures, garbage collectors,
etc.

Workshop tasks

During the workshop the participants developed configurations for the ODP-
based variant of the CEP system. Two scenario descriptions developed
within the project were used to describe system deployment contexts. The
participants then attempted to model some typical relevant critical situa-
tions associated with each of these scenarios. Two examples of such critical
situations are listed below:

• A gang is four or more people who have been seen together via at least
three cameras over at least fifteen minutes and who are all wearing the
same colour clothing. A critical situation occurs when a gang of five
or more football fans are loud and have been spotted within the last
hour by a camera at a bar.

• Two vehicles are the same if they have the same license plate number
or have the same brand, model and colour and are observed by two
cameras located at the same physical place within five seconds. A ve-
hicle is behaving oddly if observed driving less than 15 km/h by three
different cameras.

To aid them, the participants had a set of twenty Ontology Design Pat-
terns, of which fourteen were selected from the ODP community portal3,
and six were selected from other research projects or literature. They were
not provided with any training in pattern use, and no particular develop-
ment method was recommended to them, on the basis that providing such
recommendations or training would restrict the participants’ behaviour and
interaction with the patterns and the possibility of learning from their work.

3http://ontologydesignpatterns.org

102



“Dissertation” — 2017/8/15 — 10:53 — page 103 — #117

4.2. Second Generation Model

Data Collection and Analysis

Data was gathered by way of audio and video recordings of the modelling
work in progress, photographs taken of ontology prototypes on the white-
board, and notes on perceived key actions, behaviours, and trends taken
independently by two researchers, the author and a professor with exten-
sive experience of this research method. By acting as passive observers
of the ongoing ontology development process, the researchers were able to
gain a perspective on real life usage of ODPs, including difficulties and prob-
lems in usage that the subjects experienced. Occasionally the subjects asked
the researchers questions about ontologies and semantic technologies—these
questions were answered insofar as they concerned technical specifics or de-
tails (such as the participants might have been able to gather themselves
via a web search), but questions regarding modelling practice, how to solve
a particular problem or which pattern to use for a given task, were not an-
swered, so as not to interfere with the work process on which data was being
gathered.

At the end of the second workshop day a semi-structured group interview
was held in which the participants were queried about different aspects of
their experience and opinions on ODP use. The purpose of this more active
data gathering activity was to revisit and discuss issues and statements of
particular interest observed during the workshop, and to resolve conflicting
interpretations by the researchers. However, care was taken not to use
this interview to enforce a group consensus in the cases where the subjects
expressed diverging opinions. Such situations were instead noted and kept
for analysis.

Upon completing the workshop, the recorded material was transcribed
into text, yielding some 21600 words, or approximately 85 pages of text.
This material was then analysed according to established transcript analysis
methods [31], as discussed in Section 3.2.6.

Findings

The gathered data supports several of the initial quality model indicators,
and supports the inclusion of one additional indicator.

Pattern Selection The single most important variable in initial ODP se-
lection from the pattern catalogue seemed to be pattern naming. If a name
“rang a bell” the participants proceeded with studying the pattern specifics
to see whether the pattern was suitable for their case. This motivated the
addition of a quality indicator measuring Name Appropriateness. In terms
of documentation fields and features, the participants then suggested that
the presence of descriptive texts and the number of competency questions
were important selection criteria that should be emphasised in an ODP cat-
alogue. While the initial quality model already contained a quality indicator
measuring the Competency Question Count, it contained no such indicator

103



“Dissertation” — 2017/8/15 — 10:53 — page 104 — #118

Chapter 4. ODP Quality Model

for the presence of a descriptive text. Since several published ODPs actu-
ally do not have this rather vital documentation field filled out, an indicator
indicating the presence of an Accompanying Text Description was added to
the model.

The participants considered the possible negative consequences of apply-
ing a certain pattern to a problem to be of particular importance in selecting
and applying patterns. The latter observation lead to the addition of a new
quality indicator concerning the presence of a Common Pitfalls Description
in the ODP documentation.

On the subject of pattern catalogues, the participants indicated that
they considered the two catalogues to which they had been exposed (the
ODP community portal and the one developed for these sessions) to be
unordered and unintuitive, containing patterns of varying completeness, ab-
straction level and domain, all mixed in one long list. The participants
suggested that they would find it easier to navigate a catalogue that was
structured according to topic, architecture tier, abstraction level, or some
other hierarchy:

“You also know the old classification of upper ontologies, domain
ontologies, and task ontologies. You know this old picture. This,
at least this structure should be present.”—Participant A

Further participant suggestions for improvements to ODP catalogue us-
ability included the addition of graphical illustrations of pattern dependen-
cies, and providing a semantic search engine across ODPs stored in the cat-
alogue. The former suggestion was inspired by an illustration from the Core
J2EE Patterns book [3] that the participants found helpful in deciphering
pattern intent. Participant C in particular argued that such an illustration
would help to clarify the structure and interdependencies of a set of ODPs.
The latter suggestion was that a search engine be added which would al-
low users to search through concepts and properties present in ODPs in the
catalogue, ideally including NLP techniques to match synonyms and related
terms. This finding contributed to the development of the work presented
in Section 5.1, which presents such search functionality.

Important ODP Features During both modelling and the subsequent
interview, the issues of ODP Size and ODP Transitive Import Count were
brought up. The participants initially expressed divergent opinions regard-
ing the effect of OWL import statements in ODPs. Participant A considered
imports to be quite helpful in that the reconciliation of imported, more gen-
eral base concepts with one’s own model provided a good opportunity for
validating the soundness of one’s own design. He also emphasised the advan-
tage of getting a foundational logic “for free” that one would not otherwise
have had time to develop. Participant C expressed an understanding of
the tension between reuse and applicability presented by the import feature
and large import closures, comparing it to discussions in the object-oriented

104



“Dissertation” — 2017/8/15 — 10:53 — page 105 — #119

4.2. Second Generation Model

design pattern community in the nineties. Participant B criticised the use
of imports, on the grounds that the expansion of ODP size that such im-
ports imply negatively affects ODP usability, and also on the grounds that
the base concepts included in imported patterns may be incompatible with
one’s own world view, having been written for some other purpose:

“I really have to know what is there and what does it mean. And
maybe it’s written with some other focus, some other direction,
some other goal. And I don’t believe in this general modelling of
the universe that fits all purposes.”—Participant B

Participant B also indicated that he would use the idea of a pattern as
presented in a pattern catalogue and reimplement it, rather than reuse an
existing OWL building block, if that block contained too many imports or
dependencies. After some discussions, Participant A agreed to the sound-
ness of such a method in the case of a large import closure that was not
directly relevant to the problem at hand. Both participants A and B pro-
posed that a better solution would be to add support for partial imports to
tools and standards. This observation is one of the underlying motivations
for the development of the template-based approach to ODP instantiation
introduced and discussed in Section 5.3.

In terms of ODP Size, during the interview session the participants em-
phasised the importance of patterns being small enough to be easily under-
stood in a minute or two of study. They considered an appropriate size to
be three to four classes and the object- and datatype properties associated
with them. They drew parallels to object oriented design patterns which are
frequently of approximately this size. This expressed preference is consis-
tent with the patterns they selected during modelling, all of which contained
three or fewer classes, excluding imports.

4.2.2 ILOG Course Study

To further evaluate learnability- and usability-related indicators of the initial
quality model, a study was set up in the context of a course in Information
Logistics at Jönköping University in 20124. The study aimed to evaluate the
effects of six indicators from the initial model, with the hypotheses (based
on effects proposed in the initial model) that:

• Patterns including Usage Example Illustrations are superior to ones
with examples simply written in text, in terms of learnability.

• Patterns displaying Documentation Minimalism (i.e., limiting the doc-
umentation fields displayed to those found to be most important in

4The ODPs used, the surveys and task instructions employed, and anonymised
datasets resulting from those surveys and tasks, are downloadable from http://urn.

kb.se/resolve?urn=urn:nbn:se:liu:diva-138724.

105



“Dissertation” — 2017/8/15 — 10:53 — page 106 — #120

Chapter 4. ODP Quality Model

[111]) are superior to patterns not displaying this feature, in terms of
learnability.

• Patterns that display a high Anonymous Class Count (i.e., restric-
tions) are more difficult to apply than patterns that contain low num-
bers of anonymous classes.

• Patterns that have a high Class/Property Ratio are easier to apply
than patterns that display a low ratio of this type.

• High Property Domain Restrictions Ratio and Property Range Restric-
tions Ratio in ODPs are beneficial to the learnability of said ODPs.

Setting

The study was performed at Jönköping University, within a master course in
Information Logistics. This course took place during the second year of the
master programme in Information Engineering and Management, and the
students taking it had taken courses on knowledge modelling and knowledge
management, database systems, and software engineering methods earlier in
the programme. In these courses they had studied and used the Semantic
Web and ontologies, as well as ER and UML models. Additionally, the pro-
gramme entry requirements included at least a bachelor’s degree in computer
science, information systems, or a related field.

The study took place at a scheduled lab session, in a computer lab on
campus, during a four-hour afternoon session (though the second survey
could also be filled out after this session). Attending the lab session was
mandatory, but participating in the study was optional. In total 12 students
opted in to take part in the study.

Study structure

The study consisted of three parts. In Survey 1, the participants were
presented with a randomised order of four ODPs and asked to answer a
number of questions about them, measuring their comprehension of the
pattern in question. Each pattern displayed was presented using a template
mechanism, by which the two controlled variables, Documentation Mini-
malism and Usage Example Illustrations, were randomly adjusted for each
participant. The questions were of two forms; firstly, the participants were
asked to mark which out of five competency questions the pattern could
answer, and secondly, a scenario description was provided and the partici-
pants were asked which class in the pattern corresponded to a certain term
in the scenario text. Simultaneously, the time taken to answer the questions
was measured, to provide corroborating evidence of the ease or difficulty
of understanding associated with each displayed pattern. Additionally, each
survey ended with two questions on how concrete or abstract the participant
considered the pattern, and how easy to understand they found it.

106



“Dissertation” — 2017/8/15 — 10:53 — page 107 — #121

4.2. Second Generation Model

Table 4.1: ODPs used, their class to property ratios, and anonymous class
counts.

ODP name C/P ratio C/P group AC count AC group
Basic Plan 0,4 Low 33 High
Communication Event 0,55 High 41 High
Reaction 0,45 Low 16 Low
Invoice 0,65 High 0 Low

In the Tasks portion of the study, participants were tasked to use ODPs
to help model four different scenarios (using one ODP per scenario), and
were timed on how long it took them to complete these tasks. The partici-
pants had the option of using either of the two tools Protégé5 or TopBraid
Composer6. They were not given any specific instructions on how to apply
the patterns in terms of technology or method.

Finally, in the concluding Survey 2 portion of the study, the participants
were surveyed on their opinions and impressions of the same ODPs and their
features, now that they had used them in modelling. The questions in this
final survey concerned both the documentation-related indicators and the
structure-related indicators under study, and asked the participants whether
they found the presence of the features described by these indicators to be
very helpful, helpful, neither helpful nor harmful, harmful, or very harmful
in understanding and using the patterns provided to them.

The patterns used in all three parts of the study are listed in Table 4.1.
The ODPs in question were sourced from the ODP portal7 and were selected
based on three criteria: they were of non-trivial size (i.e., containing a min-
imum of 10 classes including imports), they were intended to be generic as
opposed to domain-specific, and they varied with regard to their Class/Prop-
erty Ratio and Anonymous Class Count. For comparison, of all non-trivially
sized ODPs in the ODP portal, the mean anonymous class count was 23,
and the mean Class to Property ratio was 0.5, with a variation between 0
and 56 for the former value and between 0.33 and 0.83 for the latter.

Data

The most interesting results from the first survey, regarding documentation-
related effects on learnability, are summarised in Tables 4.2, 4.3, and 4.4. In
all of these tables, the participant responses have been averaged and grouped
by the indicator under study.

Table 4.2 indicates how well participants were able to match a pattern
to five given competency questions. Of interest here is that for three out of
four patterns (Basic Plan, Communication Event, and Invoice), the group
seeing documentation minimal patterns scored higher than the non-minimal

5http://protege.stanford.edu/
6http://www.topquadrant.com/
7http://ontologydesignpatterns.org

107



“Dissertation” — 2017/8/15 — 10:53 — page 108 — #122

Chapter 4. ODP Quality Model

Table 4.2: Competency question recognition correctness ratio (survey 1).

Group Com. Event Reaction Invoice Basic Plan
Minimal 70 % 89 % 88 % 90 %
Non-minimal 54 % 80 % 100 % 80 %
Illustrated 63 % 75 % 100 % 75 %
Non-illustrated 53 % 91 % 90 % 91 %

Table 4.3: Class recognition correctness ratio (survey 1).

Group Com. Event Reaction Invoice Basic Plan
Minimal 50 % 57 % 80 % 67 %
Non-minimal 29 % 50 % 100 % 60 %
Illustrated 50 % 25 % 80 % 75 %
Non-illustrated 0 % 71 % 100 % 57 %

group. The presence of an illustrated example does not seem to correspond
to any increase in correct responses.

Table 4.3 indicates how well participants were able to match a term in
the description of a given scenario to a class name in the ODPs. Interesting
to note here is that, just as in the previous table, for three out of four
patterns, the participants seeing documentation minimal variants scored
better than those seeing non-minimal ones. The presence or absence of
illustrated examples do not correlate with any such results.

Table 4.4 averages the time taken by participants to answer survey 1.
Again, we see a slight advantage for the documentation minimal variant
group in two cases, when compared with the non-minimal variant group,
and no effect for illustrated examples.

Table 4.5 also reports average participant responses for concreteness/ab-
straction and difficulty of understanding from the first survey. The latter
two measures were taken using five point scales, e.g. ranging between “very
abstract” and “very easy” (scoring 1) through “very concrete” and “very
difficult”, (scoring 5).

The times required to model the provided scenarios using the given pat-
tern are detailed in Table 4.6. When cross-referencing this table against
the ODP characterisations in Table 4.1, we can see that the two patterns
having the lowest Class/Property Ratio (Communication Event, Invoice),
are the ones for which the associated modelling exercise took the least time
to complete.

Table 4.7 shows the most interesting results of the second survey on how

Table 4.4: Time required (in minutes) to answer questions (survey 1).

Group Com. Event Reaction Invoice Basic Plan
Minimal 14.8 7 4 13
Non-minimal 11.3 10 8.8 13
Illustrated 13.1 7.8 8.4 11.8
Non-illustrated 11 8.3 5.2 13.7

108



“Dissertation” — 2017/8/15 — 10:53 — page 109 — #123

4.2. Second Generation Model

Table 4.5: Average user-reported concreteness and usage difficulty values
(survey 1).

ODP name Concreteness Difficulty
Communication Event 2.55 3.27
Reaction 2.55 2.82
Basic Plan 2.91 2.73
Invoice 3.55 2.3

Table 4.6: Average time required (in minutes) to complete modelling tasks
with ODPs.

ODP name Time taken Concreteness Difficulty
Communication Event 57 2.55 3.27
Reaction 67.54 2.55 2.82
Invoice 47.82 3.55 2.3
Basic Plan 66 2.91 2.73

the participants perceived the studied indicators and their effects on the
usability and learnability of the patterns in question. The indicators being
studied (abbreviated in the table) were the presence of a Usage Example
Illustration in pattern documentations, the use of Property Domain or Range
Restrictions with properties asserted in the patterns, and the existence of
property restrictions on classes in the pattern (the latter being a contributor
to Anonymous Class Count). For the first three indicators, participants
were asked how the presence of the related features helped or harmed in
understanding the patterns, whereas for the last indicator, they were asked
how the presence of this feature helped or harmed in using the patterns.

Findings

The low number of participants (12) implies that the generalisability of the
findings to the greater population of ontologists is very limited. The data
gathered thus gives some useful indications regarding the possible validity
of the original hypotheses, but we cannot say that we have tested them in
the statistical sense of the word.

The hypothesis that patterns including Usage Example Illustrations are
superior to ones with examples simply written in text in terms of learnability

Table 4.7: Perceived usability and learnability effects of indicators (survey
2).

Effect Illustrations Range res. Domain res. Property res.
Very helpful 50 % 25 % 17 % 17 %
Helpful 42 % 67 % 50 % 58 %
Neither 0 % 0 % 8 % 0 %
Harmful 0 % 8 % 8 % 17 %
Very harmful 8 % 0 % 0 % 0 %
No opinion 0 % 0 % 17 % 8 %

109



“Dissertation” — 2017/8/15 — 10:53 — page 110 — #124

Chapter 4. ODP Quality Model

is partially supported by the observation that a large majority of study
participants rank the presence of illustrated examples as Helpful or Very
helpful (Table 4.7) with regards to understanding how to use a pattern.
However, the data collected on how quickly and how well they were actually
able to learn the pattern (Tables 4.2, 4.3, and 4.4) gives no such support
to the hypothesis.

The hypothesis that patterns displaying Documentation Minimalism are
superior to patterns not displaying this feature, in terms of learnability, is
partially supported by the observation that for three different measures
(competency question recognition, class recognition, and time required to re-
spond to survey one), the participant groups seeing pattern variants display-
ing documentation minimalism performed better than participant groups
seeing non-minimal variants. However, the small number of participants and
patterns tested severely limits the generalisability of the figures presented,
so this should be considered as initial indications rather than evidence.

That patterns that display a high Anonymous Class Count are more dif-
ficult to apply than patterns that contain low numbers of anonymous classes
is not supported by the gathered data. In fact, the data from survey 2 pre-
sented in Table 4.7 indicates that the opposite may be more correct, and that
anonymous class definitions (when used to encode property restrictions) im-
prove usability. As that table shows, a large majority of study participants
found the presence of property restrictions in an ODP to be Helpful or Very
helpful in terms of usability. The question on property restriction effects was
also associated with an open question where several participants expressed
how they found these restrictions helpful in ascertaining the purpose of a
class in the case that labels, comments, and the subsumption hierarchy were
not sufficient for this. This finding lead to replacing the initial Anonymous
Class Count indicator with a new indicator measuring Property Restriction
Count.

The hypothesis that patterns that have a high Class/Property Ratio are
easier to apply than patterns that display a low ratio of this type is partially
supported by the data exhibited in Tables 4.6 and 4.1, which shows that
the two patterns displaying the highest Class/Property ratio are the ones
for which the modelling tasks were completed most quickly. However, for
at least one of the patterns (Invoice), it is quite possible that other char-
acteristics of the pattern displayed in the former table (its ease of use and
concrete nature) affect the resulting time more than the class to property
ratio, so the support for this hypothesis is rather weak, and more study of
it would be required.

The hypothesis that High Property Domain Restrictions Ratio and Prop-
erty Range Restrictions Ratio in ODPs are beneficial to the learnability of
said ODPs is supported by the results shown in Table 4.7. As illustrated
there, a clear majority of the participants express that domain and range
restrictions on properties are Helpful or Very helpful in terms of usability
of patterns. The questions on these indicators were associated with open

110



“Dissertation” — 2017/8/15 — 10:53 — page 111 — #125

4.2. Second Generation Model

questions, where participants indicated that they had given these responses
because the restrictions helped clarify the intended usage of properties. As
such restrictions are likely to have constraining effects on the reusability of
patterns, it is important to study whether the usability gains they provide
could instead be achieved by other means, for instance by improved pattern
documentation pages or RDFS labelling and comments.

In addition to the original hypotheses, an unforeseen effect was observed
that is relevant to the ODP quality model development. The participant-
reported values for ODP concreteness and those for difficulty of ODP appli-
cation presented in Table 4.5 seem to be inversely related. While the issue
of the abstraction/concreteness of patterns was avoided in the initial quality
model, this finding lead to the addition of a new quality indicator affecting
usability: User-reported Abstraction Level.

4.2.3 Performance Indicator Evaluation

In the evaluation described in this section the author attempted to recon-
cile the previously developed initial ODP quality model with recent findings
on ontology reasoning performance. First, the indicators from the initial
quality model that were believed to affect resulting ontology reasoning per-
formance were selected from the initial model. A literature review across
performance-related ontology research was performed, to find evidence sup-
porting or disproving any performance effects of these indicators, and to
add new indicators to the extent that applicable ones were found. Finally,
the values of these proposed indicators among patterns “in the wild”, that
is, published in online ODP portals, were studied and analysed to learn
whether these indicators vary in practice, and how.

Literature review

Publications from the main tracks and the associated workshops of four high-
impact conferences dealing with formal knowledge modelling were studied,
namely the International and Extended Semantic Web Conferences (ISWC
and ESWC), the International Conference on Knowledge Capture (K-CAP),
and the International Conference on Knowledge Engineering and Knowledge
Management (EKAW). Timespan-wise papers published between 2005 and
2012 were selected and downloaded. All papers matching the above criteria
were downloaded, and their abstracts were studied. Abstracts mentioning
metrics, indicators, language expressivity effects, classification performance
improvements or performance analyses (in total, 16 papers) were selected for
thorough reading. Of these, eight were found to contain evidence supporting,
disproving, or complementing the existing indicators of the initial quality
model.

In the studied papers, three main types of indicators and correspond-
ing effects could be identified, namely expressivity profile indicators (i.e.,
indicators related to profiles or constraints of ontology language structures

111



“Dissertation” — 2017/8/15 — 10:53 — page 112 — #126

Chapter 4. ODP Quality Model

available for use), subsumption hierarchy indicators (i.e., indicators related
to the structure of the subsumption tree), and axiom usage indicators (i.e.,
general indicators related to the other logical axioms employed in an on-
tology). Each of these categories and the indicators found to be associated
with them are discussed below.

Profile indicators Urbani et al. discuss the issue of scaling out descrip-
tion logic reasoning on parallel computing clusters using the MapReduce
framework. They show in [165] that materialising the closure of an RDF
graph using RDFS semantics can be performed using MapReduce, due to
certain characteristics of the RDFS semantics. As shown in [164], the in-
creased expressivity of OWL means that implementing such parallelisable
reasoning over datasets based on OWL ontologies is significantly more dif-
ficult than when using RDFS. However, the authors present a solution that
enables reasoning within the Horst fragment of OWL which is considerably
faster than previous solutions.

In [91] Horridge et al. analyse the characteristics of the three OWL 2
profiles, OWL 2 RL, OWL 2 EL, and OWL 2 QL, and study the adherence to
these profiles among ODPs that have been published on the Web. The three
profiles are subsets of OWL 2 intended for different usages. By limiting the
semantics used, both in terms of allowed axioms and the positioning and use
of those axioms, the OWL 2 profiles can guarantee computational properties
that are suitable to different practical uses. Horridge et al. [91] find that
relatively few ODPs fit these profiles, and that this may be due in part to
modelling practices and recommendations (e.g., to always declare an inverse
for an object property, or the use of cardinality restrictions where existential
restrictions could be used instead).

The initially proposed quality model only declared one indicator pertain-
ing to language expressivity (Complexity of Description Logic Language),
where a higher expressivity was hypothesised to be more detrimental to
performance than a lower one for all types of tasks. The above indicates
that it would be useful instead to consider the problem from a perspective
of multiple indicators: a set of OWL 2 Profiles Adherence indicators and an
indicator of OWL Horst Adherence.

Subsumption hierarchy indicators Kang et al. [98] perform a thor-
ough evaluation of the effects of several different ontology metrics on per-
formance in different commonly used reasoners. While most of their obser-
vations are on effects of axiomatic indicators (as discussed in the following
section), one interesting finding concerns the subsumption hierarchy. Kang
et al. find that the indicator that they refer to as “tree impurity” has a
measurable impact on reasoner performance, such that a high degree of
tree impurity in an ontology correlates to slower reasoning over that same
ontology. This tree impurity metric measures how far the ontology’s inher-
itance hierarchy deviates from being a tree, by calculating how many more

112



“Dissertation” — 2017/8/15 — 10:53 — page 113 — #127

4.2. Second Generation Model

owl:subClassOf axioms are present in the ontology than are needed to
structure a pure tree. This is simply a different way of measuring the same
indicator that is denoted Tangledness in the quality model. By showing that
tree impurity contributes to reduced computational efficiency, Kang et al.
[98] thereby also validate that Tangledness contributes to lowering the same
quality characteristic.

In [107], LePendu et al. study the characteristics of both ontologies and
data in the biomedicine domain, with a goal of improving reasoning perfor-
mance. One of the metrics they find to have a high impact on reasoning
performance is the Subsumption Hierarchy Depth. The explanation given
for this is that for every asserted instance of a subclass, all the logic axioms
pertaining to each and every superclass must also be calculated. For a deep
ontology, this may be a quite significant number of entailments that need to
be computed. Kang et al. [98] also study the depth indicator, and like LeP-
endu et al. find that it contributes to slower reasoning performance. While
the Subsumption Hierarchy Depth indicator was included in the initial qual-
ity model, it was not initially associated with such an effect on reasoning
performance. This effect was thus added to the model.

Most of the metrics whose effects are studied by Kang et al. [98] are
first defined by Zhang et al. in [174]. This paper provides an interesting
reflection on the importance of including anonymous classes when computing
values for subsumption hierarchy indicators affecting reasoning performance,
since these anonymous classes are obviously reasoned over just as named
classes are. However, anonymous classes are likely to be less important when
considering, for instance, usability-related effects of those same indicators.
Hence, both subsumption hierarchy indicators in the quality model would
need be measured both with and without the effect of anonymous classes
taken into consideration.

Axiomatic indicators As mentioned above, Kang et al. [98] evaluate the
performance effects of a number of metrics (most of which are presented by
Zhang et al. in [174]). They find eight indicators that show performance-
altering effects, four of which can also bo easily applied to ODPs, and which
were thus added to the quality model:

• Existential Quantification Count: The number of existential quantifi-
cation axioms in an ontology or ODP. This is most easily measured
by counting the number of ObjectSomeValuesFrom axioms in the on-
tology.

• Cyclomatic Complexity: Inspired by the same metric as used in soft-
ware engineering complexity calculations, this indicator measures the
number of linearly independent paths through the RDF graph, includ-
ing not only subclass relations but any directed edges, which a reasoner
needs to traverse when classifying said graph.

113



“Dissertation” — 2017/8/15 — 10:53 — page 114 — #128

Chapter 4. ODP Quality Model

• Average Class In-Degree: The average number of incoming edges to
classes in the ontology. This gives an indication as to how intercon-
nected an ontology or ODP is.

• Average Class Out-Degree: The inverse of the above indicator, that is,
the average number of outgoing edges to classes in the ontology.

Indicator Variance in ODP Repositories

The second part of this performance indicator evaluation consisted of study-
ing how the values of the proposed performance-related indicators were dis-
tributed in the ODPs available in the pattern repositories used by the com-
munity, and of identifying causes of such distribution that might contribute
to the quality model.

For this purpose, the reusable OWL building blocks of the patterns from
two well-known ODP repositories, http://ontologydesignpatterns.org
and http://odps.sourceforge.net, were downloaded and studied8. A
plugin-based tool for measuring ontology or ODP metrics was developed9

specifically for this purpose. Plugins for the performance-related indicators
under study10 were developed for this tool, and it was then executed over
the downloaded pattern set.

In analysis, a simple four step process was repeated for each indicator
under study:

1. Sort all ODPs by the studied indicator.

2. Observe correlation effects against other indicators. Can any direct or
inverse correlations be observed for all or part of the set of patterns?

3. Observe distribution of values. Do the indicator values for the different
patterns vary widely or not? Is the distribution even or clustered?

4. For any interesting observation made above, attempt to find an under-
lying reason or explanation for the observation, grounded in the OWL
ontology language and established ODP usage or ontology engineering
methods.

Findings

The results of the analysis, and its effects on the initial quality model, are
detailed below.

8The ODPs used and the values of the indicators studied, are available at http:

//urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138724.
9https://github.com/hammar/OntoStats

10With one exception: it proved practically infeasible to develop software reliably mea-
suring cyclomatic complexity, and rather than make assertions based on possibly faulty
data, this indicator was left out of the analysis.

114



“Dissertation” — 2017/8/15 — 10:53 — page 115 — #129

4.2. Second Generation Model

C
/P

 ra
tio

0,00

3,00

6,00

9,00

12,00
C

la
ss

 in
-d

eg
re

e

0,00

2,00

4,00

6,00

8,00

ODPs

1 11 21 31 41 51 61 71 81 91 101

Class in-degree C/P ratio (moving average, n=3)

Figure 4.1: Class in-degree and Class to property ratio distributions.

Average Class In-degree The values for the Average Class In-Degree
indicator vary between 0.75 and 8, with a median value of 2.39 and an
average value of 2.6. The distribution of indicator values over the whole
pattern set is shown in Figure 4.1. As illustrated in the figure, the large
majority of patterns (93 %) have a class in-degree of less than four, whereas
a small group of patterns stand out with larger values.

Upon comparing some of the patterns exhibiting high and low values
for the Average Class In-Degree indicator, it was observed that they tended
to differ in terms of the number of object properties contained within the
patterns. The patterns exhibiting a high level of class in-degree seemed to
contain a larger number of object properties than those patterns displaying
a low level of this indicator. To test whether this held for the entirety of
the pattern set, the values of the Class/Property Ratio indicator from the
ODP quality model were mapped against the values of the Average Class
In-Degree indicator. The inverse of the former being a size-wise normalised
measure of the number of properties in the ontology, if the observation holds
then such a mapping should indicate the existence of an inverse correlation
between the two mapped indicator value series.

The results, as shown in Figure 4.1, indicate that such an inverse cor-
relation (r=-0.375) exists: the patterns displaying highest Average Class
In-Degree have a lower Class/Property Ratio (i.e., contain more properties

115



“Dissertation” — 2017/8/15 — 10:53 — page 116 — #130

Chapter 4. ODP Quality Model

per class as posited above), and many of the patterns displaying low Aver-
age Class-In Degree have a higher than average Class/Property Ratio (i.e.,
contain fewer properties).

One possible explanation for this observation is the existence of domain
and range definitions on the many object properties in patterns with high
Average Class In-Degree. It is generally considered good practice to estab-
lish such definitions for properties that one adds to an ontology. However,
each such domain or range definition gives rise to one incoming RDF edge to
the class in question, raising the Average Class In-Degree indicator. Based
on this observation, a recommendation can be made to the effect of limiting
the number of domain and range definitions used in performance-dependent
ontologies, and the initial ODP quality model was revised accordingly. How-
ever, there may also be other as yet unknown causes besides domain and
range definitions that give rise to high Average Class In-Degree, and given
the observation on variability in this indicator in the observed patterns,
including the indicator itself it in a revised ODP quality model is also war-
ranted.

Average Class Out-degree The values for the Average Class Out-Degree
indicator vary between 1 and 3.67, with a median value of 2.75 and an
average of 2.63. The distribution of indicator values over the whole pattern
set is shown in Figure 4.2. The reason that all patterns exhibit a value of
at least one is simply that all defined classes by definition have at least one
outgoing rdfs:subClassOf edge to another class (either a direct ancestor,
or an implicit link to the top-level owl:Thing class).

In studying some patterns displaying low or high values, it was observed
that the patterns displaying a higher value seemed to be patterns in which
property restrictions on classes were used extensively. Property restrictions
are written as a class being asserted to be either a subclass of or equivalent
to an anonymous restriction class, which would explain this observation—
each rdfs:subClassOf or owl:equivalentClass axiom adds an outgoing
edge, increasing the value of the indicator.

To test whether this explanation is supported by further evidence, the
numbers of anonymous classes in the ODPs were plotted against the values
of the Average Class Out-Degree indicator. The results are presented in
Figure 4.2 which indicates a correlation (r=0.441) between these indicators.

Since the number of property restrictions has been shown in earlier chap-
ters to be helpful in guiding users of an ODP, this unexpected performance-
related effect of using such restrictions is of particular interest. Also, given
the variation of this indicator’s values over the studied ODPs, inclusion of
the indicator in the ODP quality model is justified.

Subsumption Hierarchy Depth As mentioned in previous sections, it
can be important to measure both asserted and inferred versions of struc-
tural indicators. Due to the difficulty of measuring the inferred indicators

116



“Dissertation” — 2017/8/15 — 10:53 — page 117 — #131

4.2. Second Generation Model

A
no

ny
m

ou
s 

cl
as

s 
co

un
t

0,00

7,50

15,00

22,50

30,00
C

la
ss

 o
ut

-d
eg

re
e

0,00

1,00

2,00

3,00

4,00

ODPs

1 11 21 31 41 51 61 71 81 91 101

Class out-degree Anonymous class count (moving average, n=3)

Figure 4.2: Class out-degree and Anonymous class count distributions.

across the transitive import closure graph of an ODP using the tools and
APIs available at the time of writing, the values below were only calculated
over the asserted depths of patterns, excluding imports. Moreover, as even
this is quite a difficult task (due to different practices on how subclass rela-
tions to the top-level owl:Thing class are modelled), certain simplifications
had to be made. These simplifications include the assumption of a subclass
relation to owl:Thing if no other superclass is asserted within the same
OWL file11.

The Subsumption Hierarchy Depth of the patterns varies from 0 to 4.8,
with a median value of 1.4 and an average value of 1.6. In other words,
most of the patterns are not very deep. The distribution of values across
the patterns studied is displayed in Figure 4.3. At the bottom end of the
spectrum is a fairly large group (38 of 103 patterns) that have a depth of
one or less. In studying this particularly shallow group, it appears to be
made up of two types of patterns. The first type consists of simpler domain
specific vocabularies that do not employ much expressive logic, but rather
act as schemas for simple datatypes that may be reused. Examples include
patterns for species habitats, invoices, etc. The second type consists of very
general patterns that define abstract or intangible phenomena without going

11To study the code used to calculate the depth metrics, the reader is referred to
https://github.com/hammar/OntoStats/tree/master/plugins-structural

117



“Dissertation” — 2017/8/15 — 10:53 — page 118 — #132

Chapter 4. ODP Quality Model

Su
bs

um
pt

io
n 

de
pt

h

0

1

2

3

4

5

ODPs
1 11 21 31 41 51 61 71 81 91 101

Subsumption depth

Figure 4.3: Subsumption depth indicator variance.

into specific details. Examples include patterns modelling phenomena like
participation and situation. A large part of the latter group seems to result
from refactoring of top-level ontologies like DOLCE, whereas many of the
patterns in the former group seem to be developed for more concrete and
applied purposes.

The patterns from the http://odp.sourceforge.net repository are
generally deeper (with an average depth of 3.29) than those from the http:

//ontologydesignpatterns.org portal. However, the latter patterns gen-
erally contain more example classes that would likely be removed before
instantiation in real cases, reducing this difference.

The large variation in depth displayed indicates that this is an indicator
which is suitable to include in the ODP quality model.

Existential Quantification Count About half the patterns, 49 of 101,
contain no explicit existential quantification axioms. If cardinality restric-
tions are rewritten into semantically equivalent existential restrictions as
suggested in [91], the number of patterns containing no existential quan-
tification axioms drops to 41. Of the 60 patterns that contain such axioms

118



“Dissertation” — 2017/8/15 — 10:53 — page 119 — #133

4.3. Third Generation Model

half, 31, contain one or two existential quantification axioms each. Studying
these patterns, it was observed that the axioms are used sparingly and only
when required.

However, in studying the patterns that contained a higher number of
existential quantification axioms (i.e., three or more, as seen in 29 of the
patterns), it was observed that these axioms were sometimes used in seem-
ingly unneeded ways. For instance, subclasses restating axioms that were
already asserted on their superclasses, and existential quantification used
to assert the coexistence of two individuals where it seems that one in-
dividual might well exist on its own. These observed suboptimal uses of
computationally expensive existential quantification axioms clearly justify
the inclusion of the Existential Quantification Count indicator in the ODP
quality model—it seems ODP developers need to be reminded not to take
the use of this type of axiom lightly.

Tree Impurity / Tangledness Of the 101 studied patterns, only three
display any degree of asserted tree impurity or Tangledness at all. In all
three of these cases, the number of multi-parent classes in the pattern was
one. It appears that the use of asserted multiple inheritance in ODPs is rare.
However, it should be noted that the number of inferred multi-parent classes
may be significantly greater than this number. While inferred tangledness
has been infeasible to measure in this study for technical reasons, its effect
on the performance of reasoning may be considerable, and for this reason
the Tangledness indicator is kept in the ODP quality model.

4.3 Third Generation Model

The second-generation quality model was subsequently developed into a
third-generation model based on findings from two survey studies, and on
observations at a set of ontology engineering workshops, discussed in the
following subsections:

• The Ontology Engineering Survey (Section 4.3.1) and the ODP Design
Preferences Survey (Section 4.3.2) studied the effects of ODP docu-
mentation on ODP Usability, and user preferences on how to structure
and present such documentation.

• The Ontology Engineering Workshops (Section 4.3.3) took place in
three different projects. Observations from these workshops support
quality indicators contributing to ODP Usability and Maintainability.

119



“Dissertation” — 2017/8/15 — 10:53 — page 120 — #134

Chapter 4. ODP Quality Model

Table 4.8: Percentage of ODP-experienced respondents considering the re-
spective component Very important or Critically important when evaluating
the suitability of an ODP for reuse (29 responses).

Some exp. Confident Expert All
Example uses 100 % 75 % 88 % 86 %
Description 75 % 50 % 81 % 71 %
Competency Questions 75 % 25 % 75 % 61 %
Graphical Illustration 75 % 50 % 56 % 57 %
Title 0 % 13 % 56 % 36 %
OWL 2 Profile Adherence 25 % 13 % 13 % 14 %
Size in Classes 0 % 0 % 19 % 11 %
Size in Axioms 0 % 0 % 13 % 7 %

4.3.1 Ontology Engineering Survey

This survey (further detailed in Section 3.2.7) was carried out to gather
knowledge about practices and problems in Ontology Engineering, particu-
larly as related to the use (or lack of use) of ODPs12.

The survey had a total of 81 respondents, who were asked to identify
themselves based on their level of experience of Ontology Engineering using
Semantic Web ontologies as ‘Expert’, ‘Confident’, ‘Somewhat experienced’
and ‘Novice’. In addition, respondents were asked how many years they had
been working with Semantic Web ontologies. While self-reported skill level is
a notoriously inaccurate measure, we found that the correlation between self-
reported experience level group and reported years of experience was very
clear, and have therefore elected to treat the self-reported experience level
as trustworthy. There was only one respondent who self-reported as being
a novice—to avoid this outlier skewing the results in analysis, that response
has not been used. It should also be noted that as some respondents skipped
some questions, not all tables of responses detailed below are based on the
full set of 80 non-novice respondents. For legibility, the tables are presented
using only percentages of respondents, while the number of respondents per
question is included in each table’s label.

Table 4.8 reports the responses to the question “In an ODP search en-
gine or an ODP portal/catalogue, which fields or metadata about an ODP is
most important when ascertaining the suitability of that ODP for reuse?”,
answered on a 5-point scale ranging from “Not important” through “Crit-
ically important”. Only respondents who reported having used ODPs to
some extent were given this question, so the number of respondents is fewer
than the number for the survey as a whole, at 28. Somewhat surprisingly,
the title of the ODP was not considered particularly important in ascertain-
ing the reuse potential of an ODP. This may be due to the way the question

12The survey questionnaire and a summary of all of the answers are downloadable from
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138724.

120



“Dissertation” — 2017/8/15 — 10:53 — page 121 — #135

4.3. Third Generation Model

Table 4.9: Respondent opinion on the importance of graphical illustrations
in understanding ontology meaning (65 responses).

Answer alternative Percent of responses

Not important 2 %
Somewhat important 12 %
Rather important 23 %
Very important 45 %
Critically important 18 %

Table 4.10: Respondent preference regarding type of graphical illustration
to use (61 responses).

Strongly
dislike

Dislike Neither Prefer Strongly
prefer

Graph-oriented 0 % 5 % 6 % 46 % 43 %
Tree-oriented 3 % 8 % 22 % 54 % 14 %
Venn diagram-oriented 8 % 31 % 41 % 16 % 3 %

was phrased; when selecting one ODP out of a list of many, the title is likely
to be of more importance, whereas when studying only one ODP, the title
is likely to matter less than other more descriptive fields.

It is interesting to note that three of the four top-most ranked fields
are identical (though ranked slightly differently) to the top-ranked compo-
nents from the similar survey performed by Karima and Hitzler [99]. The
one field that does not match, Description, has no direct equivalent in that
other survey. These findings support several indicator effects proposed in the
ODP quality model, namely that the Usage Example Count, Accompanying
Text Description, Competency Question Count, and Structure Illustration
contribute positively to the quality characteristic Appropriateness Recognis-
ability.

Table 4.9 reports the responses to the question “When studying an on-
tology, how important is the use of a graphical illustration for understanding
the meaning of the ontology?”. While this question does not ask specifically
about ODPs, the responses ought to be transferrable to an ODP context if
we consider ODPs as mini-ontologies. The responses clearly indicate that
graphical illustrations of the structure of an ontology contribute to the learn-
ability of that ontology, or, in the case of the ODP Quality Model, that the
presence of a Structure illustration contributes to the Learnability quality
characteristic.

A follow-up question, presented in Table 4.10, further explored this in-
dicator. The question asked, “When studying an ontology, which type of
illustration format do you prefer?” (examples of each kind of illustration
were provided alongside the question). The three types of formats provided
represent three different perspectives often found in ontology literature: the

121



“Dissertation” — 2017/8/15 — 10:53 — page 122 — #136

Chapter 4. ODP Quality Model

Table 4.11: Ranking of documentation field utility in ascertaining ODP
reusability.

Documentation Field Position Score

Intent 5.91
Competency Questions 4.64
Name 4.09
Solution 3.82
Scenarios 3.45
Domains 3.18
Consequences 2.91

ontology as graph (either an RDF graph or a more high-level structure),
the ontology as a subsumption tree, and the ontology as a Venn diagram
of super- and sub-concepts. As the table shows, the respondents expressed
the greatest preference for graph-style illustrations, followed by trees, and
finally Venn diagrams.

4.3.2 ODP Design Preferences Survey

This survey (described in Section 3.2.7) queried for ontologists’ preferences
and requirements on tooling to support ODP use. The survey was answered
by participants in projects and at academic conferences the author attended,
with a total of 20 responses collected in all13. The respondents vary in aca-
demic background (ranging from MSc degrees through full professorships),
and in self-reported Ontology Engineering experience (ranging from novices
to experts). The large majority of respondents (16) work in academia or
research institutes, with a minority (4) working in industry or government
agencies.

Table 4.11 reports a summary of responses to the question “Please rank
the following ODP documentation fields in terms of how important you think
they are to understanding whether an ODP is suitable for reuse in your
project”. As this question was accompanied by a ranking widget in the
survey questionnaire, respondents (unlike in the survey discussed in the
previous section) had to prioritise between the different provided alternatives
and provide a preferred ranking of the seven options. The overall position
score for each option was calculated by multiplying the score value of each
position (7 for first place, 1 for last) with the percentage of respondents who
placed the field at said position.

Some of the fields provided are more specific and narrow than those
listed in the previous survey, as they are in fact candidate subfields for

13The survey questionnaire can be downloaded from http://urn.kb.se/resolve?urn=

urn:nbn:se:liu:diva-138724. However, due to assurances given to participants, the
individual responses will not be published online, though they are retained in accordance
with Swedish legislation on archiving research data.

122



“Dissertation” — 2017/8/15 — 10:53 — page 123 — #137

4.3. Third Generation Model

Table 4.12: Percentage of respondents preferring documentation minimalism
(responses grouped by respondent self-reported experience level).

ODP No experience, novice,
some experience

Confident, Expert

Agent role 57 % 17 %
Componency 64 % 17 %
Reaction 57 % 17 %

Average 60 % 17 %

inclusion under that survey’s Description documentation field. We again
note that competency questions are deemed highly important in ascertaining
the reusability of a given ODP. We also note that ODP name is considered
quite important in recognising the suitability of an ODP, lending further
support to the value of the Name Appropriateness indicator. Finally, we
note the importance of the ODP intent field in ascertaining reusability. In
the ODP portal the defined purpose of this field is, somewhat ambiguously,
to “[describe] the goal of the Ontology Design Pattern”14. Because of these
findings, a recommendation was added to the ODP quality model concerning
the structure of the descriptive text provided with an ODP.

To evaluate the possible effects of the Documentation Minimalism in-
dicator on ODP learnability, the respondents were asked to compare two
different documentation perspectives on the same ODP, for three different
ODPs. The first perspective included all the documentation fields presently
used in the ODP community portal, whereas the latter one displayed a
documentation-minimal view (i.e., including only those documentation fields
found by Lodhi and Ahmed [111] to be most important for Learnability).
Summarising and analysing the responses, we note two things: firstly, that
18 of 20 respondents indicated the same preference regardless of which ODP
was displayed (i.e., these preferences seem to be quite strongly held), and sec-
ondly, that user preference on documentation minimalism correlates clearly
to self-reported experience level, as shown in Table 4.12. Experienced users
seem to prefer non-minimal documentation, whereas inexperienced users are
somewhat more in favour of limiting the number of documentation fields dis-
played. This is consistent with the findings by Lodhi and Ahmed [111].

The survey also queried respondents on their preferences regarding the
type of notation used to represent ODPs graphically, providing them with
pairwise comparisons of the recently developed VOWL notation [112] versus
four other notations supported in Desktop Protégé, TopBraid Composer, or
used in the ODP portal, and asking them to select which out of every pair
they found most intuitive or easy to understand. The responses are reported
in Table 4.13. Each notation is illustrated in Figure 4.4 (note that in the

14http://ontologydesignpatterns.org/wiki/Property:HasIntent

123



“Dissertation” — 2017/8/15 — 10:53 — page 124 — #138

Chapter 4. ODP Quality Model

Figure 4.4: Ontology visualisation formats, from the top: VOWL, TopBraid
Composer Graph view, OntoGraf, OWLViz, Unknown name (used in the
Topic ODP in the community ODP Portal).

124



“Dissertation” — 2017/8/15 — 10:53 — page 125 — #139

4.3. Third Generation Model

Table 4.13: Results of pairwise comparison of VOWL notation versus other
common OWL visualisation notations.

Alternative Prefers VOWL Prefers Alternative

TBC Graph View 11 9
OntoGraf 18 2
OWLViz 12 8
Topic ODP Style 13 7

survey questionnaire, unlike in this figure, each pair of notations displayed
the same ODP).

As the table indicates, VOWL syntax was consistently preferred among
the respondents. The closest second was the Graph view provided in Top-
Braid Composer, while the other three representations are less preferred.
This is perhaps not surprising given the amount of information that each
representation conveys: both the TopBraid Graph View and the VOWL
representation include much more detailed information about the ODP con-
cepts than the other representations.

4.3.3 Ontology Engineering Workshop Observations

Several ontology engineering workshops were arranged within the VALCRI,
SSyncAHD, and OSTAG projects introduced in Section 3.2.4. Audio was
recorded at each of these workshops, and researcher logs of participant be-
haviour were also maintained, as further discussed in Sections 3.2.5 and
3.2.6. Below, the findings on ODP quality from those workshops are pre-
sented, grouped by the artefact or action that they most directly measure—
the ODP documentation, the ODP model, or the ODP when used by human
ontology engineers. These findings confirm some of the quality indicators
and effects from the second iteration ODP quality model, but they also
support the addition of several new quality indicators for the model.

Documentation Indicators

The participants in the SSyncAHD project asked on several occasions about
which ODPs were most frequently used in practice, and whether usage of
ODPs was somehow tracked, so that they might learn from such usage the
best way to operate the ODPs they were studying. This observed behaviour
is in line with and supports the effect proposed in the ODP quality model
concerning ODP Usage Example Count (and corresponding Usage Example
Illustrations). The participants also stated that such usage metrics would be
helpful in evaluating the suitability of an ODP for use, suggesting that the
indicator contributes to the Appropriateness Recognisability quality char-
acteristic. They also indicated that in the absence of such usage track-
ing, it would be beneficial to beginner ontologists if ODPs in online portals

125



“Dissertation” — 2017/8/15 — 10:53 — page 126 — #140

Chapter 4. ODP Quality Model

(e.g., http://ontologydesignpatterns.org) at least displayed some sort
of stamp or other proof that a validation of its quality had been performed.
A similar observation was made within the VALCRI project, where a key
ontology developer was very reluctant to make use of that ODP portal, as it
appeared relatively stagnant and as it contained no ODPs that had passed
through a quality assurance process. Hence a new quality indicator, Quality
Approval Stamp was added to the ODP quality model.

The SSyncAHD participants also observed and discussed usage chal-
lenges relating to the textual description fields accompanying ODPs. One
participant remarked that negation phrases within the Solution Description
field played havoc with the ODP search engine they used—that is, if an
ODP description included a phrase such as “This pattern does not support
time-indexing”, then that ODP would show up erroneously when the user
searched for time-related ODPs. Such negations should thus not be used
outside of the Consequences documentation field, and that field should not
be searched by search engine tools unless explicitly called for by users.

Another issue relating to the textual description fields observed within
SSyncAHD concerns the coverage of ontology entities. On more than one
occasion the participants were perplexed by the presence of classes or prop-
erties in the accompanying OWL file or in the ODP structure illustration,
that were not mentioned in the textual documentation or in the compe-
tency questions. This observation motivates the addition of a Documenta-
tion Completeness quality indicator; measuring the degree to which indi-
vidual ontology entities are described in the ODP-wide documentation (i.e.,
not only in entity-specific annotations).

Lastly, within both the VALCRI and SSyncAHD projects, users found
OWL 2 property chains to be simultaneously powerful for modelling pur-
poses and potentially confusing when navigating the ontology. In SSync-
AHD in particular, the participants suggested that if their ontology were to
be reused in whole or part by other parties, then it is vital that the use of
property chains is transparent and documented such that those users do not
experience any unforeseen reasoning consequences. Thus, a recommendation
to this effect was added to the ODP quality model.

Model Indicators

Experiences from both VALCRI and SSyncAHD strongly support the ODP
quality model’s prediction that a high Transitive Import Count will have a
negative effect on ODP usability. In VALCRI, ontology engineers and pro-
grammers who were planning to use an ontology expressed displeasure that
the ontology included many imported concepts that they found irrelevant
to the tasks they were performing. They repeatedly suggested that tooling
user interfaces should be developed that would allow the masking or filtering
of imports by the user, while keeping the perceived beneficial effects of those
imports “under the covers”. Similarly, in the SSyncAHD projects, the par-
ticipants repeatedly stated their displeasure with the presence of high-level

126



“Dissertation” — 2017/8/15 — 10:53 — page 127 — #141

4.3. Third Generation Model

concepts in their ontology, resulting from owl:imports. In particular, they
found the presence and use of the Situation class derived from the DUL15

ontology to be difficult to understand.
In all three projects, VALCRI, SSyncAHD, and OSTAG, the users ex-

pressed opinions on, and researchers made observations concerning, entity
naming. In VALCRI developers emphasised the trade-off between using IRIs
that are readable by humans (which simplifies debugging and communica-
tion) and using opaque or otherwise concept-agnostic IRIs based on UUIDs
(which might improve subsequent modifiability). These effects lead to the
inclusion of the indicator Human-Readable Entity Names.

In both SSyncAHD and OSTAG participants had trouble deciding on
new entity names, particularly for object properties. Again, a trade-off was
observed: entity names that are too long (e.g., carHasRegisteredCompanyOwner)
in effect encode semantics into the naming itself, reducing future modifia-
bility, whereas entity names that are too short (e.g., has) lack in usability.
A reasonable “sweet spot” that worked well in practice was to use a noun-
verb-noun or noun-adjective-noun combination, such as personOwnsCar or
carRegisteredtoPerson. Naming practices that helped clarify the sub-
sumption hierarchy were also beneficial (e.g., entities should have longer
or more specific names than their super-entities, such as TaxiCar being a
subclass of Car). Finally, in the VALCRI project, the participants em-
phasised the need to avoid homonyms in entity naming; this was particu-
larly evident in the case of an annotation ontology, where the object prop-
erty hasBody was intended to link instances of Annotation to instances of
AnnotationBody. As the project concerned policing, a domain in which
the term “body” often carries a rather more concrete meaning, this object
property had to be renamed to avoid the risk of the two meanings being
confused. In the ODP quality model, the above observations support the
inclusion of an indicator and recommendations on Entity Naming Structure.

The ODP quality model suggests that high Property Domain Restrictions
Ratio and Property Range Restrictions Ratio values support ODP usabil-
ity. This effect was observed during the workshops in the OSTAG project,
where the participants were at one point uncertain about the intended use
of an object property that lacked such restrictions (even though they had
themselves defined that same object property at a prior workshop). Simi-
larly, the users were displeased that domain and range from superproperties
were not displayed for subproperties in ontology IDE user interfaces without
reasoning turned on, making the use of those subproperties less intuitive.
These issues were resolved to some degree by adding domain and range re-
strictions to the affected properties. In so doing however, the participants
came across another challenge, in that their intuition about the semantics
of RDFS domain and range restrictions differed from the specification. Per
the specification, multiple domain or range restrictions on a given property
implies that the combined domain or range is the intersection of the classes

15http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

127



“Dissertation” — 2017/8/15 — 10:53 — page 128 — #142

Chapter 4. ODP Quality Model

in those restrictions. As the UIs of all major ontology IDEs allow the inser-
tion of multiple domain or range restrictions independently of one another,
it would be quite natural for the developer to instead assume that the re-
strictions are indeed independent and that the combined domain or range
should therefore be the union of classes from those restrictions. To avoid un-
expected inferences, users should therefore avoid multiple domain or range
restrictions on a given property in most cases, and a recommendation to
this effect was added to the ODP quality model.

In-Use Indicators

One group of participants within the VALCRI project emphasised that the
ontologies under development in that project needed to display consistent
semantic distances for certain question answering algorithms to work as
intended. Semantic distance is the inverse of semantic relatedness; these
measures indicate similarity (or lack thereof) of concepts within some in-
formation system. For instance, we might say that the concept Car has a
higher semantic relatedness to Bus than to Space rocket. These measures
are often used in conjunction with lexical methods in information extraction
and natural language processing tasks [30]. Typically, such software would
make use of manually curated natural language resources known to be well-
structured with regard to semantic distance (e.g., WordNet [119]). These
measures are thus highly dependent on human interpretation. The need for
consistency with regard to distance/relatedness observed in the VALCRI
project lead to the inclusion of a new quality indicator, Semantic Distance
Consistency, contributing to Functional Suitability.

4.4 Summary: Resulting Quality Model

The ODP Quality Model resulting from the work presented in Sections 4.1
through 4.3 consists of three major components, presented below: an ODP
Quality Metamodel (Section 4.4.1), a hierarchy of ODP Quality Character-
istics (Section 4.4.2), and a listing of ODP Quality Indicators and effects
(Section 4.4.3). Certain indicators contribute negatively to some quality
characteristics but positively to others—a summary of some trade-offs of
this kind is included in Section 4.4.4. Finally, Section 4.4.5 closes the chap-
ter with a brief discussion of the qualities that were studied less thoroughly
in this dissertation, and the importance of future work.

4.4.1 Quality Metamodel

The ODP quality metamodel is displayed in Figure 4.5. The key concepts
it encompasses are:

• Usage context: Represents the context in which an ODP is used to con-
struct an ontology. Component concepts of this context are the skills

128



“Dissertation” — 2017/8/15 — 10:53 — page 129 — #143

4.4. Summary: Resulting Quality Model

Team Skill

Dev. & Use 
Environment

Ontology 
Use

Quality 
Indicator

Quality 
Characteristic

Usage 
Context

subquality of
Scale

Importance 
level

Directionality

Recom-
mendation

Method

indicator contributes to quality

qu
al

ity
 h

as
 im

po
rta

nc
e 

in indicator affected by

Figure 4.5: Quality Metamodel.

of the ontology engineer(s), the intended use for the resulting ontol-
ogy, and the social or business environment in which the development
and subsequent use of the ontology will take place (the latter includ-
ing aspects such as development method, team distribution, customer
relationship, etc.).

• Quality characteristic: Denotes a particular aspect of ODP quality
that may be of greater or lesser importance in a particular usage con-
text. Quality characteristics can be decomposed into sub-characteristics.
Quality characteristics represent concerns or perspectives on quality
on an abstract level. They are not themselves directly measurable us-
ing some metric or method. They are however affected (positively or
negatively) by indicators that are measurable using some metric. The
term quality characteristic is borrowed from and used similarly to the
definition given in the ISO 25010 standard [94] on software quality.

• Quality indicator: Individually measurable properties of an ODP that
contribute to increasing or decreasing some quality characteristic(s)
(similarly to the concept quality property in ISO 25010). Indicators
have scales of measurement, in accordance with the definitions estab-
lished by Stevens [152] on nominal, ordinal, interval, and ratio scales.
They also have recommendations that give guidance regarding rele-
vant values for indicators to assume, to the extent that this can be
given, and method definitions for how indicator measurements can be
sampled, to the extent that it is not obvious from the indicator name
itself. These different aspects of an indicator can be affected by, and
vary depending on, usage context.

129



“Dissertation” — 2017/8/15 — 10:53 — page 130 — #144

Chapter 4. ODP Quality Model

Table 4.14: ODP Quality Characteristics (for indicator names, see Sec-
tion 4.4.3).

Quality characteristic Sub-Characteristic Indicators

Functional Suitability IUI5
Functional Completeness
Functional Appropriateness
Consistency
Accuracy IUI4

Usability DI4, MI1, MI5, MI8, MI11,
MI18, MI20-22, MI24, IUI6

Appropriateness recognisability DI1, DI3, DI6, DI7, DI9, IUI3
Learnability DI3, DI5-8, MI16, MI17, MI19,

IUI1
Operability
User error protection DI2
User interface aesthetics
Accessibility

Maintainability MI1
Modularity
Analysability MI4, MI19
Modifiability MI8, MI10, IUI2
Testability MI10
Stability

Compatibility MI1, MI22
Reusability MI16, MI17, MI24
Co-existence
Interoperability

Resulting performance
efficiency

MI2, MI3, MI6, MI7, MI9, MI12-
18, MI21-24

4.4.2 Quality Characteristics

The ODP Quality Model quality characteristics are presented in Table 4.14,
and discussed in detail below. Table 4.14 also includes references to the
quality indicators that have effects on each quality characteristic.

While most of the developed quality characteristics are associated with
one or more quality indicators, several are not. This does not imply that
those characteristics are unimportant, but rather that more work is required
to find suitable indicators to measure them.

Functional Suitability

Degree to which an ODP meets stated or implied needs.

• Functional completeness: Degree to which the ODP meets expressed
knowledge modelling requirements (i.e., competency questions and
other design requirements).

• Functional appropriateness: Degree to which the ODP facilitates sim-
ple storage and retrieval of knowledge formalised according to its defi-
nitions (e.g., does the ODP require simple or complex SPARQL queries
to retrieve knowledge).

130



“Dissertation” — 2017/8/15 — 10:53 — page 131 — #145

4.4. Summary: Resulting Quality Model

• Consistency: Degree to which the ODP is internally logically consis-
tent.

• Accuracy: Degree to which the ODP accurately represents the real-
world domain being modelled (e.g., whether it adheres to established
industry standards and protocols, or legislation).

Usability

Degree to which an ODP can be used by specified users to achieve specified
goals with effectiveness, efficiency, and satisfaction.

• Appropriateness recognisability: Degree to which users can recognise
whether an ODP is appropriate for their needs.

• Learnability: Degree to which an ODP’s structure, and intended usage
can be learned by users that are new to it, such that they can thereafter
apply the ODP successfully and efficiently.

• Operability: Degree to which an ODP has attributes that make it easy
to apply and use.

• User error protection: Degree to which an ODP prevents users from
making modelling errors.

• User interface aesthetics: Degree to which the ODP’s documentation
(text, graphics, etc.) is pleasing to the user.

• Accessibility: Degree to which the ODP’s documentation can be used
by people with the widest range of characteristics and capabilities.

Maintainability

Degree of effectiveness and efficiency with which an ODP (and consequently,
ontologies built using that ODP) can be adapted and modified by maintain-
ers after deployment in some usage scenario.

• Modularity: Degree to which the ODP is composed of discrete com-
ponents such that a change to one component has minimal impact on
other components.

• Analysability: Degree of effectiveness and efficiency with which it is
possible to assess the impact on an ODP-based ontology module (or
the ODP itself) of an intended change to one or more of its parts, or
to diagnose an ODP for deficiencies or causes of failures, or to identify
parts that require modification.

• Modifiability: Degree to which an ODP-based ontology module (or
the ODP itself) can be effectively and efficiently modified without
introducing defects or degrading existing ODP quality.

131



“Dissertation” — 2017/8/15 — 10:53 — page 132 — #146

Chapter 4. ODP Quality Model

• Testability: Degree of effectiveness and efficiency with which test cri-
teria can be established for an ODP and tests can be performed to
determine whether those criteria have been met.

• Stability: Perceived expectation of changes to the ODP - high stability
denotes that a low degree of change is expected, and vice versa.

Compatibility

Degree to which an ODP can be successfully reused and integrated with
other ODPs or IT artefacts in the construction of ontologies or systems.

• Reusability: Degree to which an ODP can be used in more than one
ontology, or in building other assets.

• Co-existence: Degree to which an ODP can coexist with other ODPs
as independent modules in an ontology, without detrimental impact.

• Interoperability: Degree to which an ODP shares definitions of con-
cepts that occur in other published ODPs.

Resulting performance efficiency

Reasoner or system performance efficiency over ontologies created using the
ODP. Can be discussed in terms of the average time taken, or of the system
resources required, to materialise inferences of ontologies using this ODP.

4.4.3 Quality Indicators and Effects

Tables 4.15 and 4.16 list the set of quality indicators and corresponding
effects on quality characteristics in the ODP quality model. The former
table holds those indicator effects that have been observed within this PhD
project. In this table, the third column references the section of this disser-
tation that presents said observation. The latter table lists those indicator
effects that have been hypothesised based on prior work or analysis of OWL
features, but which have not been observed within this dissertation. In that
table, the third column references the prior work that lead to the inclusion
of the hypothesised effect, or the section in this dissertation where the indi-
cator is discussed and motivated. The indicators are labelled and grouped
into three categories:

• Documentation indicators (DI) concern the textual and graphical de-
scription of an ODP, typically provided in the form of an accompany-
ing web page or other document. Such indicators contribute mostly
to usability-related ODP qualities, such as appropriateness recognis-
ability, learnability, operability, etc.

132



“Dissertation” — 2017/8/15 — 10:53 — page 133 — #147

4.4. Summary: Resulting Quality Model

Table 4.15: Observed indicator effects.

Nr Indicator Affected characteristic Section(s)
DI1 Accompanying Text Description Appropriateness recog. 4.2.1, 4.3.1
DI2 Common Pitfalls Description User error protection 4.2.1
DI3 Competency Question Count Appropriateness recog. 4.2.1, 4.3.1, 4.3.2
DI3 Competency Question Count Learnability 4.1.3
DI4 Documentation Completeness Usability 4.3.3
DI5 Documentation Minimalism Learnability 4.2.2, 4.3.2
DI6 Structure Illustration Appropriateness recog. 4.2.1, 4.3.1
DI6 Structure Illustration Learnability 4.3.1
DI7 Usage Example Count Appropriateness recog. 4.3.1, 4.3.3
DI7 Usage Example Count Learnability 4.3.3
DI8 Usage Example Illustrations Learnability 4.2.2, 4.3.3
DI9 Quality Approval Stamp Appropriateness recog. 4.3.3
MI5 Class/Property Ratio Usability 4.2.2
MI8 Entity Naming Structure Modifiability 4.3.3
MI8 Entity Naming Structure Usability 4.3.3
MI10 Human-Readable Entity Names Modifiability 4.3.3
MI10 Human-Readable Entity Names Testability 4.3.3
MI16 Property Domain Restrictions Ratio Learnability 4.2.2, 4.3.3
MI17 Property Range Restrictions Ratio Learnability 4.2.2, 4.3.3
MI18 Property Restriction Count Usability 4.2.2
MI19 Size Learnability 4.2.1
MI24 Transitive Import Count Reusability 4.2.1
MI24 Transitive Import Count Usability 4.2.1, 4.3.3
IUI3 Name Appropriateness Appropriateness recog. 4.2.1, 4.3.2
IUI5 Semantic Distance Consistency Functional Suitability 4.3.3
IUI6 User-reported Abstraction Level Usability 4.2.2

• Model indicators (MI) measure different aspects of the reusable OWL
building block that makes up the core of an ODP, or its underlying
RDF/RDFS model. These indicators contribute to qualities that are
important in terms of how an ODP or an ODP-based ontology is
used together with other ODPs, ontologies, or in information systems,
including maintainability, compatibility, and reasoning performance.

• In-use indicators (IUI) measure properties of ODPs that cannot be
captured using quantitative methods over the ODP itself, but rather
require the use or evaluation of that ODP by a human ontology en-
gineer. These indicators contribute primarily to those qualities that
are contextually bounded, such as maintainability, usability, and func-
tional suitability.

The full list of indicators is presented in Appendix A, together with
suggested measurement methods and scales for each indicator, and in some
cases, recommendations on suitable values.

4.4.4 Quality Trade-offs

In the presented model, there are indicators that contribute negatively to
some quality characteristics while contributing positively to others. The
presence of such tensions implies that ontology engineers who are developing
or using ODPs may need to make trade-offs between qualities that they con-
sider most important in their project. Organised by quality characteristic,

133



“Dissertation” — 2017/8/15 — 10:53 — page 134 — #148

Chapter 4. ODP Quality Model

Table 4.16: Hypothesised indicator effects.

Nr Indicator Affected characteristic Reference
MI1 Annotation Ratio Maintainability [130]
MI1 Annotation Ratio Usability [56, 57]
MI2 Average Class In-Degree Resulting perf. efficiency [98]
MI3 Average Class Out-Degree Resulting perf. efficiency [98]
MI4 Axiom/Class Ratio Analysability [56, 57]
MI6 Class Disjointness Ratio Resulting perf. efficiency [56, 57]
MI7 Cyclomatic Complexity Resulting perf. efficiency [98]
MI9 Existential Quantification Count Resulting perf. efficiency [98]
MI11 Minimalism Usability [120, 110]
MI12 OWL 2 EL Adherence Resulting perf. efficiency [91]
MI13 OWL 2 QL Adherence Resulting perf. efficiency [91]
MI14 OWL 2 RL Adherence Resulting perf. efficiency [91]
MI15 OWL Horst Adherence Resulting perf. efficiency [164]
MI16 Property Domain Restrictions Ratio Resulting perf. efficiency Section 4.2.3
MI16 Property Domain Restrictions Ratio Reusability Section 4.1.3
MI17 Property Range Restrictions Ratio Resulting perf. efficiency Section 4.2.3
MI17 Property Range Restrictions Ratio Reusability Section 4.1.3
MI18 Property Restriction Count Resulting perf. efficiency Section 4.2.3
MI19 Size Analysability [56, 57]
MI20 Subsumption Hierarchy Breadth Usability [56, 57]
MI21 Subsumption Hierarchy Depth Resulting perf. efficiency [107]
MI21 Subsumption Hierarchy Depth Usability [56, 57]
MI22 Tangledness Compatibility [56, 57]
MI22 Tangledness Resulting perf. efficiency [56, 57, 98]
MI22 Tangledness Usability [56, 57]
MI23 Terminological Cycle Count Resulting perf. efficiency [105]
MI24 Transitive Import Count Resulting perf. efficiency Section 4.1.3
IUI1 Functionality Questionnaire Time Learnability [61]
IUI2 Modification Task Time Modifiability [61]
IUI4 OntoClean Adherence Accuracy [68]

134



“Dissertation” — 2017/8/15 — 10:53 — page 135 — #149

4.4. Summary: Resulting Quality Model

the trade-offs that have been found so far include Resulting Performance
Efficiency versus Functional Suitability, Resulting Performance Efficiency
versus Learnability, Interoperability versus Usability, and Learnability ver-
sus Reusability.

The trade-off between Resulting Performance Efficiency and Functional
Suitability stems from the fact that employing the full logic expressivity of
the OWL language is computationally expensive, hence the development of
reasoning-friendly OWL subsets and the OWL 2 profiles (captured in indi-
cators MI13–MI16). The most reasoning-efficient OWL model imaginable
would be a null model that makes no assertions whatsoever. As a model
comes closer and closer to representing some real-world domain (i.e., as the
model’s functional completeness increases), the number of axioms (and most
likely also the variance of OWL constructs used) in it also increases, which
in turn decreases reasoning performance over the model. One concrete ex-
ample of this is the use of existential quantification axioms (indicator MI10),
which may well be required to accurately model the domain, but which are
associated with poor reasoning performance [98].

When applying ODPs in scenarios where the resulting ontology will be
used for reasoning and where the time or resource consumption character-
istics of that reasoning matter, it is recommended that developers consider
carefully whether the ODPs they use are compliant with their reasoning
requirements. The simplest way of going about this is to ensure that the
ODPs used comply with a suitable OWL 2 profile. However, it is also im-
portant to also ensure that in the process of specialising and applying those
ODPs, no OWL constructs are introduced that are not supported by the
chosen profile. Thankfully the two common ontology development environ-
ments Protégé and WebProtégé both include features that allow easy check-
ing of the profile adherence of an ontology under development, simplifying
this work. If a task-suitable ODP exists but does not adhere to a required
reasoning profile, the author encourages the developer who notices this to
reimplement and release that ODP as a new profile-compliant version.

The trade-off between Reasoning Performance Efficiency and Learnabil-
ity is caused by the same underlying mechanism—several OWL constructs
that increase learnability of the model are associated with poor reasoning
characteristics. This includes the aforementioned use of domain and range
restrictions, which typically help users understand the intended use of ODP
properties. It also includes the use of class restriction axioms that can be
similarly helpful in illustrating how classes and properties in an ODP are to
be reused, but which in several cases decrease reasoning performance [98].
When constructing an ODP it may be beneficial to consider increasing the
scope of the ODP metadata or documentation to better describe the ODP’s
features and their intended uses, rather than relying on the above discussed
performance-affecting constructs for this purpose (unless required to realise
some actual functionality of the ODP).

The trade-off between Interoperability versus Usability relates to the

135



“Dissertation” — 2017/8/15 — 10:53 — page 136 — #150

Chapter 4. ODP Quality Model

Transitive Import Count indicator (MI24). For an ODP to be as interoper-
able as possible, it should be aligned with and share foundational concepts
with as many well-established ODPs as possible—which would be indicated
by MI24 having a high value. However, for an ODP to be as easy to use as
possible, it should not require the developer to understand a large number
of phenomena that are outside of the scope of the problem that the ODP is
intended to solve, that is, the MI24 value should be low.

Finally, the trade-off between Learnability versus Reusability concerns
indicators MI17 (Property Domain Restrictions Ratio) and MI18 (Property
Range Restrictions Ratio). As discussed above, the use of property and
range restrictions improves Learnability, so an ODP that has higher values
for these indicators would be easier to understand and learn than one that
has lower ones. However, for an ODP to be as reusable as possible it should
make as small an ontological commitment as possible while still fulfilling its
design goals. Consequently, for reusability MI17 and MI18 should measure
as low as possible, as the properties defined in the ODP should not make
assumptions about the classes with which they will be used, but should
rather be reusable outside of the exact ODP scope if need be. This is
particularly important as the semantics of OWL property domain and range
definitions imply that if a property has multiple asserted ranges or domains,
the resulting inferred domain or range of that property is the intersection
of the set of domain or range class expressions. In other words, it is not
possible for a child ODP to extend a property domain or range from an
imported parent ODP, only to constrain it further.

4.4.5 Notes on Unstudied Qualities

The ODP Quality Model contains several quality indicators that contribute
to Usability and Resulting Performance Efficiency, but fewer that contribute
to Functional Suitability, Maintainability, and Compatibility. This is a con-
sequence of the difficulty of studying the latter quality characteristics. Un-
derstanding Maintainability requires studying a real ontology engineering
project as it progresses beyond the initial development phases and into de-
ployment and maintenance phases. By contrast, most research projects
are formulated to focus primarily on the development phase, and conse-
quently we do not have enough studies on deployment and maintenance yet.
Functional Suitability is difficult to study rigorously as it is a very context-
bounded quality characteristic, making it quite difficult to generalise any
findings. Studying ODP Compatibility requires that a sufficient number of
high quality ODPs from different sources or designed in different styles al-
ready exist, so that compatibility can then be gauged against them. This
has not been the case until recently.

The lack of indicators for the above-mentioned quality characteristics is
particularly unfortunate as these characteristics have several sub-qualities
that are important in supporting ODP adoption outside of academia. Main-

136



“Dissertation” — 2017/8/15 — 10:53 — page 137 — #151

4.4. Summary: Resulting Quality Model

tainability is perhaps the most obvious candidate for improvement—without
understanding how ODP and XD use in ontology engineering affects the
need for maintenance and support of developed ontologies, we will not see
industry deploying these methods to any greater extent. Specifically, ODP
Testability and Analysability are critical qualities to understand when de-
veloping ODP-based ontologies that will need to be maintained (possibly by
a team that does not include the initial developers) in the future. Testabil-
ity is also highly relevant in supporting the eXtreme Design methodology,
which depends on tests to ensure that component modules of an ontology
project do not break during integration and refactoring [131]. In addition
to understanding these quality characteristics, tooling to aid in constructing
and executing tests, or in analysing ODP-based ontologies, would also need
to be developed.

137



“Dissertation” — 2017/8/15 — 10:53 — page 138 — #152

Chapter 4. ODP Quality Model

138



“Dissertation” — 2017/8/15 — 10:53 — page 139 — #153

Chapter 5

ODP Tool Support
Improvement

This chapter attempts to answer the research question “How can the features
and functionality of ODP usage tools be improved to support inexperienced
ontologists?”. In order to provide solutions to simplify ontology engineering
with ODPs, we first need to understand the types of challenges that users
face. Each of the first three sections in the chapter discusses some partic-
ular challenge with which ontology engineers may need guidance, and then
provides and evaluates a suggested solution to said challenge. Section 5.1
discusses challenges in finding the right ODP to use, and suggests improve-
ments to ODP search engines that may simplify this. Section 5.2 concerns
the choices users must make when specialising entities (particularly object
properties) in ODPs for a particular use case. Section 5.3 discusses the us-
ability challenges inherent in employing ODPs by way of such specialisation,
and suggests an alternative method based on cloning ODP structures. The
fourth and final section of this chapter, Section 5.4, discusses the need that
users have for new ontology engineering tooling that both supports the use
of ODPs and enables simple collaboration on ontology engineering tasks by
geographically distributed teams. This section also introduces the eXtreme
Design for WebProtégé (XDP) tooling that the author has developed which,
in addition to fulfilling both of these needs, also integrates the solutions that
are developed and discussed in Sections 5.1–5.3.

5.1 ODP Search

The following section discusses the difficulty of finding an appropriate ODP
to reuse for a given modelling problem using currently available search en-
gines, proposes a method of search that aims to improve the quality of ODP

139



“Dissertation” — 2017/8/15 — 10:53 — page 140 — #154

Chapter 5. ODP Tool Support Improvement

search engine results, and evaluates an initial version of that method with
promising results.

5.1.1 Motivation

As discussed in Section 2.4.2, the eXtreme Design method frames the task of
finding an appropriate ODP for a particular problem as a matching problem
where a local use case (the problem for which the ontology engineer needs
guidance) is matched to a general use case (the intended functionality of
the pattern) encoded in the appropriate ODP’s documentation. In order
to perform this matching, the general use case needs be expressed in a way
that enables matching to take place. Typically, this is done by encoding
ODP functionality as Competency Questions, either described in the ODP
documentation, or embedded as annotations to the ODP reusable building
block itself (or both).

There are then two methods for finding appropriate ODPs for a par-
ticular modelling challenge—users can do matching by hand (by consulting
an ODP repository and reading ODP documentations one by one), or they
can employ the ODP search engine included in the XD Tools plugin for
NeOn Toolkit (now discontinued) to suggest candidates, by way of rudi-
mentary keyword-based searches over the ontologydesignpatterns.org

community portal. As shown in Section 4.2.1, as soon as the list of available
ODPs grows to a non-trivial number (such as in the aforementioned portal),
users find the task of manually browsing through them to be challenging to
perform correctly, particularly if the ODPs are not structured in a way that
is consistent with their expectations.

In the case that an ODP search engine is employed, the signal-to-noise
ratio of the results is often discouragingly low. In initial trials using the
search engine included in the XD Tools plugin for NeOn Toolkit the author
found that with a result list displaying 25 candidate ODPs, an actually
correct and suitable ODP was included in less than a third of the cases. In
order to guarantee that at least one suitable ODP was included, the search
engine had to return more than half of the ODPs in the portal, essentially
negating the point of using a search engine!

This difficulty in finding the correct ODP to reuse is further supported by
answers to the Ontology Engineering Survey (introduced in Section 3.2.7)—
nearly two thirds of respondents (19 of 31) stated that they found it Difficult
or Very difficult to find suitable ODPs for reuse in modelling.

5.1.2 Proposed Solution

In order to improve recall when searching for suitable ODPs, the author
suggests making use of two pieces of knowledge regarding patterns that the
existing XD Tools ODP search engine does not consider: firstly, that the core
intent of the patterns in the index is codified as competency questions, which
are structurally similar to the types of queries that an end-user might pose,

140



“Dissertation” — 2017/8/15 — 10:53 — page 141 — #155

5.1. ODP Search

and secondly, that patterns are general or abstract solutions to a common
problem, and consequently, the specific query that a user inputs needs to be
transformed into a more general form in order to match the indexed patterns
level of abstraction.

The first piece of knowledge can be exploited by using string distance
metrics to determine how similar an input query is to the competency ques-
tions associated with a pattern solution. The second piece of knowledge
can be exploited by reusing existing language resources that represent hy-
ponymic relations, such as WordNet [119]. By enriching the indexed patterns
with synonyms for disambiguated classes and properties in the pattern, and
by enriching the user query using hypernym terms of the query, the degree of
overlap between a user query (worded to concern a specific modelling issue)
against a pattern competency question (worded to concern a more general
phenomenon) can be computed.

The author has developed a method of indexing and searching over a
set of ODPs based on these ideas. The method, CompositeSearch, com-
bines three different search methods, each of which generates a confidence
value between 0 and 1, and these confidence values are added together with
equal weight to generate the final confidence value which is used for candi-
date pattern ranking. The first search method employs a Semantic Vectors
Search [171] of stemmed and normalised query terms over a Lucene ODP
index including fields for all RDFS labels, local IRI fragments, and embed-
ded ODP documentation annotations1. The second search method uses a
standard Lucene search with query terms that have been enriched with the
WordNet hypernyms, and executes against an index including the same in-
dexed information, but enriched with WordNet synonyms. Finally, the third
search method ranks all candidate ODPs by the smallest Levenshtein edit
distances [108] between the input query as a whole (assumed to be formu-
lated as a competency question) and the competency questions embedded
as annotations on the ODPs in question.

5.1.3 Evaluation

While the approach requires further work, early results are promising, as
shown in Table 5.1.

The dataset used in testing was created by reusing the question sets
provided by the Question Answering over Linked Data2 (QALD) evalua-
tion campaign. Each question was matched to one or more ODPs suitable
for building an ontology supporting the question. This matching was per-
formed independently by two senior ontology experts, and their respective
answer sets were merged. The two experts reported very similar pattern
selections in the cases where only a single pattern candidate existed in the

1As expressed using the ODP community Content Pattern Annotation Schema, http:
//www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

2https://qald.sebastianwalter.org

141



“Dissertation” — 2017/8/15 — 10:53 — page 142 — #156

Chapter 5. ODP Tool Support Improvement

Table 5.1: Recall improvement for ODP search.

XD-SVS CompositeSearch

R10 6 % 22 %

R15 8 % 31 %

R20 9 % 37 %

R25 14 % 41 %

pattern repository that was compliant with a competency question (e.g.,
the Place3 or Information Realization4 patterns), but for such competency
questions where multiple candidate patterns existed representing different
modelling practices (e.g., the Agent Role5 or Participant Role6 patterns),
their selections among these candidate patterns diverged. Consequently,
the joint testing dataset was constructed via the union of the two experts’
pattern selections (representing the possibility of multiple correct modelling
choices), rather than their intersection7. Recall was defined as the ratio of
such expert-provided ODP candidates that the automated system retrieves
for a given input question.

As shown in the table, the average recall within the first 10, 15, 20 or
25 results is 3-4 times better using CompositeSearch than using the existing
XD Tools Semantic Vectors Search (XD-SVS). It should be noted that while
CompositeSearch also increases the precision of the results compared to XD-
SVS by a similar degree, the resulting precision is still quite poor. The search
engine user will consequently see a lot of spurious results using either of the
approaches. This is understood to be a potential usability problem, and an
area for further study.

A factor that is believed to limit the success of this method is the fact
that resolving ODP concepts and properties to corresponding concepts and
properties in natural language resources (in this case WordNet) is an error-
prone process. This is largely due to the ambiguity of language and the fact
that concepts in ODPs are generally described using only a single label per
supported language. If pattern concepts were more thoroughly documented,
for instance using more synonymous labels, class sense disambiguation would
likely work better, and consequently ODP search would also work better.
Additionally, WordNet does contain parts of questionable quality (both in
terms of coverage and structure), the improvement of which could lead to

3http://ontologydesignpatterns.org/wiki/Submissions:Place
4http://ontologydesignpatterns.org/wiki/Submissions:Information_

realization
5http://ontologydesignpatterns.org/wiki/Submissions:AgentRole
6http://ontologydesignpatterns.org/wiki/Submissions:ParticipantRole
7Testing datasets and code are available at http://urn.kb.se/resolve?urn=urn:nbn:

se:liu:diva-138724.

142



“Dissertation” — 2017/8/15 — 10:53 — page 143 — #157

5.2. ODP Specialisation Strategies

increased quality of results for dependent methods such as the one presented
here.

5.2 ODP Specialisation Strategies

As discussed in Chapter 2.4.2, a key step in the eXtreme Design method
is the “Reuse and integrate ODPs” task, where the developer specialises a
selected ODP (which represents a general reusable solution) to a specific
modelling scenario. In the following section, the choices that the ontology
engineer makes when performing this task are studied, and we explore the
consequences that these choices may have for the ontology in question.

In order to understand how ODPs are in fact being specialised, a two-
part method was employed. Initially, a set of ODP-using ontologies were
studied in order to extract commonalities or strategies regarding how ODPs
were specialised. Section 5.2.1 describes this process, and the ODP special-
isation strategies discovered by using it. Subsequently, the usage of those
specialisation strategies among ontologies were evaluated, along with the
consequences of such use. These latter evaluations are described in Sec-
tion 5.2.2.

5.2.1 Understanding ODP Specialisation Practices

Ontologies making use of ODPs first had to be located and downloaded.
For this purpose, a method was employed that combined several different
sources of ontologies. The initial set of ODP-using ontologies was retrieved
using the Google Custom Search API8. This API was queried repeatedly,
using all known ODP IRIs; the results were downloaded, filtered based on
type, and only such that held both one or more instances of owl:Ontology
and one or more references to known ODP namespaces were kept. Addi-
tionally, the LODStats9 list of RDF dataset vocabularies, the Linked Open
Vocabularies10 dataset, and the known uses and instantiations of ODPs from
OntologyDesignPatterns.org11 were added to this set (the same criteria for
filtering were employed). This resulted in 22 ODP-using OWL ontologies
being found and downloaded. Additionally, a set of 19 such ontologies orig-
inating with the IKS12 project were added to the set13.

From these 41 ontologies, 107 specialisation mapping axioms were ex-
tracted, that is, subsumption or equivalence axioms linking a class or prop-
erty defined in the ontology to a class or property defined in a known ODP.
These mapping axioms were analysed for recurring patterns based on the

8https://developers.google.com/custom-search/
9http://stats.lod2.eu/

10http://lov.okfn.org/
11http://ontologydesignpatterns.org/
12http://www.iks-project.eu/
13The ontologies and scripts used are available via http://urn.kb.se/resolve?urn=

urn:nbn:se:liu:diva-138724.

143



“Dissertation” — 2017/8/15 — 10:53 — page 144 — #158

Chapter 5. ODP Tool Support Improvement

features of the ODP class or property being specialised, and based on the
type of mapping properties used. Table 5.2 summarises the type of map-
pings used in the gathered data. As the table shows, simple mapping us-
ing rdfs:subClassOf and rdfs:subPropertyOf predicates against ODP
named classes is the most common, together accounting for 85% of all spe-
cialisation axioms. In all but a handful of these uses, ODP classes and
properties act as superclasses and superproperties to specialised classes and
properties. Equivalency mappings against named ODP concepts are used
less often; no uses of owl:equivalentProperty are observed at all, and
owl:equivalentClass is only used in a few cases.

Table 5.2: ODP specialisation mapping axioms summary.

Mapping axiom type Occurrences

rdfs:subClassOf against named ODP class 32
rdfs:subPropertyOf against named ODP property 59
owl:equivalentClass against named ODP class 3
owl:equivalentProperty against named ODP property 0
rdfs:subClassOf against restriction over ODP property 7
owl:equivalentClass against restriction over ODP property 2
rdfs:subClassOf against restriction over ODP class 4
owl:equivalentClass against restriction over ODP class 0

The use of existential or universal quantification restrictions involving
ODP classes and properties is worth noting. In the studied set of ontologies,
such restrictions are used to constrain the uses of ODP object properties, lo-
cally emulating domain or range axioms; for instance, a WeatherForecast

is defined as being equivalent to the union of two restrictions, one using
a project-defined vocabulary, and one on the WeatherForecast being an
information realisation (i.e., EquivalentClass (WeatherForecast objectSomeVal-
uesFrom(informa�onRealiza�on:realizes WeatherInforma�on))).

Such a use of restrictions to constrain the local semantics of object prop-
erties can be seen as a form of specialisation of a more general model, or
ODP, for a particular modelling case. This observation leads us to con-
sider how this type of specialisation strategy differs from the more common
strategy of specialising subproperties with defined domains and ranges, as
supported by the existing XD Tools. In order to develop tool support for
the use of property restrictions in ODP specialisation, the consequences of
applying this type of modelling need to be studied, such that users can be
informed of the potential effects of applying either the traditional (here-
after denoted “property-oriented”, due to the use of subproperties) strategy
for ODP specialisation, or the alternative restriction-based strategy (here-
after denoted “class-oriented”, due to the use of property restrictions on
subclasses).

144



“Dissertation” — 2017/8/15 — 10:53 — page 145 — #159

5.2. ODP Specialisation Strategies

Specialisation Strategies Described

The following section discusses and provides examples of the two initially
discovered strategies for ODP specialisation. The possibilities and the con-
sequences of combining the two strategies in a third, hybrid strategy, are
also discussed. Two things are important to note. Firstly, an ODP spe-
cialisation is defined here as the set of specialisation mapping axioms that
together specialise a single ODP for use in a target ontology. In most cases
each ODP specialisation will consist of several specialisation mapping ax-
ioms, each specialising different classes or properties of the ODP. Often this
set of axioms will be held in an ontology module that is imported into the
target ontology, an ODP specialisation module. Secondly, in discussing the
relative usage frequency of these strategies, here we only compare the spe-
cialisations that modify the semantics of object properties defined in the
original ODP (simple class taxonomies without any object property special-
isation have been filtered out), and we also include specialisations of ODP
specialisations; as OWL imports are transitive, this type of layered struc-
ture is not uncommon. This gives a total of 20 ODP specialisations in the
dataset that is being studied, the distributions of which over the specialisa-
tion strategies are summarised in Table 5.3.

Table 5.3: ODP specialisation strategy use.

Specialisation strategy Occurrences

Property-oriented 9
Class-oriented 6
Hybrid 5

Property-oriented Strategy The property-oriented strategy is the most
common type of ODP specialisation seen in the originally studied set of
ODP specialisations, being used in 9 out of 20 cases. This may be due to
the fact that OWL tools and tutorials tend to emphasize properties as basic
language features, and the construction of property subsumption hierarchies
that specialise those properties as fundamental modelling tasks.

The process by which an ODP is specialised in accordance with the
property-oriented strategy is illustrated and exemplified in Figure 5.1 (the
example is taken from an ontology developed in the IKS project). In the
figure, the ce: namespace prefix indicates that classes or properties are de-
fined within the CollectionEntity ODP14, whereas the cc namespace prefix
indicates that classes or properties are defined within the ODP specialisa-
tion module ContentCollection. We see that the higher level class definitions
defined in the ODP or OWL language itself (ce:Collection, owl:Thing)

14http://ontologydesignpatterns.org/wiki/Submissions:CollectionEntity

145



“Dissertation” — 2017/8/15 — 10:53 — page 146 — #160

Chapter 5. ODP Tool Support Improvement

ce:Collection owl:Thingce:hasMember

rdfs:domain rdfs:range

cc:Content 
Collection

cc:Content 
Item

rdfs:rangerdfs:domain

cc:hasContentMember

rdfs:subClassOf rdfs:subClassOfrdfs:subPropertyOf

Figure 5.1: Property-oriented ODP specialisation strategy (rounded rectan-
gles denote named classes).

are specialised for the modelling problem at hand using newly defined sub-
classes (cc:ContentCollection, cc:ContentItem), and that the usage of
ce:hasMember is specialised to apply to these new class definitions via a new
subproperty cc:hasContentMember with corresponding domain and range
declarations. As shown by [100], the rdfs:subPropertyOf definition implies
that domains and ranges of subproperties must be subsets of the domains
and ranges of their superproperties.

It should be noted that this specialisation strategy does not necessarily
need to be fully instantiated in all parts; there are several cases where only
one subclass is created, and where either the domain or range of the created
subproperty is therefore defined over a more general term. Indeed, that
is the way in which the CollectionEntity ODP itself is structured in Fig-
ure 5.1, with ce:hasMember having a range of owl:Thing. The important
thing about this strategy, and the key differentiator from the class-oriented
strategy, is the definition of a subproperty.

Class-oriented Strategy The class-oriented strategy is a little less com-
mon in the studied set of ODP specialisations, being seen in 6 of 20 cases.
The fundamental idea of this strategy is to avoid creating specialised sub-
properties, by instead reusing the object properties of the original ODP, and
locally constraining the usage of those properties by way of property restric-
tions on specialised classes. As shown by Horridge et al. [91] the definitions
SubClassOf(A ObjectAllValuesFrom(someProperty B)) imposes a local range of B
on the property someProperty for the class A. Using the same approach, we
can represent a local domain of A over the property someProperty where
the target of that property is B, by defining EquivalentClass(A ObjectSomeVal-
uesFrom(someProperty B)).

146



“Dissertation” — 2017/8/15 — 10:53 — page 147 — #161

5.2. ODP Specialisation Strategies

ir:Information
Realization

ir:Informati
onObjectir:realizes

rdfs:domain rdfs:range

wf:Weather 
Forecast

wf:Weather 
Information

rdfs:subClassOf
rdfs:subClassOf

ir:realizes some 
wf:Weather 
Information

owl:equivalentClass

ir:realizes only 
wf:Weather 
Information

rdfs:subClassOf

Figure 5.2: Class-oriented ODP specialisation strategy (rounded rectangles
denote named classes, ovals denote property restrictions).

The concept is illustrated in Figure 5.2. The namespaces used in the
figure are ir:, denoting the Information Realization ODP15, and wf:, de-
noting the Weather Forecast ODP specialisation module. In this example
a wf:WeatherForecast class is defined in terms of how its member indi-
viduals are connected via the ir:realizes property to members of the
wf:WeatherInformation class. In layman’s terms, the owl:equivalentClass
property restriction imposes the condition that any individual that is con-
nected via ir:realizes to some other individual that is a wf:WeatherInformation,
must itself be a wf:WeatherForecast; this restriction corresponds to the
use of a rdfs:domain definition over a specialised property in the property-
oriented strategy. Similarly, the rdfs:subClassOf property restriction im-
poses the condition that only individuals that are wf:WeatherInformation

may be linked via ir:realizes from an individual that is a wf:WeatherForecast;
this corresponds to a rdfs:range axiom in the property-oriented strategy.

Note that the above use of the term corresponds to does not imply that
the described uses of property restriction axioms are logically equivalent to
the use of domain or range axioms; merely that both modelling strategies
allow for describing similar phenomena, via expressing constraints on which
types of entities object properties can connect.

Hybrid Strategy In addition to the pure property-oriented or pure class-
oriented strategies for ODP specialisation, the combination of the two in a
hybrid strategy approach also occurs in the set of ODP specialisations: 5
of the 20 ODP specialisations use such a hybrid strategy. In these speciali-

15http://ontologydesignpatterns.org/wiki/Submissions:Information_

realization

147



“Dissertation” — 2017/8/15 — 10:53 — page 148 — #162

Chapter 5. ODP Tool Support Improvement

sations, subproperties with domain and range declarations are defined, and
the classes involved are also defined using universal and/or existential quan-
tification restrictions ranging over the newly created subproperties. The
latter restriction axioms are possibly redundant if they are defined in this
manner over properties that have themselves got domains and ranges. How-
ever, they could be helpful from a usability perspective in a large ontology
of taxonomic nature, i.e. with a large class subsumption hierarchy, where
one wants readers of said ontology to be able to easily grasp how classes
are intended to be interconnected without having to study the property
subsumption hierarchy.

5.2.2 Strategy Usages and Effects

As seen in Section 5.2.1, the number of published ODP specialisations in
which object property specialisation takes place is limited; only 20 such cases
were found. This is too small a dataset to base conclusions on. This section
broadens the scope from just ODP specialisations to ontologies in general.
If the same strategies are also observed in a larger set of ontologies, this
strengthens the notion that ontology engineers need tool support for these
strategies. Similarly, if the effects of applying these strategies can be ob-
served on ontologies in general, ODP specialisation tooling needs to take this
into account and guide the user accordingly when constructing ontologies
using ODPs. The following section describes a study on the extent to which
the strategies are employed in ontologies published on the web, discusses the
effects of using the property-oriented or class-oriented strategies, and details
a benchmark-based evaluation of the reasoning performance effects of such
use.

Strategy Use

The ontologies studied were gathered in the same manner as described in
Section 5.2.1. While we previously selected only those downloaded RDF
files that held instances of owl:Ontology and that had references to known
ODP namespaces, in this case the latter selection filter was dropped, and
all downloaded graphs containing OWL ontologies were kept. This resulted
in 423 ontologies for study.

Algorithm 1 was then executed over the ontology set. Per the algorithm,
the number of specialised object properties that have domain or range def-
initions are compared against the number of properties that occur in a re-
striction emulating a local domain or range, and the ontology as a whole is
classified based on the most commonly occurring type of structure. In the
case that an overlap exists between these two sets, that is, that there are
individual object properties that are specialised in both ways, the ontology
is classified as employing the hybrid strategy. The results of this classifica-
tion are summarised in Table 5.4 (again, simple class taxonomies have been
filtered out).

148



“Dissertation” — 2017/8/15 — 10:53 — page 149 — #163

5.2. ODP Specialisation Strategies

Input: graph = An RDF graph containing an owl:Ontology
1 restric�onProper�es = List();
2 hasDomainOrRange = List();
3 for subProperty defined in graph do
4 if hasDomain(subProperty) then
5 Append(hasDomainOrRange,subProperty);
6 if hasRange(subProperty) then
7 Append(hasDomainOrRange,subProperty);

8 for class defined in graph do
9 for superClass in getSuperClass(class) do

10 if hasPredicate(superClass, owl:allValuesFrom) then
11 restric�onProperty =

getObject(superClass,owl:onProperty);
12 Append(restric�onProper�es,restric�onProperty);

13 for equivalentClass in getEquivalentClass(class) do
14 if hasPredicate(equivalentClass, owl:someValuesFrom)

then
15 restric�onProperty =

getObject(equivalentClass,owl:onProperty);
16 Append(restric�onProper�es,restric�onProperty);

17 if Overlap(Set(hasDomainOrRange),Set(restric�onProper�es)) > 0
then

18 Return(Hybrid strategy);
19 if Size(hasDomainOrRange) == 0 AND Size(restric�onProper�es)

== 0 then
20 Return(No property specialisation occurring);
21 if Size(hasDomainOrRange) > Size(restric�onProper�es) then
22 Return(Property-oriented strategy);
23 else
24 Return(Class-oriented strategy);

Algorithm 1: Detects ontology property specialisation strategy.

149



“Dissertation” — 2017/8/15 — 10:53 — page 150 — #164

Chapter 5. ODP Tool Support Improvement

Table 5.4: Ontology specialisation strategy use

Property specialisation strategy Occurrences

Property-oriented 193
Class-oriented 33
Hybrid 23
No property specialisation occurring 98

These results indicate that all three object property specialisation strate-
gies discovered in Section 5.2.1 also occur to some extent in ontology en-
gineering where ODPs are not used. The results also indicate that the
property-oriented strategy is the most commonly used strategy by a large
margin. Comparing this against the previously studied ODP specialisations
(Table 5.3), we see that the class-oriented and hybrid strategies are used
less frequently in ontologies (13 % vs 30 % of cases for the former, 9 % vs
25 % of cases for the latter). This suggests there may be a difference in
how ontology engineering is performed when using ODPs as compared to in
the general case. However, given the small size of the ODP specialisation
sample set, and given that several of those ODP specialisations originated
within the same project, further study would be required to validate this
observation.

Strategy Effects

An advantage of the property-oriented strategy is that it creates new sub-
properties, which can themselves be dereferenced and annotated or typed
as needed. For instance, such a specialised subproperty could be defined to
be transitive or functional, without this definition affecting the parent prop-
erty. Another advantage is that this type of modelling is accessible from
a usability perspective; the simple tree view of the property subsumption
hierarchy as used in many tools enables the ontology engineer or end-user
to get an at-a-glance understanding of how the properties are organised and
intended to be used. Yet another advantage is that, given that domains
and ranges are defined, inferring the type of individuals connected via the
property is a fast operation, when compared to the class-oriented strategy.

The main advantage of the class-oriented specialisation strategy is that,
rather than creating subproperties, the original parent properties are reused.
This allows RDF datasets that are expressed in accordance with an ontology
using this strategy to be natively interoperable with other datasets using the
same property, without the need for reasoning. This is particularly relevant
in an ODP context, where the ODP and its properties are intended be reused
extensively. Such interoperability can have many advantages, including in
querying, where SPARQL triple patterns will often define only the predicate
used and leave subject and object variables unbound. Furthermore, this

150



“Dissertation” — 2017/8/15 — 10:53 — page 151 — #165

5.2. ODP Specialisation Strategies

strategy allows for modelling of typing based on property links, much like
duck typing16 in programming; such an approach can have advantages in
situations where the ontology engineer does not control the RDF predicates
used in data creation or extraction, but rather has to deal with what they
are given.

There are also downsides to this strategy, most noticeably in terms of
reasoning performance. As pointed out by Horridge et al. [91], universal
quantification axioms, used in this strategy to emulate rdfs:range defini-
tions, are disallowed in the computationally friendly OWL 2 EL profile. As
illustrated by Urbani et al. [164], using property restrictions to infer typ-
ing requires multiple joins between large sets of candidate entities, greatly
complicating reasoning, particularly when dealing with large datasets. The
results of Kang et al. [98] (also discussed in Section 4.2.3) also indicate
that there may be performance penalties associated with this type of rea-
soning. Their predictive model for reasoning performance includes eight
ontology metrics categorised as impacting or strongly impacting reasoning
performance; of these, three (the number of existential quantifications, av-
erage class out-degree, and subsumption tree impurity) are increased by
employing the class-oriented strategy, as opposed to the property-oriented
one. The strongest impact factor of any metric in their model is the number
of existential quantification axioms, which are heavily used in this modelling
strategy.

Reasoning Performance Evaluation In order to evaluate the reason-
ing performance effects of the class-oriented and property-oriented speciali-
sation strategies, an experiment was set up using the well-known LUBM17

and BSBM benchmarks18. The hypothesis was that, due to the above-
mentioned characteristics of the two strategies, the execution of reasoning
tasks on datasets using ontologies that adhere to the property-oriented strat-
egy would be faster than on the same datasets using ontologies adhering to
the class-oriented strategy.

Each of the two benchmark suite ontologies were adapted to both the
property-oriented and class-oriented strategies, via replacing domain and
range axioms with universal and existential quantification restrictions or
vice versa (in the case of BSBM, as an OWL ontology is not provided,
said ontology first had to be created from scratch using the BSBM Dataset
Specification). Datasets of non-trivial size (LUBM: 1053084 triples, BSBM:
334479 triples) were then generated using each benchmark suite’s data gen-
erator. In order to make the performance evaluation tasks that include

16An approach to programming in which the suitability of some object for some purpose,
for instance as input to a method or function, is determined not by its formal typing, but
by the methods or properties it exhibits; the name is thought to derive from the idiom
“If it looks like a duck and quacks like a duck, it’s a duck”.

17http://swat.cse.lehigh.edu/projects/lubm/
18http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

151



“Dissertation” — 2017/8/15 — 10:53 — page 152 — #166

Chapter 5. ODP Tool Support Improvement

inferring typing axioms non-trivial, RDF typing axioms generated by the
benchmark data generators were removed.

The datasets were then used together with the property- and class-
oriented benchmark ontologies as input for two leading OWL reasoners,
Pellet (version 2.3.1) and HermiT (version 1.3.8). The operations performed
were consistency checking (ensuring that no contradictory axioms exist in
the datasets and ontologies), and realization (finding the most specific class
that a named individual belongs to). As the HermiT reasoner does not
support performing realization from the command line, it was only used to
perform consistency checking over the two datasets. The experiments were
executed on a quad-core 2.6 GHz Intel Core i7 machine with an 8 GB Java
heap size, running Mac OS X 10.9.3.

Table 5.5: Specialisation strategy reasoning performance effects.

Reasoning task Benchmark Reasoner PO time CO time

Consistency check BSBM Pellet 1.27 s 1.90 s
Consistency check BSBM HermiT 1.98 s 27.19 s
Consistency check LUBM Pellet 8.23 s 42.89 s
Consistency check LUBM HermiT 10.10 s 46 min
Realising individuals BSBM Pellet 2.39 s 9.48 s
Realising individuals LUBM Pellet 1.80 s 4+ hours

As illustrated in Table 5.5, the hypothesis holds for the generated datasets.
In all of the reasoning tasks performed, the use of class-oriented ontologies
resulted in slower execution than the use of property-oriented ontologies. In
most cases the effects were severe; in one case execution of the reasoning
task was halted when no results were reported after 4 hours of continuous
execution. It should be noted that the inferred axioms of the reasoning tasks
were equivalent, regardless of which strategy the ontology in question used.

5.3 Template-Based Instantiation

As discussed above, a key step in employing the XD method lies in the
instantiation and adaptation of an ODP building block into an ontology
module fit for solving the concrete modelling problem at hand. Per estab-
lished practice this step typically consists of importing the building block
into the target module using the owl:imports predicate and then, based on
the existing classes and properties within that building block, specialising
it by creating subclasses and (possibly, depending on the chosen specialisa-
tion strategy) subproperties that encapsulate domain semantics [131]. In the
following, this way of instantiating ODPs will be referred to as specialisation-
based.

152



“Dissertation” — 2017/8/15 — 10:53 — page 153 — #167

5.3. Template-Based Instantiation

The specialisation-based approach is generally well-known and under-
stood by ODP researchers. However, in three of the projects this PhD
project follows, the author has noted sets of users who have different prefer-
ences regarding the way that ODPs should be reused—for these people the
use of the specialisation-based approach reduces the usability of the result-
ing ODP-based ontologies. An alternative approach to ODP instantiation
is that of using the ODP building block as a template that is instantiated
into the target ontology module by way of copying and renaming its con-
stituent classes and properties [131]. This template-based ODP instantiation
approach carries with it advantages and disadvantages, that may make it
more or less palatable depending on the intended XD development context
and ontology users.

The following subsections discuss the experiences from the three afore-
mentioned projects (which demonstrated the need for supporting template-
based approaches), presents a method by which template-based instantiation
can be carried out, and provides an initial evaluation of this method.19

5.3.1 Motivation

In the three projects discussed, a recurring theme is the difficulty that less
experienced ontologists (who typically exhibit a high degree of other tech-
nical skills, or skills in other types of conceptual modelling) have in under-
standing or agreeing with ODP-level entities that are imported into their
models.

VALCRI Project

In VALCRI, ontologies are used for data integration purposes. A key re-
quirement for those ontologies is that they need to be easily understandable
by software developers. Another key requirement is that the developed sys-
tem and its ontologies should be easy to modify for deployment in different
contexts.

The initial versions of the VALCRI ontologies were developed mainly by
partners with extensive experience of Ontology Engineering work. ODPs
were instantiated into the target ontologies by import and specialisation.
Challenges arose when these initial ontologies needed to be communicated
to the less experienced ontology engineers in the project, such as profes-
sional software developers and researchers within other fields of computer
science, who would then need to extend the ontologies. These developers
all had extensive experience with data modelling, yet they found the devel-
oped models unintuitive and poorly designed. Their complaints primarily
concerned two things:

1. Many foundational entities that are brought in via transitive imports
from ODP building blocks do not immediately make sense in the tar-

19The work presented in this Section has previously been published in [81]

153



“Dissertation” — 2017/8/15 — 10:53 — page 154 — #168

Chapter 5. ODP Tool Support Improvement

get domain. For instance, criminal involvement in crimes was modelled
using the Participant Role ODP20, which in turn depends on the Sit-
uation ODP21. As a consequence of this choice, the Situation class
was brought into the target ontology as a high-level superclass. Devel-
opers expressed confusion and irritation with this design, which they
argued added unnecessary complexity, as the requirements do not call
for representing a general theory of situations.

2. ODP-level classes and properties, while they are helpful in solving the
modelling problem at hand, are not named or labelled in a cognitively
relevant way for the target domain. For instance, even after being
instructed in the design of the set of reused ODPs, the developers
still expressed dissatisfaction that entities in these ODPs had generic
names such as Agent rather than the domain specific term Nominal22

that they were used to.

These complaints indicate that the initially developed ontologies do not
fulfil the above discussed requirement of being easy to understand by soft-
ware developers. Neither were the developers comfortable with modifying
these ontologies for new uses or deployment contexts, seemingly due to not
being confident that they properly understood the initial ontology design.

IMSK Project

As discussed in Section 4.2.1, at the IMSK workshop, three participants
discussed the effects of owl:imports statements in ODPs, agreeing that the
import feature and the large import closures it leads to create a tension
between reuse and applicability. In particular, one participant criticised
the use of imports, arguing that the base concepts included by imported
patterns could be incompatible with one’s own world view:

”I really have to know what is there and what does it mean. And
maybe it’s written with some other focus, some other direction,
some other goal. And I don’t believe in this general modelling of
the universe that fits all purposes.”—Participant B

Participant B also indicated that he would use the idea of a pattern as
presented in a pattern catalogue and reimplement it, rather than reuse an
existing OWL building block, if that block contained too many imports or
dependencies.

The participants in this workshop were not required to adhere to the XD
method, but were free to use ODPs in whatever way they deemed most suit-
able to solve the provided modelling problem. Without explicit guidance,

20http://ontologydesignpatterns.org/wiki/Submissions:ParticipantRole
21http://ontologydesignpatterns.org/wiki/Submissions:Situation
22A UK Police term indicating a person who is reported as being involved in a crime

in some role, including both suspected perpetrators and victims.

154



“Dissertation” — 2017/8/15 — 10:53 — page 155 — #169

5.3. Template-Based Instantiation

the intuitive way in which the developers instantiated ODPs was consis-
tently to start by studying an ODP’s design documentation, then to draw
that ODP on a whiteboard, then modify that drawing to suit the specific
modelling problem, before finally attempting to encode that illustration into
a solution using Protégé. In spite of the participants having extensive ex-
perience in working with Semantic Web ontologies, the use of owl:imports
to instantiate ODPs was never tried.

E-care@home Project

In reviewing an ODP-based sensor ontology that was developed in the
E-care@home project, the author noticed that just like in the above two
projects, certain classes and properties were included in the target ontology
which, strictly speaking, were not necessary in the target context. When
questioned about this design and about whether tooling or methods to sup-
port reuse without the need to import such classes would be useful, the
developer that was responsible for the ontology in question responded:

”Definitely useful. I spent a considerable amount of time to find
top-level classes that provide the required links to already designed
ones. The lack of such tools is sensed. It can also decrease the
rate of errors or inconsistencies in our design.”

5.3.2 Proposed Solution

Benefits of Template-Based Instantiation

Before describing the approach, the author would like to emphasise that
the idea underlying template-based ODP instantiation is not new; similar
approaches are discussed in prior work [131, 47, 137, 93]. However, such
template-based approaches have not achieved much adoption in the ODP
community and the effects of their use have not been explored sufficiently.

The cases described above illustrate how certain types of ontology devel-
opers and users find the structures generated by the more common specialisation-
based approach to be unintuitive, and that they consequently find ontologies
constructed using this approach to be difficult to understand and to modify.
For these users, a template-based approach in which ODPs are instantiated
by copying and adapting ODP entities to the target domain semantics (and
general ODP-level concepts are left out of the resulting model) would be
advantageous. Additionally, a template-based ODP instantiation approach
carries with it other advantages (and disadvantages) detailed below.

Template-based ODP instantiation does not require the target ontology
to import semantics from namespaces outside of the project scope, so it
reduces the risk of the target ontology breaking due to unforeseen changes
outside of the project scope. This self-containedness also simplifies tool
support implementation in tooling that does not support the addition of

155



“Dissertation” — 2017/8/15 — 10:53 — page 156 — #170

Chapter 5. ODP Tool Support Improvement

owl:imports axioms (i.e., WebProtégé) or that needs to be able to work in
an offline mode.

Furthermore, when performing template-based instantiation, the ontol-
ogy engineer in question becomes more familiar with the resulting module
than when they reuse a whole block of ontology functionality as-is, per the
specialisation-based approach. Consider the analogy of program code ex-
amples taken from the web—rarely do developers reuse such code straight
off, rather they more typically use such examples in parts, adapting them
to the target context, and as part of this process, begin to understand and
grow comfortable with the code. The same should hold for ODPs; by copy-
ing and adapting an ODP to the target domain, ontology engineers make it
their own code, and this reduces the complexity of and barrier to entry of
subsequent debugging or refactoring tasks.

Another advantage of the template-based approach is that the lack of
ODP-level entities in the target ontology makes it easier for domain experts
who are not knowledge engineers to validate that target ontology, as the
number of entities with domain-irrelevant names decreases.

There are, of course, also disadvantages to this approach, or rather,
advantages to the specialisation-based approach that the template-based
approach does not share. In specialisation-based instantiation, the direct
reuse of ODPs by owl:imports means that target ontologies that reuse the
same ODPs (and RDF data that is expressed according to these ontologies)
are immediately interoperable, not only in a conceptual sense, but also in
that the same namespaces are used for shared concepts, which may sim-
plify ontology integration and data sharing. This advantage could also be
achieved in template-based instantiation by aligning local cloned ODPs to
the original source ODPs, but it would then require OWL-level reasoning to
be executed in order to achieve the same result, which may not be suitable
in all cases. Also, in specialisation-based instantiation, higher-level classes
and properties are defined only once, while in template-based instantiation
pattern entities will be instantiated into the target ontology multiple times—
which could complicate maintainability, and, particularly if done manually,
could increase the risk of inconsistency.

Proposed Method of Instantiation

In order to implement tooling that supports template-based instantiation,
a concrete list of tasks or steps to be taken must be established, along with
the order in which these should be performed. The list of steps provided
below has worked well in initial trials with some commonly used patterns.
Due to the variance in structure of published ODPs, the below steps do not
transfer all semantics from the source ODP (including its entire transitive
import closure) to the target model in all cases—in some cases, additional
modelling steps may be required. In the following ”copy” implies cloning
entities and associated class restrictions into a new namespace.

156



“Dissertation” — 2017/8/15 — 10:53 — page 157 — #171

5.3. Template-Based Instantiation

1. Copy ODP leaf classes into subclasses of owl:Thing in the target mod-
ule. If two leaf classes in the source ODP have some shared parent
classes below the owl:Thing level, also copy the least common sub-
sumer into the target module as a shared parent to the copied leaves.

2. Copy those object or datatype properties that have as their domain
or range such classes as were copied above into the target module.
For object properties: narrow a potential unmatched half of the do-
main/range to the least common subsumer or (in the case that one
does not exist) to the leaf class level.

3. Copy (and similarly to above, narrow if it is an object property) any
properties involved in class restrictions on classes copied in the first
step above and use these copied properties to create equivalent restric-
tions in the target module.

4. Merge the resulting structure with existing entities in the target mod-
ule, using ontology matching techniques to find candidate matches.

As previously mentioned, the steps proposed above have worked well
in initial testing, but there are some cases where they are insufficient and
further manual work will be needed. These cases include but are not limited
to:

• ODPs where leaf classes may need to be instantiated twice (e.g., the
Place class in the Place ODP23, or the Object class in Time Indexed
Part Of ODP24).

• When higher-level (non-leaf) classes from a parent ODP are reused and
specialised in a child ODP the situation can arise that the child ODP
concepts are sibling leaves to parent ODP concepts, and consequently
when instantiating the child ODP, some leaf nodes can exist that are
not intended to be instantiated.

5.3.3 Evaluation

As discussed above, ontologies built using template-based ODP instantiation
are likely to be easier to understand and easier to modify for a certain group
of inexperienced ontologists than those built using specialisation-based in-
stantiation. In order to evaluate this proposition, a small study was run
within the OSTAG project. The study included five participants, all aca-
demics within Computer Science or related topics. The participants had all
used ontologies, but only two participants had actually constructed ontolo-
gies themselves, and these two were beginners to the task, this project being

23http://ontologydesignpatterns.org/wiki/Submissions:Place
24http://ontologydesignpatterns.org/wiki/Submissions:TimeIndexedPartOf

157



“Dissertation” — 2017/8/15 — 10:53 — page 158 — #172

Chapter 5. ODP Tool Support Improvement

Table 5.6: Instantiation approaches ease-of-use comparison.

Task 1 Task 2 Task 3
Template-based easiest 4 2 3
Equally easy/difficult 1 2 0
Specialisation-based easiest 0 0 0
Correct answer rate 83 % 81 %

the first project where they had done such work. None of the participants
had worked with XD or ODPs previously.

For evaluation two sets of ontology requirements were constructed, and
for each of these, two ODP-based ontology variants were then built (one
template-based, and one specialisation-based)25. The specialisation-based
variants were constructed using the traditional specialisation-based XD method,
while the template-based variants were constructed strictly adhering to the
template-based method proposed above. The workshop participants were
given a tutorial on ODPs, XD, and the specific ODPs that the ontology
variants had been constructed from. They were then given three tasks to
perform individually:

1. Task 1: For requirement set A, out of seven competency questions
provided, determine which ones can be answered by each of the two
ontology variants.

2. Task 2: For requirement set B, out of nine competency questions pro-
vided, determine which ones can be answered by each of the two on-
tology variants.

3. Task 3: For the requirement set A, modify the two ontology variants
by adding four object properties, specialising some of the more generic
properties already in place.

After each task, the users were surveyed on which of the two ontology
variants they found easiest to understand or to modify, or whether they
found the two equally easy/difficult. The results of these surveys and the
total percentage of correct answers to Tasks 1 and 2 given by the participants
are provided in Table 5.6. Note that since not all users finished all tasks
within the workshop time-frame, the answer frequency drops in Tasks 2 and
3.

Obviously, a study as limited as this is insufficient to conclusively eval-
uate the utility of the template-based approach, and the generalisability of
the findings is limited. All the same, it’s interesting to note that the pro-
posed method can be followed in practice to generate ontologies that work,
and that of the experiment participants, not a single one reported that the

25Available at http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138724.

158



“Dissertation” — 2017/8/15 — 10:53 — page 159 — #173

5.4. Summary: eXtreme Design for Protégé

ontologies constructed using the traditional specialisation-based approach
to ODP instantiation were the easiest or most helpful. These findings, al-
beit early, clearly demonstrate the need for additional study of instantia-
tion method effects, along with the development of ODP tools supporting
template-based instantiation.

5.4 Summary: eXtreme Design for Protégé

The following section introduces and discusses the features of eXtreme De-
sign for WebProtégé (XDP), an extension to the well-established WebProtégé
ontology engineering environment that supports the key ODP instantiation
tasks in the eXtreme Design workflow, supports the new solutions devel-
oped and discussed in the previous sections of this chapter, and (due to
its WebProtégé heritage) supports collaboration on ontology engineering by
multiple simultaneous users over the internet. XDP is open source26, works
in any browser, and has passed initial usability evaluation with acceptable
results.

5.4.1 Motivation

As discussed in Section 2.4.2, the XD method consists of a number of tasks,
some of which are performed jointly by a development team, and some of
which are performed by the individual developer(s). The latter include ODP
import and specialisation (or in the case that template-based instantiation
is employed, cloning), and composition. Using ODPs in an efficient manner
requires tool support for performing these tasks.

Such tool support was developed within the NeOn project in the form
of a set of plugins for the Eclipse-based NeOn Toolkit27 ontology engi-
neering development environment. The XD Plugin provided a number of
components to this environment that simplified pattern browsing, selec-
tion, adaptation, and use. The browsing and selection components made
use of the ontologydesignpatterns.org pattern repository, and allowed
users to browse the patterns in this repository, or search over them using
competency questions. The adaptation component contained a number of
wizards that allowed for easier specialisation of generic patterns for use in
specific projects. The assistant component provided warnings and sugges-
tions to modellers based on known good or bad practices (i.e., patterns
or anti-patterns). While the plugins are still available and to the author’s
best knowledge still work, the NeOn Toolkit lost development traction and
stopped being updated soon after release—consequently, developers who
want to use ODPs to develop ontologies that are compliant with the more
recent OWL versions, or who want to develop in more widely used IDEs,
have had no appropriate tool support available to them. Additionally, the

26Available for download or study at https://github.com/hammar/webprotege
27http://neon-toolkit.org/

159



“Dissertation” — 2017/8/15 — 10:53 — page 160 — #174

Chapter 5. ODP Tool Support Improvement

Table 5.7: User preferences on communications methods for ontology engi-
neering (65 responses).

Method Percentage who prefer

Face to face conversation 58.5 %
Drawings 53.9 %
Joint development space 43.1 %
VMS commits 43.1 %
Email correspondence 41.5 %
Issue tracker / forum 35.4 %
Screen sharing 32.3 %
Video conference 27.7 %
Chat conversation 20.0 %
Phone conversation 15.4 %

XD plugin was built on the understanding of ODPs and ODP practices that
was the state of the art at the time the NeOn project ran, i.e. 2006–2010.
Since then, several advances in the field have been made, including those
described in Sections 5.1–5.3, motivating further development of tooling to
support these new findings.

XDP is technically constructed as a fork based on the existing ontology
engineering environment WebProtégé. This is motivated by the collabo-
ration features that WebProtégé possesses, which the Ontology Engineer-
ing survey (introduced in Section 3.2.7) indicates would be appreciated by
certain users. Specifically, Table 5.7 shows the answers to the question
“In communicating about modelling choices within an ontology engineering
project, which communications methods would you prefer to use?”. Users
were allowed to select as many of the provided options as they wished. As
the table indicates, a common preference among the respondents was to use
a joint ontology development workspace, such as WebProtégé or a shared
triple store, as a communications aid or method in ontology engineering.
However, when asked which communications methods the respondents ac-
tually do use (Table 5.8), such a joint development workspace is not very
frequently employed. While the gap between users who prefer such tool-
ing (43 %) and the users who do use such tooling frequently (33 %) is not
very large numerically, it should be noted that other communications mech-
anisms that are much less preferred (e.g., phone calls and chatting) are used
to a much larger degree. If users are, as the latter would indicate, commu-
nicating about ontology engineering in ways that they do not like, then it
is reasonable to assume that new tooling that enables these old methods to
be replaced (such as a shared ontology engineering environment), would be
appreciated by many users.

160



“Dissertation” — 2017/8/15 — 10:53 — page 161 — #175

5.4. Summary: eXtreme Design for Protégé

Table 5.8: Reported use of communications methods for ontology engineer-
ing (61-65 responses per row).

Method Never Rarely Occ. Often Always

Email correspondence 1.5 % 1.5 % 13.9 % 49.2 % 33.9 %
Face to face conversation 1.6 % 6.4 % 23.8 % 44.4 % 23.8 %
Drawings 4.8 % 6.5 % 30.7 % 35.5 % 22.6 %
Chat conversation 12.9 % 14.5 % 17.7 % 43.6 % 11.3 %
Phone conversation 16.4 % 13.1 % 23.0 % 36.1 % 11.5 %
Video conference 26.2 % 8.2 % 19.7 % 31.2 % 14.8 %
VMS commits 21.3 % 13.1 % 21.3 % 29.5 % 14.8 %
Screen sharing 24.6 % 18.0 % 16.4 % 32.8 % 8.2 %
Joint development space 26.7 % 20.0 % 20.0 % 23.3 % 10.0 %
Issue tracker / forum 23.0 % 23.0 % 21.3 % 23.0 % 9.8 %

5.4.2 Developed Solution

WebProtégé [163] is a web application for ontology engineering. Its back-end
is built using proven Protégé technologies, so it supports most of the recent
W3C ontology standards. The user interface is constructed using the Google
Web Toolkit (hereafter GWT) technology stack, which enables full-screen
web applications that to a rather large degree look and act like desktop soft-
ware. WebProtégé has fewer features than the full desktop Protégé ontology
editor (there is no built-in visualisation, nor any ontology reasoner included
by default), but it requires no local installation and it adds novel collabo-
ration and discussion features (i.e., simultaneous online editing of the same
ontology by two partners, embedded issue tracking on class-by-class level,
etc.) enabling new usage scenarios that desktop Protégé does not support.

The use of GWT is of particular importance, as most existing OWL
infrastructure code (desktop Protégé, the OWL API, etc.) is constructed in
Java. GWT is, at its core, a Java to JavaScript transpiler—it takes existing
Java code28, and translates it into JavaScript that can be executed in a
web browser. This enables developers to easily use a consistent Java-based
development toolchain from the back-end through the front-end of their
system. Additionally, it enables developers to write only one version of
their web application, and GWT then generates JavaScript code that works
in all major browsers (previously, browser-specific hacks were a common
nuisance for web developers).

At the time of writing, WebProtégé does not have a plugin infrastructure.
Consequently, the author’s work in adding XD support required forking the
main WebProtégé code base, and subsequently, keeping the forked XDP
edition up-to-date with mainline WebProtégé. In order to simplify such
maintenance, the XDP integration into the existing WebProtégé code base

28Not all Java features are supported in this process, but a very large subset are sup-
ported.

161



“Dissertation” — 2017/8/15 — 10:53 — page 162 — #176

Chapter 5. ODP Tool Support Improvement

Lucene Index

Semantic 
Vector Store

ODPs

Mapping 
Files

XdpServices
REST API

Indexer

Metadata Fetcher ODP Fetcher

Composite Search

WebProtégé client.xd

server.xd

Client (GWT)

Server (Java)

Figure 5.3: eXtreme Design for WebProtégé architecture diagram.

is designed to be as small and independent of other WebProtégé features
(and therefore as maintainable) as possible. The XDP architecture has
consequently been designed to consist of two loosely connected subsystems,
illustrated in Figure 5.3:

• Integrated in a fork of the main WebProtégé code are several client
UI components and the necessary server-side components needed to
persist an ODP to a WebProtégé project. These components extend
existing WebProtégé base GUI and persistence components. Like-
wise, they communicate with one another by using extensions to the
WebProtégé standard GWT-RPC-based dispatch mechanisms.

• Supporting these components, a separately maintained and loosely
coupled REST service enables clients to search for ODPs, to browse
ODPs by category, and to fetch the documentation and OWL repre-
sentation of a given ODP. This back-end service queries Lucene indexes
built from a set of input ODPs and mapping metadata extracted from
the community ODP portal29, using the CompositeSearch method in-
troduced in Section 5.1.

XDP’s user-facing components are housed in a WebProtégé UI tab ti-
tled “Design Patterns” (see Figure 5.4). This tab houses an ODP Selector
component, and an ODP Details component. The former provides an in-
terface where the user can browse for ODPs by category, or search over all
ODPs using a query string. Browsing or search results are displayed in the
same component; when browsing they are listed alphabetically, and when
searching they are listed by search engine confidence score. Upon selecting
an ODP from the result list, the illustration and documentation for that
ODP is displayed in the ODP Details component.

29http://ontologydesignpatterns.org

162



“Dissertation” — 2017/8/15 — 10:53 — page 163 — #177

5.4. Summary: eXtreme Design for Protégé

Figure 5.4: eXtreme Design for WebProtégé design patterns tab.

When the user has found an appropriate ODP they can run the ODP
Wizard component, which guides them through instantiating the ODP into
their target ontology. In the initial version 1.0 release, this wizard supported
selecting a specialisation strategy to use (based on the work presented in
Section 5.2), specialising ODP classes and/or properties by subsumption,
constraining the semantics of property specialisations, aligning the resulting
model with the existing ontology, and persisting the ODP specialisation into
the existing ontology project. In the subsequent version 1.1 release support
was also added for template-based ODP instantiation, using the method and
heuristics presented in Section 5.3.

XDP version 1.1 also features integrated ontology visualisation using the
VOWL notation [112] (see Figure 5.5). As shown in Section 4.3, users con-
sistently prefer this notation over other available representations. Since the
VOWL reference tooling called WebVOWL30 is open source and built using
web technologies such as JavaScript and JSON, integrating this technology
with XDP was relatively straightforward.

5.4.3 Evaluation

XDP usability has been evaluated using the System Usability Scale (here-
after SUS). SUS, developed by Brooke [29], is a quick and easy tool for gath-
ering users’ opinions of the usability of some artefact, such as a function of
some piece of software, a website, or some larger IT system. It consists of

30http://vowl.visualdataweb.org/webvowl.html

163



“Dissertation” — 2017/8/15 — 10:53 — page 164 — #178

Chapter 5. ODP Tool Support Improvement

Figure 5.5: eXtreme Design for WebProtégé visualisation tab.

1. I think that I would like to use this system frequently
2. I found the system unnecessarily complex
3. I thought the system was easy to use
4. I think that I would need the support of a technical 
person to be able to use this system
5. I found the various functions in this system were well 
integrated
6. I thought there was too much inconsistency in this 
system
7. I would imagine that most people would learn to use this 
system very quickly
8. I found the system very cumbersome to use
9. I felt very confident using the system
10. I needed to learn a lot of things before I could get going 
with this system

Figure 5.6: System Usability Scale assessment questions (source: [29]).

164



“Dissertation” — 2017/8/15 — 10:53 — page 165 — #179

5.4. Summary: eXtreme Design for Protégé

ten Likert scale questions [109], each asking the respondent to grade on a
five-step scale, ranging from “Strongly disagree” to “Strongly agree”, how
much they agree with statements about the usability of the system (illus-
trated in Figure 5.6). The questions are designed in such a manner that they
should ideally provoke some reaction in the respondent, such that answers
would skew to either of the two extremes (“Strongly agree” or “Strongly
disagree’), rather than recording ambivalent answers. Positive statements
about the artefact under evaluation are alternated with negative ones in or-
der to prevent the respondent from simply clicking through the same answer
to all questions based on some overall assessment of the artefact in question.

Once all questions in a SUS evaluation are answered, the individual ques-
tion responses are scored, summarised, and scaled, to produce a composite
score between 0 and 100 representing the total usability of the artefact being
evaluated. In the first step, a score contribution of 0–4 is assigned to each
question’s answer. For questions with positive statements (1, 3, 5, 7, and
9 in Figure 5.6), the score contribution is the scale position minus 1, i.e., 0
indicates complete disagreement, and 4 indicates complete agreement. For
questions with negative statements (2, 4, 6, 8, and 10 in the figure) the score
contribution is 5 minus the scale position, i.e., 0 indicates complete agree-
ment, and 4 indicates complete disagreement. The scores are summarised
and multiplied by 2.5 to obtain the overall 0-100 score.

It is important to note that SUS is designed to evaluate the usability
of systems in some given context, i.e., with similar (ideally the same) re-
spondents applying the scale to multiple artefacts, or to multiple versions
of the same artefact. Given the subjective nature of the questions, it is not
guaranteed that respondents with different backgrounds, skills, or interests
would necessarily reply in a consistent manner for some particular artefact.
Consequently, Brooke [29] warns against generalising SUS results beyond
the context and the population in which the SUS evaluation(s) took place.

That being said, Bangor et al [7] have collected a large number of SUS
evaluations (2324) across a multitude of studies (206), and analysed these
surveys quantitatively. Based on their analysis, and based on a subsequent
study correlating SUS scores to overall evaluations of usability (based on ad-
jective terms like “Excellent”, “OK”, “Poor”, etc.), they attempt to answer
the question What is an Acceptable SUS Score? They find that a reasonable
rule-of-thumb is that SUS scores below 50 are cause for significant concern
(adjectives “Worst imaginable”, and “Poor” belong to this category), that
scores ranging from 50-70 indicate an artefact of marginal usability (adjec-
tive “OK”), and that scores above 70 indicate an acceptable level of usability
(adjectives “Good”, “Excellent”, and “Best imaginable”). It should be men-
tioned that Bangor et al consistently use the term “Product” rather than
“System” in their surveys, which may skew the results somewhat, given the
increased expectancy of usability that respondents are likely to have regard-
ing what is perceived as a finished product, rather than a prototype system
or software in development.

165



“Dissertation” — 2017/8/15 — 10:53 — page 166 — #180

Chapter 5. ODP Tool Support Improvement

Table 5.9: SUS Evaluations of
XDP 1.0.

Respondent Score

R1-1 40
R1-2 45
R1-3 72.5
R1-4 77.5
R1-5 77.5
R1-6 52.5
R1-7 85
R1-8 65
R1-9 52.5

Mean 63.1

Table 5.10: SUS Evaluations of
XDP 1.1.

Respondent Score

R2-1 67.5
R2-2 30
R2-3 52.5
R2-4 75
R2-5 82.5
R2-6 75
R2-7 67.5
R2-8 47.5
R2-9 77.5

Mean 63.9

XDP SUS Evaluation

SUS evaluation of XDP was carried out with users within the VALCRI,
SSyncAHD, and eCare@Home projects (version 1.0, Table 5.9), as well as at
a tutorial held in conjunction with the International Semantic Web Confer-
ence (ISWC) 2016 (version 1.1, Table 5.10). These different contexts imply
that the findings are not necessarily comparable with one another across
versions, and the relative scarcity of responses (nine for each version) imply
that the usability of the system has by no means been exhaustively tested.
However, the primary goal of this evaluation was not exhaustive testing of
XDP for the purpose of academically validating its usability. Rather, the
author wanted, based on prior experiences of academic prototypes, to verify
that an at least acceptable level of usability was reached for the first released
version of XDP, and that this level of usability was more or less maintained
as the XDP was updated with a variety of new features in version 1.1.

The mean score for version 1.0 was 63.1, with a median score of 65, and
the mean score for version 1.1 was 63.9, with a median of 67.5. These sets
of scores both fall within the upper half of the marginally acceptable range
per Bangor et al [7], and indicate no immediate cause for concern that the
new features added in version 1.1 reduce the usability of the tooling.

Additional User Feedback

In conjunction with the above SUS evaluations, respondents were also of-
fered the opportunity to submit free-text comments with improvement sug-
gestions regarding different aspects of the tooling. The comments (shown
in Table 5.11) indicate that users seem quite satisfied with the presentation
of ODPs, but that further training, UI features, or documentation may be
needed to better support them in using the ODP search features and the
instantiation wizard.

166



“Dissertation” — 2017/8/15 — 10:53 — page 167 — #181

5.4. Summary: eXtreme Design for Protégé

Table 5.11: XDP improvement suggestions from users.

XDP Feature Comments

ODP Category
Selector

• “Maybe number of ODP in each category in paren-
theses?”

• “It is not clear whether the browse/search fea-
tures are intended to be used together - I initially
thought it was a matter of filtering to a category and
then running a search - but I don’t think this is the
case. Some categories have no entries - making it
difficult to see how the ’browse’ is meant to work.”

ODP Search • “More filtering, e.g. on OWL 2 profile. Perhaps
filtering on top-level ontology applied (in case there is
more than one).”

• “Maybe if ODPs could be tagged, you could
have predictive text in the search feature that suggest
tags existing in the database. For example typing
‘memb’ could suggest ‘member’ or ‘membership’.”

• “A bit of advice as to whether full CQ should
be entered or simply 1-2 keywords.”

ODP Details
View

• “I actually thought this was very good as it is. It
was better than I would have expected, and I really
appreciated the integration with OWL visualization.”

• “I really liked that feature.”

• “This was quite impressive - especially the in-
tegration of the visualization facilities.”

ODP Wizard • “I think the wizard was great and worked very well
for us. I am just not sure that I would have figured
out directly what to do if I was on my own, using the
wizard for the first time without help. So maybe it
would be good to just have a little available help (on
a pop up of icon), in particular to explain the use of
‘specialize’ and the use of ‘modify/delete’.”

• “I think this may need to be explained in sim-
pler terms for the non-expert.”

• “This involved quite a lot of fairly complex choices -
perhaps a bit more by way of guidance would be useful
here? Also the delete/modify/etc functions can apply
to each of a number of lines/options.”

167



“Dissertation” — 2017/8/15 — 10:53 — page 168 — #182

Chapter 5. ODP Tool Support Improvement

168



“Dissertation” — 2017/8/15 — 10:53 — page 169 — #183

Chapter 6

ODP Methodology
Development

This chapter presents the author’s work to answer the research question
“How can ODP usage methodology be improved to support inexperienced on-
tologists?”. The author has, through involvement in three different ontology
engineering projects, observed shortcomings in the eXtreme Design ODP-
based ontology engineering methodology. These shortcomings include an
absence of role descriptions and role allocation guidance, an absence of non-
ODP reuse guidance, and an absence of guidance on how to adapt XD to
non-optimal project contexts. The following chapter describes these obser-
vations in more detail and suggests improvements to the XD methodology
to overcome them.

6.1 Project Roles

An important success factor in any project, but particularly in technically
advanced projects such as those where ontology engineering is involved, is
the matching of the right project member to the right tasks, such that those
tasks are performed efficiently and correctly. This is particularly important
if inexperienced developers are involved, who are likely to make a greater
number of mistakes than more experienced users, and whose work thus re-
quires a greater degree of quality assurance prior to release.

While role and task allocation might emerge as a project progresses,
based on trial-and-error experiences within the project scope, such allocation
is likely to be far less efficient and take far longer than if some decisions on
roles and responsibilities had already been made at the project outset. While
eXtreme Design suggests that each project begin with a project initiation
and scoping meeting at which staffing and role issues should be discussed,
the methodology does not give any advice as to what constitutes suitable

169



“Dissertation” — 2017/8/15 — 10:53 — page 170 — #184

Chapter 6. ODP Methodology Development

roles for an XD project, nor which types of tasks in the XD workflow ought
to be staffed with which roles, that is, which responsibilities are associated
with each role.

In the following sections, observations and experiences from three projects
are presented, concerning the challenges of differing proficiency levels among
developers, emergent roles, and user acceptance of formally assigned roles.
Based on these reports, a suggested set of ontology engineering roles, role
responsibilities, and role assignment principles are then presented.

6.1.1 Observation: Role and Task Challenges

VALCRI

Within the VALCRI project, several universities and industry partners came
together to build a software system in which ontologies and other technolo-
gies were used to integrate and visualise data in the criminal analysis and
investigations domain. As the project progressed it became apparent that
the competencies and interests of the participants working on ontology en-
gineering tasks differed widely, and that consequently, the work processes
and task allocation had to be adapted to account for this. There were at
least four different types of participants involved, roughly corresponding to
four partners in the project:

• Ontology Researchers: Academics with deep knowledge of ontology
technologies and ontology engineering processes, but little or no initial
knowledge of the domain.

• Software Developers: Programmers from industry partners tasked with
implementing a system making use of ontologies. Typically had expe-
rience of conceptual modelling using technologies other than Semantic
Web ontologies (e.g., ER or UML models), and by virtue of being in-
volved in requirements elicitation for the software system as a whole,
had some knowledge of the domain.

• Provenance Researchers: Academics studying how to capture and for-
mally represent information provenance such as where and how in-
formation originated, and how users have interacted with or modified
that information. Had deep knowledge of part of the domain and
experience of conceptual modelling, but lacked ontology engineering
knowledge.

• Policing Domain Experts: Industry partners who work with and train
police analysts. Had deep knowledge of several parts of the domain,
including aspects such as criminal profiling, access and confidentiality
requirements on data, chain of custody issues, etc. Also had experience
of conceptual modelling, but lacked ontology engineering knowledge.

170



“Dissertation” — 2017/8/15 — 10:53 — page 171 — #185

6.1. Project Roles

While the ontology engineering work package was lead by the ontology
engineers, the initial plan was that each of the groups would work semi-
independently and contribute modules or sub-ontologies based on their areas
of expertise. In order to bootstrap the three groups of non-ontologists to
become proficient in OWL ontology engineering, a set of training materials
was produced and distributed by the ontology researchers, consisting both
of self-study portions and hands-on sessions with a trainer. An initial work
process based on eXtreme Design was developed and communicated. The
team was geographically distributed and communication was maintained via
weekly telephone calls.

It became apparent rather quickly that the initially envisaged work pro-
cesses were not sufficient to produce results of high enough quality for use
in the software system under development. Three observed challenges in
particular concern the roles and tasks of the project:

1. Training software developers or domain experts in ontology engineer-
ing tasks to a level at which they can work on real world modelling
challenges is difficult and time-consuming, even when the trainees have
prior experience of conceptual modelling. In the VALCRI project, even
after training, the participants needed extensive hand-holding from the
ontology researchers.

2. Quality assurance and release engineering tasks for ontologies are dif-
ficult and require a particular set of skills that not all ontology de-
velopers have, or can easily develop. Reconciling incompatible design
choices in a way that both fulfils requirements and pleases all involved
parties may require the kind of understanding of both the domain and
problem at hand, and the tradeoffs and consequences of design choices,
that only comes from having participated in a couple of projects and
learned through experience. In the VALCRI project the initial plan
was that the ontology developers, after training, would be able to in-
tegrate partial modules. This never worked in practice.

3. Domain experts cannot always provide useful requirements on their
own; input from the software developers who build the system is
needed to capture the full set of constraints restricting the ontology.
In the VALCRI project, we found that the participation of software
developers in designing requirements was critical in concretising the
competency questions that would need to be applied to the ontology,
and also in prioritising which requirements to treat first, depending on
the system development schedule.

As a consequence of these and other challenges, the ontology engineering
work stalled for quite some time. Acceptable results were eventually devel-
oped, but only after the academic ontology engineers had taken over respon-
sibility for developing and formalising the ontologies, the other three groups
had reverted to providing documentation and other materials describing

171



“Dissertation” — 2017/8/15 — 10:53 — page 172 — #186

Chapter 6. ODP Methodology Development

their respective domain concepts (e.g., instructions, definitions, diagrams,
etc.), and the system requirements had been significantly scaled back. This
solution, in addition to providing a less fully featured ontology, required
initially unanticipated investments of time and effort, including additional
communications overhead (some of which required staff to travel across Eu-
rope) and additional work to resolve ambiguities or other issues caused by
the added communications complexity. Additionally, this solution depended
on high availability of expert ontology engineers, the number of which were
limited in this project. For these reasons it is unlikely that this solution
would have scaled well to a more ambitious ontology engineering project.

SSyncAHD

The core development team of the SSyncAHD project consisted of three
people, all with backgrounds in veterinary epidemiology, that is, the study
of how disease spreads among animals (in this case primarily farm animals).
None of them had prior experience of participating in ontology modelling
projects. As the workshops with these three developers progressed it became
obvious that while their domain expertise was comparable, the developers
differed with regard to their understanding of ontology engineering and with
regard to which parts of the project they were most interested in. This was
evident in the complexity level of the questions posed, the results of individ-
ual modelling exercises that were performed, and the degree to which the
individual developers participated in and drove the discussion, as illustrated
in Table 6.11.

Table 6.1: Statements expressed per participating developer (each statement
consists of one or more uninterrupted spoken sentences; trivial one-word
utterances are excluded).

Speaker Workshop 1 Workshop 2

Karl Hammar 131 571
Developer J 82 480
Developer K 76 382
Developer L 33 95

Studying the content of these statements, the three participants can be
characterised as follows:

• Developer J: Displayed a good understanding of ontology engineer-
ing practice, especially considering lack of training. Asked practical
questions about how to implement some feature correctly or how one
might best model some specific concept when whiteboard prototyping.

1Participants other than the author have been anonymised as required by the condi-
tions of the author’s participation.

172



“Dissertation” — 2017/8/15 — 10:53 — page 173 — #187

6.1. Project Roles

Lead (i.e., held the pen and lead the discussion) most such prototyp-
ing work. Also discussed workflow challenges such as software support,
tooling for reusing existing ontologies, IRI minting, etc.

• Developer K: Displayed a lower level of understanding of ontology en-
gineering practice but a more extensive understanding of the domain
in question. Discussed how to correctly understand or interpret con-
cepts from the domain when whiteboard prototyping. Occasionally
modified or corrected solutions by J.

• Developer L: Displayed a lower level of understanding of ontology en-
gineering practice. Less active throughout the sessions, but seemingly
not due to any social reasons (interactions during the workshop breaks
were comparable to J and K). Asked about methodology and workflow,
and about the possible intellectual property consequences of ontology
reuse.

These characterisations are of course simplifications, but they give a
passable overview of how the participants interacted. J was quite clearly
the most proficient modeller, K was more knowledgeable about the domain
and helped J capture it correctly, and L was a bit quieter and seemed to
take in and analyse a lot of knowledge before contributing to the discussion
(though when they did, those comments were of some consequence).

As the second workshop (the longest and most ambitious in terms of
development goals) progressed, the author noted that the three developers
spent a lot of time discussing the merits and drawbacks of different ways
of modelling relatively simply concepts. While there was little feature or
scope creep (thanks to the use of competency questions and the eXtreme
Design methodology), the participants were nonetheless unable to finish
modules on time and progress to the subsequent requirements stories. This
was likely the result of three factors: firstly, with four people present in
the room, discussions had a tendency to drag out more than needed, to
capture every perspective on the problem from every participant present.
It is likely that pair-based development as suggested by XD would be more
efficient. Secondly, the situation lacked a designated project manager or
project leader, someone who could have put their foot down and decided
that a particular module was good enough to commit to the ontology under
development. Thirdly, due to the lack of training, too much time was spent
on discussing basic ontology modelling issues, which delayed work.

When the author suggested that the developers consider establishing the
emergent roles described above more formally, and associating certain XD
tasks to the different roles, they immediately latched on to the idea. They
suggested that J take on a role which included quality assurance and release
engineering, whereas K and L would study up on and subsequently work
with more basic ontology engineering tasks. The developers also brought
up the value of employing role structures in the case that the project be-
come an open source collaboration (which was a potential future goal of

173



“Dissertation” — 2017/8/15 — 10:53 — page 174 — #188

Chapter 6. ODP Methodology Development

the project)—in such a scenario, they argued, they would need some way
to differentiate between the core developer team and occasional external
contributors.

OSTAG

There were three main developers in the OSTAG project, all of whom were
academics in the ontology engineering and Semantic Web fields: one asso-
ciate professor, one senior researcher (with a PhD), and one junior researcher
(a PhD student). The junior researcher had limited ontology engineering ex-
perience, whereas the other two developers had worked with ontologies for
some time.

The associate professor developed the software components that made
use of the OSTAG ontology. The other two researchers worked jointly to
build the ontology, based on documents describing the domain that were
provided by industry partners (typically hardware specifications and require-
ments specifications documents). To this end, they would meet in an office
or meeting room and do modelling, both on a whiteboard and using a shared
computer. The parts of the ontology that were easy or obvious to formalise
into OWL were immediately entered into Desktop Protégé on the computer,
while any non-trivial modelling challenges initiated a round of back and
forth modelling on the whiteboard, comparing the pros and cons of different
designs, before a consensus was reached and the selected solution input into
the computer.

While there were no formal roles assigned in the development process, a
working order emerged early on in the project whereby both ontology devel-
opers took turns at the whiteboard, and the junior developer was responsible
for managing input of the resulting design into the computer. While the se-
nior researcher initially directed the work, and had the final say about the
designs, the junior researcher’s competence rapidly increased to the point
that they both made roughly equal contributions to the work, improving on
and correcting each other’s work. Work progressed at a reasonable pace,
further aided by the fact that the provided specifications and requirements
documents were rather unambiguous and consequently relatively easy to
formalise into an ontology.

Issues arose, however, when the first iteration ontology was released to
the associate professor, who needed to implement a rather complex piece of
code-generating software that made use of the developed ontology. While the
developed ontology fulfilled the formal requirements that had been elicited
from the documentation from industry, the associate professor found it dif-
ficult to use in practice, due to poor usability and lack of documentation.
Furthermore, the first iteration ontology lacked a fine-grained representation
of some concepts that the software components required. This necessitated
the development of a second iteration ontology that fixed these issues. Had
the associate professor been involved more frequently with the development

174



“Dissertation” — 2017/8/15 — 10:53 — page 175 — #189

6.1. Project Roles

project, these issues would likely have been caught earlier, which would have
saved development time.

6.1.2 Suggestion: XD Roles and Responsibilities

Given the challenges observed and discussed above, a set of recommenda-
tions on roles, the responsibilities of those roles, and role allocation principles
would likely have proven beneficial to the discussed projects (and ideally also
to other projects of similar nature).

While many existing ontology engineering methodologies (e.g., METHON-
TOLOGY [49], On-To-Knowledge [157], etc.) entirely ignore this facet of on-
tology engineering there are some that do not, notably DILIGENT [129, 128]
(discussed in Section 2.3). Unfortunately, DILIGENT lacks some detail: it
does not describe the suggested roles beyond their labels (domain experts,
users, knowledge engineers, and ontology engineers), it does not discuss role
allocation, and it does not discuss the responsibilities of the respective roles
in the initial ontology construction phase of a project (the method empha-
sises subsequent analysis, revision, and update tasks instead). Furthermore,
DILIGENT suggests that a control board should have the final say with
regard to updates under development, when in fact, as discussed above, col-
lective responsibility for release engineering work is not always appropriate
and can instead slow down development. Due to these limitations, direct
reuse of DILIGENT roles and role allocation is unsuitable. Instead, the au-
thor proposes the following role descriptions and role allocation principles,
based on experiences from the projects discussed above:

• Project Manager: The project manager bears the overall responsibil-
ity for the success or failure of the project. In a business context, the
project manager role is typically assigned based on business hierarchies
outside of the XD project scope. In an open source project, the role
can be assigned via other methods, including voting by project mem-
bers. Responsibilities of the project manager include providing the
required infrastructure for project members, establishing collabora-
tion practices within the team and between the team and the Require-
ments Source, allocating roles and development pairs, and ensuring
that project members adhere to the XD process.

• Requirements Source: At the root of any ontology engineering project
lies the need to perform some particular task. The Requirements
Source is the party that has this need. Depending on context, this
might be a paying customer of the development team, it might be
a different department or function within the same organisation as
the development team, or it might even be the development team it-
self, when constructing internal support systems. Assigning this role
is a matter of investigating who originally initiated the development

175



“Dissertation” — 2017/8/15 — 10:53 — page 176 — #190

Chapter 6. ODP Methodology Development

project and for what purpose. The responsibility of the requirements
source includes provision of requirements stories per the XD process.

• Domain Expert: Typically and ideally, the Requirements Source would
also be a domain expert, carrying with them all the knowledge required
to formulate system and/or ontology requirements. However, there
may be cases where additional analysis or guidance regarding the do-
main may be needed in order to formulate such requirements. In these
cases, requirements elicitation would benefit from further domain ex-
pertise. Domain Experts might be technical or business consultants or
subject-matter experts hired to facilitate development, or they might
represent agencies concerned with regulatory compliance, etc. The
responsibility of the domain expert is to work with the requirements
source to ensure that the elicited requirements stories are consistent
with the real-world domain requirements and any regulatory compli-
ance demands.

• Software Developer: Ontologies are rarely used in isolation, rather
they typically form part of or interact with some software system.
Any person(s) developing such software systems should be assigned the
Software Developer role. The responsibility of the software developer
in an XD project is twofold. Firstly, to work with the Requirements
Source to ensure that the ontology requirements take into account
any requirements that may arise from software implementation, which
might not be obvious to a non-developer. Secondly, to act as a liaison
between the XD project and the software development team, and in
particular to inform the latter of how to work with the ontology in
practice (implications concerning libraries and tooling used, testing
practices, etc.)

• Ontology Developer: This role encompasses any project member who
is assigned to develop ontology modules within an XD project. De-
velopers may be more or less experienced—in the latter case, they
should receive tutoring and support by an Ontology Expert (possi-
bly, by virtue of such training, attaining enough experience and con-
fidence to fulfil that role themselves). When working in pairs, such
training and competence transfer can be supported by pairing a more
experienced developer with a less experienced one, or ideally, a less
experienced developer with an Ontology Expert. Also, the more ex-
perienced and competent the developer, the less likely they are to be
over-dependent on pattern support when modelling. Consequently, it
is beneficial to let a more experienced Ontology Developer model such
requirements stories where no appropriate ODPs can be found and
manual development work is needed.

• Ontology Expert: This is a senior Ontology Developer who is very well-
versed in ontology engineering tasks and technologies. The Ontology

176



“Dissertation” — 2017/8/15 — 10:53 — page 177 — #191

6.2. Ontology Reuse

Expert is distinguished from the Ontology Developer by the fact that
the former does not require additional training in ontology engineering,
and that they can perform all of the XD development tasks with con-
fidence. In addition to normal development work, the responsibilities
of this role include tutoring Ontology Developers and supporting the
latter when they encounter difficulties in modelling. In the case that
the development team is geographically distributed, it is important
that Ontology Experts are available to support all developers. Ideally
this would be achieved by ensuring that there is at least one Ontology
Expert at each development site. In the case that this is infeasible,
teleconferencing solutions might be employed instead.

• Ontology Release Engineer: This is the person who, within an XD on-
tology engineering project, merges the partial results or modules from
Ontology Developers into a coherent joint ontology (possibly refactor-
ing either the module or target ontology), tests the resulting ontology,
and releases it for use. Ideally and typically this role will be filled by
an Ontology Expert, though with sufficient tool support and training,
a less experienced Ontology Developer could also fill the role.

These roles may (and in fact in most cases are very likely to) overlap, such
that 2-3 roles are filled by a single individual. However, the development
team should take care not to leave any of the roles unallocated, as this may
lead to development being delayed or otherwise performed in an inefficient
manner.

6.2 Ontology Reuse

There are many modelling issues and domains for which ontologies have
already been constructed at a substantial expenditure of time and effort,
using ontology standards such as OWL that facilitate their reuse. There are
good reasons to try to reuse such ontologies if possible, including possibly
significant savings in development time, and the reuse of established good
practices embedded in them. Ontologies can be reused in several different
ways, e.g.: by direct reuse of the entire ontology using owl:imports, by
copying the required structures from the reused ontology into the target
ontology namespace, by aligning the target ontology entities to the reused
ontology using subsumption or equivalence mappings, by breaking apart the
original ontology into reusable modules, etc.

Of these reuse approaches, the XD methodology only supports the last.
While this approach is easy to reconcile with the overall XD methodology
and the use of ODPs, it also has drawbacks that may make it unsuitable in
some cases. Firstly, the additional work required to extract and formulate
an ODP from the source ontology (which includes generalising the solution,
documenting it, and ideally publishing it publicly) is arguably not justifiable

177



“Dissertation” — 2017/8/15 — 10:53 — page 178 — #192

Chapter 6. ODP Methodology Development

if the solution is not going to be reused more than once. Secondly, this
approach results in an ODP that uses a different namespace from the original
ontology it is based on, which negates several of the advantages of reuse (i.e.,
compatibility with other ontologies and/or systems).

Ontologists who, for these or other reasons, wish to reuse whole ontolo-
gies without first breaking them apart into ODPs, are left without sufficient
guidance from the XD methodology. This lack of guidance has given rise to
challenges and less-than-optimal results in several projects the author has
been involved with. The following sections present and discuss these chal-
lenges, before proposing a set of questions to aid the ontologist in choosing
among several suitable ontology reuse strategies.

6.2.1 Observation: Ontology Reuse Challenges

VALCRI

The VALCRI ontologies covered issues and content such as crimes, suspects
or perpetrators of crimes, vehicles, observations, arrests, intelligence reports,
objects (and object taxonomies) discussed in police reports, etc. While
large parts of the work in these domains were greenfield, that is, there was
little prior work to consider or adapt to, some sub-sections of the domain
were relatively well explored. The sections for which ontologies already
existed included annotations on documents or reports (Open Annotation
Collaboration2), document provenance (W3C PROV3), and standards for
constructing classification schemas or taxonomies (W3C SKOS4).

Table 6.2: Degree to which imported ontology entities were used (the Open
Annotation Data Model is a RDF vocabulary and thus does not differentiate
between object and datatype properties).

PROV SKOS Open Annotation

Classes 4 / 51 (8 %) 2 / 4 (50 %) 3 / 29 (10 %)
Object properties 4 / 60 (7 %) 1 / 17 (6 %)
Datatype properties 0 / 9 (0 %) 0 / 1 (0 %)
RDF properties 1 / 21 (5 %)

Developers reused these ontologies by importing them into their target
ontology using the owl:imports predicate. The imported ontology con-
cepts were either aligned to pre-existing ontology concepts by subsump-
tion, or they were directly used in terminological (e.g., class restrictions,
domain/range restrictions, etc.) or assertional (e.g., individuals used in
SKOS collections) axioms. A problem with this approach is that it brought
along a large number of entities that were both unneeded and potentially

2http://www.openannotation.org
3https://www.w3.org/TR/prov-overview/
4https://www.w3.org/2004/02/skos/

178



“Dissertation” — 2017/8/15 — 10:53 — page 179 — #193

6.2. Ontology Reuse

confusing to the developers. Table 6.2 illustrates how few of the imported
ontology entities were used in axioms in the target ontology—there is very
clearly a large overhead of unused entities. For at least one of the resulting
ontologies, developers other than the original author had difficulties under-
standing how it was in fact constructed, as they had trouble locating the
VALCRI-specific additions in the class and property subsumption trees.

Another challenge the author observed in VALCRI concerns the diffi-
culty of correctly aligning to entities defined in existing ontologies. These
ontologies typically model non-trivial domains, and are likely to have evolved
through a process of refinement within some project group until they were
deemed complete enough to be released to the general public. In other
words, they tend to be rather complex, either in terms of modelling design
or in terms of the ontological assumptions that they encode. Furthermore,
while they may be designed with reuse in mind, they are rarely designed with
reuse through extension in mind. Their documentation typically assumes the
ontology will be reused as-is, and focuses on examples of such reuse, rather
than examples of extensions and modifications to suit neighbouring domains.
In VALCRI the initial annotations ontology exhibited several flaws as a con-
sequence of the responsible developer misinterpreting the intended usage of
the OpenAnnotations ontology entities and aligning their own classes to the
wrong Open Annotations parent classes. While the developer’s solution was
internally consistent, the subtly incorrect alignment to Open Annotations
would have broken compatibility with that ontology (had they not been dis-
covered), essentially negating the benefits that motivated reuse in the first
place, and possibly triggering unexpected bugs and issues in subsequent de-
ployment. Had another approach to reuse been employed (e.g., copying or
cloning the design but without maintaining alignment through subclassing)
such “hidden” problems would have been avoided.

Yet another challenge observed in VALCRI concerns when in the XD pro-
cess reuse questions should be decided on and reuse implemented. Certain
decisions regarding reuse (whether of ontologies or non-ontological resources)
that concern foundational concepts could be quite expensive to modify at a
later time. In VALCRI the initial ontologies were constructed in part based
on database schemas provided by the end-user organisations, from which an
ontology was constructed that simply mirrored the database schemas used
by the police organisations. Later on, in an effort to abstract away from
these specific database schemas and build a more generic policing domain
model, we found that this required us not only remodel to the directly af-
fected ontology, but also, due to assumptions that we had made concerning
key concepts, required extensive modifications of several other dependant
ontologies. This might have been avoided had the reuse decisions and their
trade-offs been more thoroughly discussed early on in the project.

179



“Dissertation” — 2017/8/15 — 10:53 — page 180 — #194

Chapter 6. ODP Methodology Development

SSyncAHD

The SSyncAHD project domain, veterinary epidemiology, borders and over-
laps with the biomedical domain, which is rich with prior work covering a
variety of content that is highly relevant to the project: genetics, species,
diseases, organ systems, etc. Naturally, the project participants were very
keen on reusing as many of these existing resources as possible—using ODPs
as a kind of “glue” to be used with existing resources to connect those re-
sources into one joint ontology. The participants were less certain about
how to go about such reuse in practice and expressed concern that the XD
methodology did not cover or discuss ontology reuse challenges (apart from
reuse of ODPs). As one of the participants put it, when trying to reconcile
the notion of ODP reuse with that of ontology reuse:

“Let’s just say that there exists a pathology ontology, PATHOG,
that exists and that is maintained by people. Let’s say it’s not
entirely suitable—let’s say it covers 500 % of what we need. So
we only need 20 % of what’s in PATHOG, put in as a little box.
So what’s the practice? Or, what if it’s more or less deprecated,
it doesn’t really get used or maintained, is it appropriate form
to take that and use it within your own ontology? Or what if it
has a public address on the web but was never really published
externally? What’s the right way to go about putting these boxes
in our own ontology framework?”—Developer K

After some discussion (in which the author took care not to intervene),
the participants suggested four different approaches to ontology reuse that
could be evaluated and considered for use within the SSyncAHD project:

• Importing: Reuse an existing ontology wholesale using the owl:imports
property, making all of the reused ontology’s assertions hold also in
the target ontology, essentially making the reused ontology a part of
the target ontology.

• Remote references: Reuse individual OWL classes and properties in
constructing axioms in the target ontology without importing the
reused entity definitions, but rather by referring to them by their in-
dividual entity IRIs. For example, defining a local class Human that
that is defined to be equivalent in extension to foaf:Person5.

• Partial cloning: Copy the structure of the needed parts of the reused
ontology (not necessarily the whole of it) into the target ontology, as-
signing the copied entities new IRIs within the target ontology names-
pace.

5From the Friend-of-a-Friend vocabulary, http://xmlns.com/foaf/spec/.

180



“Dissertation” — 2017/8/15 — 10:53 — page 181 — #195

6.2. Ontology Reuse

• Slicing: Copy the needed parts of the reused ontology verbatim into
the target ontology, maintaining the original entity IRIs (the approach
is named to illustrate how the users in this manner extract certain
slices of the reused ontology).6

While the participants understood (at least in theory) how they could
apply the above reuse approaches, they were rather uncertain about some
of the practical consequences and implications of this selection. Some issues
that they considered of particular importance concerned intellectual prop-
erty implications, and the possibilities of retaining provenance links from the
developed ontology to the reused source ontology. Questions relating to the
former issue included: who owns the copyright of an ontology structure, does
that copyright still apply if the structure is cloned into a new namespace,
and if so, how large or small a portion can legally be cloned or reused from
an IP perspective, etc? Questions relating to the latter issue included which
ontology or RDF/RDFS structures should be used to indicate provenance
of reused entities, and how one might indicate the provenance of structures
that are larger than individual entities. If the participants had had at their
disposal some sort of decision tree or check list providing guidance in these
matters, they would likely have been much more confident in deciding which
resources to reuse and how.

6.2.2 Suggestion: An Ontology Reuse Checklist

The idea of reusing existing ontologies in an XD process is not new—the
NeOn methodology from which XD stems (introduced in Section 2.3.3) dis-
cusses ontology reuse extensively. [154] introduces the NeOn methodology
and discusses on an overarching conceptual level how ontology reuse fits into
it. Per this methodology a distinction should be made between the scenar-
ios in which an ontology can be reused as-is, and the scenarios where some
re-engineering of ontology resources needs to take place and/or several on-
tology resources need to be aligned or merged. [50] goes into greater depth
in describing the steps prescribed by the NeOn methodology to be taken to
find and to reengineer a reused ontology. The former task is described in
some detail, but the latter task is only covered very briefly—it is described
as consisting of steps to prune the reused ontology of unnecessary content,
enrich that ontology with needed content, translate the ontology into a suit-
able format, adapt to naming conventions and other design criteria of the
target ontology, and finally, to evaluate the resulting ontology module. None
of these steps are described on a level that is applied enough to provide suf-
ficient guidance to a less experienced ontologist. Furthermore, none of the
steps are discussed in terms of the three levels of ontology reuse granularity
also presented in [50]: whole ontology reuse, ontology module or part reuse,
and reuse on ontology statement level. Given the observations discussed

6This approach can be be simplified by the use of a tool such as MIREOT [36].

181



“Dissertation” — 2017/8/15 — 10:53 — page 182 — #196

Chapter 6. ODP Methodology Development

in Section 6.2.1, the author believes it would benefit the XD community if
more practical guidance on ontology reuse in XD could be developed. In
the following section, an attempt at providing such practical guidance is
presented.

To the four approaches to ontology reuse discussed by participants in
SSyncAHD (Importing, Remote references, Slicing, and Partial cloning) we
can add a fifth approach: Patternising the reused ontology, that is, extract-
ing the needed parts of the ontology in the form of modules7, constructing
new reusable ODPs from those extracted modules, and then instantiating
these new ODPs into the target ontology.

All of these approaches have some merits and some drawbacks. In order
to select one, the ontology engineer would need to evaluate these merits and
drawbacks and their relative weights in the context of their own project.
For the purpose of simplifying such an evaluation, the author has developed
a list of attributes of ontology reuse approaches:

• Implementation Complexity: How much effort is required to ap-
ply the approach? Importing requires very little effort to implement,
consisting only of adding a single owl:imports axiom (though further
alignment of the imported entities may add complexity). Remote ref-
erences is also rather low effort, requiring the addition of alignment
axioms as needed throughout the ontology. Slicing requires more work,
in terms of having to select the specific parts of the source ontology to
reuse, and then isolating them (though as mentioned above, tools exist
to streamline this process). Partial cloning requires even more work,
as it necessitates the minting of new IRIs for copied entities. Finally,
Patternisation is the most expensive approach, as it requires generalis-
ing a particular solution, enriching it with metadata, and subsequently
instantiating it again into the target ontology.

• External Reasoning Dependencies: When executing reasoning
over the ontology that results from reuse, would any external refer-
ences need to be resolved in order to derive all intended inferences?
The Importing and Remote references approaches depend on ontolo-
gies external to the project namespace(s), so the answer for these
approaches would be yes. The answer for the Partial cloning and Pat-
ternisation approaches, in which reuse is performed within the project
namespace, would be no. The Slicing approach also makes use of ex-
ternal namespace(s), but redefines these to appear local, so resulting
ontologies would therefore not depend on external ontology resources
(given that the slicing approach was carried out carefully).

• Content Overhead: To how large a degree would the ontology that
results from reuse contain non-essential content? This of course de-
pends on the degree to which the reused ontology matches the problem

7[41] provides an overview of several ontology modularisation techniques that may be
suitable for this task.

182



“Dissertation” — 2017/8/15 — 10:53 — page 183 — #197

6.2. Ontology Reuse

space, but certain generalisations can be made. The Remote references
approach adds no content at all beyond the problem domain, so has
zero overhead. The Slicing, Partial cloning, and Patternisation ap-
proaches have low overhead, as generally only relevant content would
be extracted from the reused ontology. The Importing approach could
lead to potentially large content overhead, depending on the ontology
used.

• Reused Content Modifiability: To what degree can the reused
content be modified when refactoring further along in the project?
The approaches that result in ontologies with external dependencies
(Importing, Remote references) generally do not support content mod-
ifiability, while approaches that result in ontologies that do not have
such dependencies (Partial cloning, Patternisation) do support mod-
ifiability. As discussed above the Slicing approach redefines remote
references to appear local, so in theory, it would allow modifiability.
In practice, however, modifying entities in a namespace one does not
control entails risks of inconsistency, particularly if the resulting on-
tology is to be reused by other parties who are not aware of this design
choice.

Based on these characteristics the author has developed a set of questions
that the ontologist may ask themselves in order to narrow down the suitable
choices for a particular ontology reuse scenario:

• How much extraneous content does the ontology to be reused include?
If the source ontology contains a large amount of extraneous content
then the developer should avoid Importing the reused ontology, as this
will carry over all of that extraneous content to the target ontology,
which may impact usability and computability characteristics of the
resulting ontology.

• What is the purpose of the reuse — alignment to known good practices,
or structure reuse? If the purpose of the reuse is primarily to align to
practices (i.e., vocabularies or ontologies that are well-established in
some community or context) then the Remote references approach is
viable. If the purpose of reuse is to copy and reuse design structures,
then this approach is unsuitable.

• Are labels and IRIs in the reused ontology cognitively relevant in the
target domain or use case? If the answer is no, a reuse approach should
be selected in which new IRIs are minted and labels applied to reused
structures (e.g., Remote references, Partial cloning, or Patternising).

• Will the reused portions of the reused ontology be used only once, or
repeatedly (in this project or others?) If the reused portions will be
reused multiple times, the Patternising approach should be selected.

183



“Dissertation” — 2017/8/15 — 10:53 — page 184 — #198

Chapter 6. ODP Methodology Development

• At what stage of the development process is the project presently? At
the early stages of a development project it is easier to commit to
reuse of large structures (Importing) or structures that should not be
changed (Remote references, Slicing). Later in the project, approaches
with smaller impact and which are more flexible with regard to modi-
fication and adaptation (Partial cloning, Patternising) are likely to be
more appropriate.

• Will the target ontology subsequently be reused outside of the original
deployment scope or system? If the answer is yes, future users would
probably benefit from the developed ontology being as homogenous
and self-contained as possible, that is, if the use of multiple names-
paces or ODP modules (i.e., Slicing, Patternising) were avoided and
generally the use of external resources (Importing, Remote references)
minimised as far as possible.

6.3 Context-Based Methodology Adaptation

The eXtreme Design methodology, as presented in [131] and [22], makes
certain assumptions about the context in which an XD project is run (though
not all of these assumptions are necessarily explicitly stated). The party
acting as the project’s initiator and requirements source is assumed to be
involved in the project in a manner resembling a project member, rather
than a customer, aiding the team in with prioritisation of requirements and
testing of results throughout the project. As XD does not emphasise training
or skill development it is assumed that the project members are proficient
ontology engineers to begin with. The developers are assumed to be located
in such a manner that they can work in pairs (a defining feature of XD),
and the team they operate in is assumed to be large enough that ontology
complexity would need to be encapsulated into semi-independent modules of
functionality that would be released into the project once a pair has finished
iterating over a certain set of requirements.

While the above listed assumptions may hold for certain classes of projects,
the author has also found the XD methodology of breaking apart and man-
aging ontology requirements and engineering complexity to be useful in
projects that do not adhere to this somewhat idealised mould. In such
projects, XD can benefit from certain practical adaptations to the project
context. The following section describes the author’s experience of using
XD in such projects, and suggests tools for characterising and adapting XD
to such projects.

6.3.1 Observation: Real World XD Project Contexts

As previously discussed in Section 6.1.1, eliciting and formalising proper
requirements was a challenge in VALCRI. The persons involved in the on-

184



“Dissertation” — 2017/8/15 — 10:53 — page 185 — #199

6.3. Context-Based Methodology Adaptation

tology engineering work packages represented domain experts and software
developers, but there was no representation of the intended end-user organi-
sations who were the actual requirements sources. The lack of such customer
participation meant that requirements (written in several different formats)
had to trickle through the project upper management and the project soft-
ware developers before being delivered to the ontology engineers, who then
reformatted these requirements into the user stories that they worked with.
The ontology engineers were unable to verify the completeness or veracity
of these user stories against the end-user organisations who were the actual
project customers. This work process caused several start-overs on the on-
tology engineering work, and a lot of wasted effort. While the process was
clearly not optimal, it is not far removed from the reality of many software
engineering projects; getting the customer as involved in the project as an
agile process like XD requires, is a decidedly non-trivial exercise [115, 160].

Similarly, as mentioned in Section 6.1.1, in the OSTAG project the devel-
oped ontology was to be used by software developed by a senior researcher
who was not himself involved in the day to day development of the ontol-
ogy. This inaccessibility of the requirements source led to an extra iteration
to rectify problems in the initially released version of the ontology, which
could easily have been avoided had the senior researcher been briefed more
frequently about the development progress. If the XD methodology is to
be employed in project contexts such as VALCRI and OSTAG where the
customer is not an active participant, additional tasks may need to be per-
formed early in the project to account for this.

Another challenge observed in multiple projects concerns the distribu-
tion of the development team preventing pair development. In the VALCRI
project the developers were widely distributed in terms of physical location,
time zone, and employers. One developer was located in Belgium, three in
two different cities in Sweden, two in the United Kingdom, one in Poland,
one in Germany, and one in the USA. In total, the developers were spread
over three time zones, with a total of 9 hours of time difference, at six dif-
ferent companies or institutions. None of the developers worked exclusively
on VALCRI, but all had other responsibilities in parallel. In the SSync-
AHD project the situation was similar: the three main developers were
located in Sweden, in Switzerland, and in Canada, at different employers,
and across five time zones. Hence in both these projects it was very difficult,
even with modern teleconferencing solutions, for the developers to work in
pairs as prescribed by XD. In VALCRI a lot of effort was spent on devel-
oping communications practices, distributed ontology engineering tooling,
requirements management tooling, etc. In the end, in spite of all this effort,
the project never achieved a situation where the distributed ontology engi-
neering worked as intended. In SSyncAHD large travel expenditures were
required to put developers in the same room, which would become infeasible
if the project were to scale beyond the initial prototyping stage at which it
remained while the author was involved. Clearly more work is needed in

185



“Dissertation” — 2017/8/15 — 10:53 — page 186 — #200

Chapter 6. ODP Methodology Development

this area.

As discussed in Section 6.1.1, the VALCRI participants had varying de-
grees of knowledge about ontology engineering, ranging from quite experi-
enced to entirely inexperienced. Some required training in order to become
proficient developers. Others did not become proficient developers in spite
of receiving such training, possibly because the training material was devel-
oped based on incorrect assumptions about trainee proficiency, or because
the initial training was primarily in the form of self-study. In SSyncAHD
the author observed similar differences in ability, and similar challenges re-
garding how to develop tutoring and mentoring to support developers with
less experience. The XD methodology does not provide any guidance on
how to set up and train an XD team for increased chances of success—such
guidance would have benefitted both of these projects.

An interesting observation from the OSTAG project concerns the man-
ner in which the two ontology developers worked with regard to modules.
While the developers largely adhered to the XD process (breaking apart the
problem domain into user stories, formalising these stories into competency
questions, solving the questions one by one), they deviated from standard
XD practices with regard to how they implemented their solutions. Firstly,
due to the lack of suitable ODPs, most of the ontology engineering work
was in fact from scratch, not reusing ODPs. Secondly, while the work was
performed in an iterative manner, the developers soon realised that releas-
ing each iteration as a self-contained module, and then refactoring it with
the previously developed ontology, was a waste of time, given that there
was only one development team. Instead, they decided to work on the main
development branch and forego modularity throughout the project. This
adaptation to XD would probably not work in larger projects with more de-
velopment pairs whose work needed to be integrated in a controlled process,
but for the purposes of this small project, it worked very well and saved the
developers a lot of time and effort.

6.3.2 Suggestion: Project Adaptation Questionnaire and
Recommendations

In order to allow non-ideal ontology engineering projects like those described
above to benefit from the use of ODPs and the eXtreme Design methodology,
the author has developed the following project characterisation questions,
and the accompanying method adaptation recommendations.

Customer Involvement

Questions to ask: To what degree will the customer/requirements source be
actively participating in the project?, How often during the project runtime
will the results be evaluated or audited by the requirements source and/or
their customers?

186



“Dissertation” — 2017/8/15 — 10:53 — page 187 — #201

6.3. Context-Based Methodology Adaptation

If the customer participation can be characterised as “low” or “infre-
quent”, that is, if traditional agile methods are unsuitable:

• Schedule one or more extra expanded scoping and requirement meet-
ing(s), at which key stakeholders (development team lead, customer
lead, senior developers) decide on:

– Overarching technical or social requirements for project—such as
system architecture, information security/privacy concerns, leg-
islation or compliance considerations, etc.

– Customer and project team responsibilities and communication
interfaces.

– Critical toll points or delivery deadlines for the project.

• Ensure that sufficient amount and quality of documentation of the tar-
get system and/or domain exist and are made available such that the
development team can elicit requirements from that documentation
using established methods (e.g., by transforming phrases from that
documentation into instance-free sentences, and reformulating those
sentences as competency questions, as suggested in [22, p. 33-34])

Team Distribution

Questions to ask: How will the development team be located geographically?,
How often will project members be able to attend meetings face to face?, Will
participants be located so that they are able to work in pairs at the same site?

If the project and/or the development team can be characterised as being
distributed (whether geographically or organisationally) rather than placed
in close proximity:

• Ensure that a joint ontology development workspace (e.g., a shared
triple store, WebProtégé, or similar) be made available and used for
ontology development.

• Ensure that a requirements management system is implemented and
that it is well understood by all participants prior to the ontology
development starting.

• Ensure that other support and communications systems (email lists,
issue trackers, shared document folders, etc.) are implemented prior
to development starting. Given established user preferences for white-
board drawings when doing conceptual modelling, also consider de-
ploying support systems for such prototypes/doodling.

• Ensure the availability of customers or other requirement sources in the
project to visit and collaborate with developers at each development
site or unit.

187



“Dissertation” — 2017/8/15 — 10:53 — page 188 — #202

Chapter 6. ODP Methodology Development

• Prior to project initiation, structure the QA and release process, both
in terms of internal releases of modules to the project, and in terms
of releases to external stakeholders. This includes setting conditions
on what is considered an acceptable release (e.g., with regard to test
protocols) and assigning the required authority (both organisationally
and in any required IT systems) to the Ontology Release Engineer.

Team Proficiency

Questions to ask: What is the initial degree of ontology engineering maturity
and capability among the team and the customer/requirements source?

If the initial project capability can be characterised as being low:

• Schedule ontology engineering training seminars to begin as early as
possible.

– Ensure that the ontology IDE and other tooling to be used in the
real project have been selected and made available to the trainees
at the outset of training seminars. While the OWL language used
may be identical, there are significant differences between using
different ontology IDE:s, such as Protégé or TopBraid Composer.

– As far as possible, run tutor-led sessions where the tutor is phys-
ically in the same room as the trainees—this is far superior to
self-study or tutoring via video link.

– However, to bootstrap the learning process and make optimal
use of the tutor’s and trainee’s time, some initial self-study may
be useful. Resources such as [123] and [92] are aimed at novice
developers and can be very useful in this case.

– For further efficiency and increased pedagogical effect, ensure
that the scenarios employed in the training seminars relate to
the domain and problem that is to be modelled in the project—
ideally, output from the training sessions can then be reused as
the project progresses.

• Plan training and resource allocation with the goal that at least one
person filling the Ontology Expert role (see Section 6.1.2) should be
available to lead the training and work available at each development
site or partner.

6.4 Summary: eXtreme Design 1.1

The three previous sections have presented improvements that support eX-
treme Design users and project managers, and allow the eXtreme Design
project methodology to work in non-optimal project situations. These im-
provements are instantiated as concrete and usable artefacts, such as list-
ings, recommendations, questionnaires, etc., as summarised in Table 6.3. If

188



“Dissertation” — 2017/8/15 — 10:53 — page 189 — #203

6.4. Summary: eXtreme Design 1.1

the XD methodology were itself a version-managed artefact, the improve-
ments presented here (which add features in a non-invasive and backward-
compatible manner), would certainly justify incrementing the version num-
ber of said artefact to XD 1.1. The following section summarises and illus-
trates these improvements.

Table 6.3: XD 1.1 support artefacts.

Artefact Section introduced

XD Roles and Responsibilities Listing 6.1.2
Ontology Reuse Methods Listing 6.2.1-6.2.2
Ontology Reuse Methods Attributes Listing 6.2.2
Ontology Reuse Method Selection Questionnaire 6.2.2
XD Project Adaptation Questionnaire 6.3.2

Section 6.1.2 recommends a number of roles to be assigned in an eX-
treme Design project, suggests criteria by which these roles should be as-
signed, and enumerates the responsibilities that they entail. The roles are:
Project Manager, Requirements Source, Domain Expert, Software Developer,
Ontology Developer, Ontology Expert, and Ontology Release Engineer (sev-
eral of which may, and are in fact likely to, overlap). These roles should
initially be assigned at the beginning of an XD project, where the role allo-
cation itself might act as a sanity check to ensure that all the required skills
and knowledge are in fact available to the project. Thereafter, they may
change as required by the project development; particularly, as developer
skills increase, it is likely that the number of Ontology Experts who can act
as Ontology Release Engineers will increase.

Table 6.4: Ontology reuse approaches and characteristics.

Approach Complexity Dependencies Overhead Modifiability

Importing Very low Yes Varies No
Remote refs Low Yes None No
Slicing Medium No Low Yes
Partial cloning High No Low Yes
Patternising Very high No Low Yes

Sections 6.2.1 and 6.2.2 introduce and describe five different approaches
to ontology reuse in an eXtreme Design project. Section 6.2.2 in particular
characterises these approaches based on several criteria that are important
for reuse, as shown in Table 6.4. This section also provides a checklist
of questions the developer may ask themselves when deciding which reuse
approach to employ. Figure 6.1 simplifies this checklist by restructuring it
into a decision tree structure. By answering the questions and following the
designated arrows, this tree allows the developer to quickly and easily select
an appropriate ontology reuse approach. Note that the questions in this

189



“Dissertation” — 2017/8/15 — 10:53 — page 190 — #204

Chapter 6. ODP Methodology Development

figure have been reformulated somewhat compared with those presented in
Section 6.2.2, in order to allow only yes/no answers. Note also that this
decision tree is, as stated, a simplification, that is, it includes only a subset
of all possible paths between the included questions.

Section 6.3.2 provides guidance on how to adapt eXtreme Design to
non-optimal project contexts, in the form of a number of questions project
managers may ask themselves, and associated recommendations on actions
to take to increase the chances of project success. Figure 6.2 illustrates how
these actions, together with the actions proposed in Sections 6.1.2 and 6.2.2,
modify the original eXtreme Design workflow. The new tasks proposed in
this chapter are marked with double outlines in this figure. Note that this
figure assumes that ontology reuse issues can be dealt with early on in the
project, prior to the start of development loop iterations; in some cases this
might not be possible, and in such cases ontology reuse would be decided
on and implemented within one or more iterations of the development loop
below the step labelled Select story.

The improvements to eXtreme Design presented in this chapter are de-
rived from researcher observations of methodology shortcomings and the
practical solutions to those shortcomings as implemented in the VALCRI,
SSyncAHD, and OSTAG projects. However, it should be clear, that neither
the individual improvement suggestions, nor XD 1.1 as a whole, have been
formally evaluated within the scope of this PhD project.

190



“Dissertation” — 2017/8/15 — 10:53 — page 191 — #205

6.4. Summary: eXtreme Design 1.1

Is
 it

 im
po

rta
nt

 to
 m

ai
nt

ai
n 

en
tit

y 
IR

I:s
 fr

om
 th

e 
re

us
ed

 
on

to
lo

gy
 (e

.g
., 

fo
r 

pu
rp

os
es

 o
f a

lig
nm

en
t t

o 
ot

he
r r

es
ou

rc
es

)?

Ar
e 

la
be

ls
 a

nd
 IR

I:s
 

co
gn

iti
ve

ly
 re

le
va

nt
 in

 th
e 

ta
rg

et
 o

nt
ol

og
y 

co
nt

ex
t?

Do
es

 th
e 

re
us

ed
 o

nt
ol

og
y 

co
nt

ai
n 

a 
lo

t o
f e

xt
ra

ne
ou

s 
co

nt
en

t t
ha

t i
s 

no
t n

ee
de

d 
in

 th
e 

ta
rg

et
 o

nt
ol

og
y?

H
as

 th
e 

pr
oj

ec
t p

ro
gr

es
se

d 
to

 th
e 

po
in

t t
ha

t 
re

fa
ct

or
in

g 
ba

si
c 

de
si

gn
s 

w
ou

ld
 b

e 
co

st
-p

ro
hi

bi
tiv

e?

W
ill 

th
e 

ta
rg

et
 o

nt
ol

og
y 

be
 

re
us

ed
 o

ut
si

de
 o

f t
he

 
or

ig
in

al
 d

ep
lo

ym
en

t s
co

pe
 

or
 s

ys
te

m
?

W
ill 

th
e 

re
us

ed
 o

nt
ol

og
y 

po
rti

on
s 

be
 re

us
ed

 
m

ul
tip

le
 ti

m
es

 (i
n 

th
is

 
pr

oj
ec

t o
r o

th
er

s)
?

Sl
ic

in
g

Im
po

rti
ng

Re
m

ot
e 

re
fe

re
nc

es
Pa

rti
al

 c
lo

ni
ng

Pa
tte

rn
is

in
g

Ye
s

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

Figure 6.1: Ontology reuse approaches decision tree.

191



“Dissertation” — 2017/8/15 — 10:53 — page 192 — #206

Chapter 6. ODP Methodology Development

Project initiation 
and scoping

Identify CODP 
catalogues

Collect 
requirement stories

Select story

Integrate module

Release new 
version

All stories 
covered?

Develop module

Test ontology

Deploy release

New ODP 
candidate

Assign roles Establish technical and 
social requirements

Establish sub-delivery 
deadlines

Run training 
seminars Find and reuse 

ontologies

Deploy req. mgmt. and 
comms systems

Figure 6.2: eXtreme Design 1.1 workflow.
192



“Dissertation” — 2017/8/15 — 10:53 — page 193 — #207

Chapter 7

Discussion

This chapter discusses the degree to which the research questions have been
answered, and the consequences of the findings in terms of impact on the
academic community, impact on practice, and issues that remain open for
future studies.

7.1 Research Questions Revisited

The research questions posed in Chapter 1 have been treated and answered
as follows:

• Which ODP features or qualities are important in supporting pattern
understanding and use?

To answer this question, an ODP quality model was developed and
evaluated, as discussed in Chapter 4. The quality model consists of
several components: an ODP quality metamodel, a set of quality char-
acteristics, and a set of quality indicators (all of which are presented
in Section 4.4). The model and its components provide an answer to
the research question, by indicating how different attributes or fea-
tures of an ODP (measured by the quality indicators) contribute to
ODP quality characteristics (such as Functional Suitability, Usability,
Maintainability, etc.).

It should be noted that this is a partial answer. The ODP quality
model does not exhaustively cover the full spectrum of all possible as-
pects of ODP quality. Given the breadth of all measurable attributes
of ontologies and ODPs, achieving such complete coverage is neither
feasible nor useful. Instead, this work primarily contributes knowledge
about the types of features that matter to inexperienced ontologists,
in line with the intended objective of the dissertation to support ODP

193



“Dissertation” — 2017/8/15 — 10:53 — page 194 — #208

Chapter 7. Discussion

use by this class of users. Further, the model does not cover the ef-
fects that different ontology engineering or usage contexts have on the
prioritisation of quality characteristics. Until more work is performed
in this area, inexperienced ontology engineers will have to decide for
themselves which quality characteristics to prioritise.

• How can the features and functionality of ODP usage tools be improved
to support inexperienced ontologists?

Answering this question requires an understanding of the tasks that
inexperienced ontologists perform when using ODPs, and specifically,
which of those tasks would benefit from improved tooling support.
The three tooling improvements developed and discussed in Chapter 5
concern what are arguably the two core ODP usage tasks—namely,
finding ODPs that are suitable for modelling some specific issue, and
the instantiation of those ODPs into a target ontology. Unlike some
“one-off” ODP usage tasks, the time overhead associated with manu-
ally (i.e., without appropriate tool support) performing recurring tasks
such as finding and instantiating ODPs is likely to be quite significant.
Also, the location and application of ODPs are likely to be among the
most difficult tasks for inexperienced ontologists to perform without
guidance. Finding the right ODPs to reuse would require the devel-
oper to possess a degree of familiarity with available ODPs and ODP
portals, which inexperienced ontologists are quite unlikely to have.
Having found an appropriate ODP, instantiating it into an ontology
would require the developer to perform several repetitive and time-
consuming steps, each carrying a significant risk of making mistakes.
The tooling improvements presented in sections 5.2–5.1 help simplify
these tasks for inexperienced and experienced ontologists alike, and in
so doing, provide answers to the research question.

• How can ODP usage methodology be improved to support inexperienced
ontologists?

For the purpose of methodology development, the author has focused
on testing and improving the well-established eXtreme Design (XD)
methodology. This testing and improvement was carried out as dis-
cussed in Chapter 6, and several improvement suggestions (see Sec-
tion 6.4) were developed specifically to aid XD deployment in projects
involving less experienced ontologists. While the efficacy of these
improvement suggestions has not yet been formally evaluated, their
grounding in experiences from several real-world projects is a good
reason to consider them to be suitable answers to the research ques-
tion.

194



“Dissertation” — 2017/8/15 — 10:53 — page 195 — #209

7.2. Research Consequences and Future Challenges

7.2 Research Consequences and Future Chal-
lenges

Some of the findings presented in this dissertation may be of particular inter-
est to the research community, as they imply exciting research opportunities.
These opportunities concern both the development and evaluation of ontol-
ogy engineering methodology and practice, and possible improvements to
ontology languages and standards. The following section summarises these
findings and briefly introduces such research opportunities.

7.2.1 ODP Quality Model

In developing the ODP Quality Model, the author observed several short-
comings in existing practice concerning how ODPs and their features are
documented, organised, and visualised. Some examples are discussed be-
low, together with suggestions on how researchers might work to resolve
them (or, in the more complex cases, research them).

Documenting Known ODP Uses

The findings presented in Section 4.3 indicate that it is important to make
any known uses of a pattern accessible through that pattern’s documen-
tation, to ensure that users have access to usage examples when reusing
the pattern. In the current format, the community ODP portal1 has a
field named ‘Known Uses’ that is intended to list other ontologies that use
the same pattern, but for most patterns this field remains empty. This
is puzzling, given that ODPs are typically either abstracted from existing
older ontologies, or developed within some project for the explicit purpose
of constructing new ontologies. Either way, some usage examples ought to
exist—but when ODPs get uploaded to the community portal, examples of
their instantiation do not seem to get propagated.

Examples of ODP instantiation could also be gathered when ODPs get
reused. Currently the ODP portal does not include support for linking
to such information. This omission is doubly unfortunate, as it not only
reduces the usability of the ODPs in question, but also gives visitors to the
community portal the impression that ODPs are not used very much.

Competency Question Heterogeneity

A core documentation field of any ODP is the Competency Questions listing.
This field encodes the essential functionality of the ODP in human-readable
form, and it is an important aid for ontologists when determining the suit-
ability of an ODP for different modelling issues, as shown in Section 4.3.2.

1http://ontologydesignpatterns.org

195



“Dissertation” — 2017/8/15 — 10:53 — page 196 — #210

Chapter 7. Discussion

Competency questions are likely to be particularly important for less ex-
perienced ontologists, who are typically not comfortable with interpreting
ODPs as just sets of description logic axioms.

In the ODP community portal, roughly 75 % of all ODPs have any
competency questions defined at all. This figure could and should certainly
be improved. Additionally, the competency questions that are defined vary
widely in punctuation syntax and language. This lack of standardisation
makes locating the right ODP needlessly difficult, particularly for a user
who is new to the task. It also makes it difficult to parse the competency
questions by software (e.g., for search engine indexing purposes). Enforcing
proper usage of the Content Pattern Annotation Schema2 for submitted
ODPs could help alleviate these problems.

Free-text Documentation Quality

Further standardisation and data quality challenges become apparent when
we consider other aspects of documentation, particularly free-text documen-
tation fields. For instance, we know from Section 4.3.2 that an ODP’s stated
intent is important in appropriateness recognisability—but in the ODP por-
tal, the majority of ODPs have the intent field filled with a simple sentence
that typically does not give guidance beyond the ODP name (e.g., for the
TimeInterval pattern, the intent is defined as “To represent time intervals”).

The well known Gang of Four book on OOP design patterns [54] provides
a template covering not only the fields needed to document object-oriented
design patterns, but also examples of questions that these fields should an-
swer, and in several cases, minimum requirements on content (e.g., that at
least two known use cases should be documented for each pattern, or that
a certain syntax should be used for graphical representations). Applying
and enforcing similar requirements on ODP documentation quality would
benefit ODP quality and the quality of the ODP community portal in a
very tangible and visible way, which in turn could drive increased adoption
of ODP usage.

ODP Interdependencies

As shown and discussed in Sections 4.4.4 and 5.3, a large transitive import
closure can be harmful to ODP usability and reusability. Importing foun-
dational concepts that are outside of the scope of the immediate problem
that the ODP models could potentially be confusing for users, particularly
inexperienced ones. Additionally, doing so may reduce an ODP’s reusabil-
ity, if those foundational concepts are not compatible with all possible usage
scenarios. Therefore, for optimum usability and reusability, an ODP should
make as few ontological commitments outside of its intended usage scope as
possible.

2http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

196



“Dissertation” — 2017/8/15 — 10:53 — page 197 — #211

7.2. Research Consequences and Future Challenges

At the same time, it could also be beneficial to be able to express that
an ODP can be easily used together with a particular set of other ODPs.
For instance, we may wish to express that a Trajectory ODP is compatible
with, or possibly even includes in it, concepts that are provided by a Place,
Location, or SpatialPoint ODP. There is no currently established practice for
how to express such compatibility or inclusion requirements without mak-
ing commitments regarding the design or structure of those ODPs. It would
benefit the ODP community if such practices (and the associated meta-
data vocabularies or tooling) were developed. For this purpose, it could
also be beneficial to borrow a concept from the object-oriented program-
ming paradigm and think in terms of ontology interfaces that hide (possibly
through partial or intransitive OWL import features, if such things were
developed) implementation-specific details.

Recent work co-authored by the author and a large section of the ODP
research community, [82], touches upon these issues and discusses the need
for pattern standards and representation languages, both in terms of visuali-
sation of this type of ODP relations, and in terms of formal machine-parsable
annotations or languages supporting new innovative tooling for pattern com-
position.

ODP Visualisation

Several promising ontology visualisation notations have been developed (for
instance using concept diagrams to represent ontologies [151], or the VOWL
syntax [112]), yet none have reached sufficient adoption to be considered the
de facto standard. As such, ontology engineers must keep track of multiple
competing visualisation languages, at significant cognitive overhead, and
arguably negating at least some of the usability effects of having visualisation
in the first place. This situation also has the effect of putting industry
practitioners (who value the availability of good standards) off of the idea
of RDF/OWL modelling.

Additionally, even if a standard ontology visualisation language were to
be developed, such a language might not be suitable for ODPs, as ODPs have
several attributes and uses that set them apart from ontologies in the gen-
eral sense. As discussed above, one would likely want ODPs or ODP-based
modules to be composable into larger ontologies in some sort of modular
fashion, which would require a visualisation language to support some con-
cept of modules or components. Moreover, it is not unusual for ODPs to
extend or specialise one another, so the visualisation language would need
syntax to represent such relations between ODPs. Such a language would
likely need to be developed in tandem with a formal representation as dis-
cussed above, to guarantee consistency and coherency of representation.

197



“Dissertation” — 2017/8/15 — 10:53 — page 198 — #212

Chapter 7. Discussion

Utilising the ODP Quality Model

The quality-related findings and recommendations of this dissertation might
be implemented in practice by way of documentation and tooling that could
aid users in the selection and instantiation of ODPs. Initial work in this
direction is included with the XDP tooling as discussed in Chapter 5, but
there is room for further research and development in this area. For instance,
it might be beneficial to provide hints (or warnings) in ODP documentation,
search engines, and instantiation wizards, which could notify the user if an
ODP were to exhibit characteristics that are known to affect important
qualities detrimentally or positively.

Other future research opportunities include further studies on which
qualities are important to users, in which types of modelling cases, and
for which purposes. For instance, if the end goal of an ontology-using soft-
ware project is to provide data exploration facilities, it is likely that the
requirements for the ontologies that get used will be different from a project
where the end goal is to support data integration and querying. If such re-
quirements could be captured and formalised, we might be able to develop
scenario- or context-based ODP usage profiles, which could then be imple-
mented in either method or tooling to aid users in selecting and utilising
ODPs better given their specific use-case.

7.2.2 Tooling Support

The work on ODP tooling presented in Chapter 5 covers improved support
for finding ODPs, and for instantiating or specialising ODPs. The findings
that relate to the latter two tasks carry implications that warrant further
discussion, as presented below.

Additional Specialisation Strategy Support

As shown and discussed in Section 5.2, there are different strategies for
ODP object property specialisation, with the choice of strategy having a
potentially significant effect on the results. The XDP tooling presented in
this dissertation supports instantiation of ODPs taking these effects into
account. However, there are additional ontology engineering tasks where
strategy-aware tooling could be beneficial.

Firstly, it would be beneficial if tooling had the ability to visualise the
uses of these specialisation strategies, such that an ontology engineer could
quickly ascertain the suitability of an ODP-based ontology for different pur-
poses; possibly some existing ontology metrics views could be extended with
new metrics indicating the specialisation strategy. To simplify the use of on-
tologies built using a class-oriented strategy, displaying the “emulated” do-
mains and ranges of specialised properties in proximity to those properties’
definitions would also be helpful for the less experienced user.

198



“Dissertation” — 2017/8/15 — 10:53 — page 199 — #213

7.2. Research Consequences and Future Challenges

Secondly, it would likely be helpful if tooling could aid in refactoring
an ontology from using one strategy to another, and in harmonising strat-
egy use in cases where different strategies are employed in different parts of
an ontology. The latter would be of special importance in ontology align-
ment scenarios. This problem appears to be a good use case for the OPPL
(Ontology Pre-Processing Language) macro language for ontology transfor-
mation discussed in Section 2.4.3, or the more recent PatOMat framework
that builds on OPPL [159, 158].

In addition to improved ODP tools, the discovery of these specialisation
strategies might also warrant updates to ODP repositories; these repositories
would need to provide examples of ODPs that have been specialised using
the different strategies. This may necessitate new visual representations for
representing universal and existential restrictions in an accessible and user-
friendly manner; the work of Stapleton et al. [151] in this area appears very
promising.

Implications of Template-Based ODP Instantiation

Section 5.3 introduces and discusses a template-based approach to ODP in-
stantiation that, while not new to the research community, has previously
seen relatively little study and exploitation. As shown in that same section,
this approach is considered particularly desirable by the class of inexperi-
enced ontologists that this dissertation aims to support. The approach, the
motivation behind employing it, and its merits and consequences are dis-
cussed in some detail in that section. However, some of the results of this
work merit further discussion, and indeed, further research.

While there may be formal definitions of what constitutes an ODP (see
Section 2.4), traditionally a practical approach has been employed whereby
the reusable OWL building block has been treated as the core of an ODP, if
not the ODP itself (see e.g., [131]). The textual and graphical illustration of
that ODP (whether displayed in a software tool or in an online repository)
has been regarded as documentation or metadata. This is likely the re-
sult of the building block being the canonical representation which is, using
the traditional specialisation-based instantiation approach, imported whole-
sale into every developed ontology module that reuses this ODP. However,
with the template-based instantiation approach one could argue that there
is nothing special about the building block itself; it is merely a convenient
formal representation of the ODP, which can be stamped out to instantiate
the ODP into a target ontology module. Per this perspective, one could fur-
ther argue that the ODP documentation, graphical illustrations, and other
metadata are in fact the canonical representation of the ODP. This perspec-
tive is more in line with how design patterns are treated in other related
fields, and how they are presented in works such as [54] and [53]. Employing
this perspective, the importance of improving the quality of the documen-
tation provided in the community ODP portal becomes particularly clear.
This perspective also supports the publishing of patterns in print-oriented

199



“Dissertation” — 2017/8/15 — 10:53 — page 200 — #214

Chapter 7. Discussion

formats, such as through research papers or books, provided of course that
the challenges regarding standardised documentation fields discussed in the
previous sections are resolved.

Another consequence of the template-oriented approach is that in es-
chewing the usage of owl:imports, it removes the provenance information
that can be helpful in tracking where and how an ODP has been imple-
mented within an ontology (which may be relevant in terms of maintain-
ability). One approach to resolving this issue would be to develop a formal
language that supports representing ODP relations such as instantiation of,
composition of, extension of, etc., as discussed in Section 7.2.1. While the
aforementioned Content Pattern Annotation Schema covers some parts of
this problem space, that schema has several drawbacks: it does not distin-
guish between annotating entities within an ODP and the ODP as a whole,
it mixes in other orthogonal concerns such as requirements and testing, it
does not cover all the possible relations one might wish to express, and it
has no associated visual representation.

A related challenge and issue to consider as future work is whether it is
feasible to develop a formal language for describing how an ODP is intended
to be instantiated, and once instantiated, how it might then be utilised or
queried. To answer the former question, we would need to be able to for-
malise which constituent entities (if not all of them) should be cloned or
specialised, and in the case that cardinality or value restrictions should be
applied to the specialised or cloned entities, we would need to formalise how
these should in fact be constructed in keeping with the ODP author’s in-
tent. For the latter question, we would need to be able to pair the ODP
(and its instantiations) with query archetypes or templates in SPARQL or
other suitable languages, indicating which questions the ODP can answer.
Ideally, with the aid of such a language (and with the aid of ontology mod-
ules or components, and the associated ontology interfaces as suggested in
Section 7.2.1), we will be able to develop tooling in which users can cre-
ate ontologies simply by dragging and dropping the relevant ODPs into
their workspace, and those ODPs would compose themselves into usable
and queryable ontologies or ontology modules semi-automatically.

7.2.3 Methodology Development

The results presented in Chapter 6 include several improvements to the XD
methodology, but there is ample room for further development and research
in this area. One such development would be to construct guidance intended
to support users when no suitable ODP exists for a given modelling chal-
lenge. In such situations, the developer might choose to modify or extend
an existing ODP, to develop a new ODP from scratch, or to forego the ODP
paradigm entirely and simply develop the ontology model. These choices
are associated with trade-offs, and it is likely that inexperienced developers
would require further guidance in this area.

200



“Dissertation” — 2017/8/15 — 10:53 — page 201 — #215

7.3. Summary of Future Work

Another issue is how well aligned XD is with the workflows and prac-
tices inherent to software development. The benefits of understanding (and
possibly improving) this alignment are twofold. Firstly, since software de-
velopment best practices are encoded in a variety of project support systems
(issue trackers, versioning systems, etc.), aligning XD with such practices
may enable reuse of existing support systems from software engineering for
XD-based ontology engineering projects. The availability of good tool sup-
port is likely to be particularly attractive to inexperienced developers. Sec-
ondly, it is rather rare that ontologies are developed in isolation—typically,
as discussed in Chapter 2, ontologies are instead used within some software
system, and consequently, the interplay between ontology and software is
critical. Challenges here include versioning (of ontologies, query libraries,
and code libraries), testing (both at the unit and system levels), and pack-
aging/distribution of ontologies and/or dependent RDF data.

Yet another methodology (and possibly tooling) issue that would be
worth exploring relates to how to handle cross-cutting concerns such as time-
indexing, spatial indexing, metaphysical grounding, etc., in ODP-based on-
tology engineering. Overlapping ODPs can represent partially similar mod-
elling challenges, but vary with regard to these concerns. For instance, we
have Part Of 3 and Time Indexed Part Of 4, Participation5 and Time In-
dexed Participation6, Place7 and Spatio-Temporal Extent8. This situation
is hardly surprising given the perspective in XD that there is a conceptual
mapping between the problem space and the solution space, whereby a spe-
cific problem is mapped against one or more generic use cases that each
have an ODP-based solution. If we consider instead that a generic use case
might be associated with multiple ODP-based solution representations, de-
pending on how such cross-cutting concerns are handled, we might end up
with a rather different workflow and toolchain. It would benefit the ODP
community to initiate a discussion on such matters before the proliferation
of partially overlapping ODPs becomes too confusing for casual users—as
indicated by the listing above, this point may be approaching.

7.3 Summary of Future Work

To summarise the discussion above, the future research and implementation
challenges for the ODP research community concern two categories of work:
firstly, improving the quality of existing patterns and pattern repositories,
and the features of available tooling and methodology; and secondly, devel-
oping new standards, tools, and techniques which supports next-generation,

3http://ontologydesignpatterns.org/wiki/Submissions:PartOf
4http://ontologydesignpatterns.org/wiki/Submissions:TimeIndexedPartOf
5http://ontologydesignpatterns.org/wiki/Submissions:Participation
6http://ontologydesignpatterns.org/wiki/Submissions:Time_indexed_

participation
7http://ontologydesignpatterns.org/wiki/Submissions:Place
8http://ontologydesignpatterns.org/wiki/Submissions:SpatioTemporalExtent

201



“Dissertation” — 2017/8/15 — 10:53 — page 202 — #216

Chapter 7. Discussion

innovative yet user-friendly, ODP-based ontology engineering. The work in
the first category will be evolutionary and consist of tasks such as improving
the documentation coverage in the community ODP portal, standardising
the documentation fields and documentation syntaxes used (in text, illustra-
tions, and metadata annotations), and, indeed, evaluating the methodology
improvements suggested in Chapter 6 of this dissertation.

The work in the second category is more forward-looking and possibly
more interesting for researchers. Key contributions might include formal
definitions and tooling implementations of the notions of ontology modules
or components9, ontology interfaces, and partial or intransitive ontology
imports. Other important contributions include methods of allowing ODPs
to be annotated such that they can carry embedded documentation about
how they should be instantiated, and how, once instantiated, they can be
utilised (e.g., which types of queries they support, or which reasoning tasks
they enable).

9Including any relations that may need to be expressed between such modules/com-
ponents, or between modules/components and other semantic resources.

202



“Dissertation” — 2017/8/15 — 10:53 — page 203 — #217

Chapter 8

Conclusions

Ontology Design Patterns (ODPs) are intended to simplify ontology engi-
neering by packaging known good solutions to recurring problems in such a
way that they can be easily reused, even by less experienced ontologists. Ini-
tial evaluations of the effects of ODP usage show promising results [24, 21],
but there are still many unknowns concerning ODP quality, the need for
ODP tool support, and the suitability of existing ODP methodologies.

The objective of this work was: To develop an understanding of impor-
tant ODP quality issues, and to develop ODP tooling and usage method-
ologies as required to support the use of ODP-based ontology engineering,
particularly by inexperienced ontologists. To achieve this objective, the au-
thor defined and studied three research questions:

1. Which ODP features or qualities are important in supporting pattern
understanding and use?

2. How can the features and functionality of ODP usage tools be im-
proved to support inexperienced ontologists?

3. How can ODP usage methodology be improved to support inexperi-
enced ontologists?

Concerning the first research question we conclude that ODPs can be dis-
cussed in terms of quality characteristics, conceptually not unlike the quality
characteristics employed in the evaluation of other sorts of conceptual mod-
els or software systems (Chapter 4). Quality characteristics can be measured
via several quality indicators that cover aspects of ODP documentation, of
formal representation or axiomatisation, and of usage by ontologists. Some
of the effects of indicators on quality characteristics could be regarded as
counter-intuitive. For instance, even though property restriction axioms are
not displayed graphically in most tools (but rather as potentially confusing
logic syntax), a higher Property Restrictions Count contributes positively

203



“Dissertation” — 2017/8/15 — 10:53 — page 204 — #218

Chapter 8. Conclusions

to ODP Learnability1. Occasionally the features underlying two quality in-
dicators clash, giving rise to trade-offs between quality characteristics that
an ontologist (particularly one with limited experience) needs to be aware
of. For instance, defining domains and ranges for object properties can
help illustrate the classes with which those properties are intended to be
used (again, increasing Learnability), but this also reduces the set of classes
that the properties could be used with (lowering Reusability). Section 4.4
presents a listing of the developed quality characteristics, quality indicators,
and quality trade-offs.

Concerning the second research question we describe the development
of three improvements to existing methods and tooling, which are particu-
larly important to the inexperienced ontologist (Chapter 5). These include
improvements to ODP search, taking into consideration ODP-specific char-
acteristics; documentation of three previously unpublished property spe-
cialisation strategies, and tool support for instantiating ODPs using these
strategies; and heuristics and tool support for template-based, as opposed
to specialisation-based, ODP instantiation. A high-quality ODP search en-
gine is important for all ODP users, but inexperienced users in particular
are likely to benefit from improvements, as they are less familiar with the
growing set of available ODPs than more experienced users. The choice of
which property specialisation strategy to employ carries with it trade-offs
that are not immediately obvious or intuitive; supporting less experienced
users in making this choice reduces the risk of unwanted consequences in the
resulting ontology. Finally, Template-based instantiation has been shown to
be more intuitive to some users than the established practice of instantiation
via specialisation, in terms of both process and result. All three of these
improvements have been integrated into an open source tool, as described
in Section 5.4.

Concerning the third research question, we conclude that the established
ODP usage methodology (eXtreme Design) would benefit from recommen-
dations concerning developer roles and responsibilities, and guidance on the
reuse of non-ODP resources (Chapter 6). Furthermore, as many ontology
engineering projects do not display all of the characteristics required for an
optimal eXtreme Design process, the methodology would also benefit from
additional adaptability to such project contexts. Section 6.4 presents a set
of guidelines and recommendations intended to help overcome these issues.
These include: a listing of project roles (Project Manager, Requirements
Source, Domain Expert, Software Developer, Ontology Developer, Ontology
Expert, and Ontology Release Engineer), with recommendations on how to
assign those roles; descriptions of five approaches to ontology reuse (Im-
porting, Partial cloning, Patternising, Remote references, and Slicing), with
a decision tree to help select the most appropriate approach; and a set of

1This is because property restriction axioms, even though they are syntactically dif-
ficult to parse, can clarify which properties and classes that are intended to be used
together.

204



“Dissertation” — 2017/8/15 — 10:53 — page 205 — #219

six project characterisation questions for the project managers to ask them-
selves, with associated actions to take depending on the answers.

To summarise, this work achieves its defined objective by providing con-
crete and practically applicable results that contribute to improvements in
three aspects of ODP usage that are important for ODP-based ontology
engineering. In so doing, this work contributes to a research field that
has developed over the past twelve years from a niche idea held by a few
influential researchers into a topic that is researched by an entire commu-
nity of scientists. There is no indication that this development will stall.
Rather, the ODP research and practitioner community appears at this time
to be particularly vital, as indicated by the launch of the Ontology Design
and Patterns Association2, and the recent release of the anthology Ontol-
ogy Engineering with Ontology Design Patterns [90]. The collection of open
research questions that is presented in that work indicates that there is a
need for further research on how ODPs and ODP-based tooling can be used
to support ontology engineering work. Thus the work presented in this dis-
sertation, combined with other efforts on ODP-based ontology engineering,
will enable broader uptake of Semantic Web ontologies and ontology-based
technologies over the coming years.

2http://ontologydesignpatterns.org/wiki/ODPA

205



“Dissertation” — 2017/8/15 — 10:53 — page 206 — #220

Chapter 8. Conclusions

206



“Dissertation” — 2017/8/15 — 10:53 — page 207 — #221

Bibliography

[1] R. L. Ackoff. From Data to Wisdom. Applied Systems Analysis, 16:3–
9, 1989.

[2] C. Alexander. The Timeless Way of Building. Oxford University
Press, 1979.

[3] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns: Best Practices
and Design Strategies. Prentice Hall, 2 edition, 2003.

[4] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream reasoning
and complex event processing in ETALIS. Semantic Web – Interop-
erability, Usability, Applicability, 3(4):397–407, 2012.

[5] G. Antoniou and F. van Harmelen. Web Ontology Language: OWL. In
S. Staab and R. Studer, editors, Handbook on Ontologies, International
Handbooks on Information Systems, pages 91–110. Springer, 2 edition,
2009.

[6] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge: Cambridge University Press, 2003.

[7] A. Bangor, P. T. Kortum, and J. T. Miller. An Empirical Evalua-
tion of the System Usability Scale. International Journal of Human–
Computer Interaction, 24(6):574–594, 2008.

[8] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. In-
cremental Reasoning on Streams and Rich Background Knowledge. In
L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt,
L. Cabral, and T. Tudorache, editors, The Semantic Web: Research
and Applications. ESWC 2010, number 6088 in Lecture Notes in Com-
puter Science, pages 1–15. Springer, 2010.

[9] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, Y. Huang, V. Tresp,
A. Rettinger, and H. Wermser. Deductive and Inductive Stream Rea-
soning for Semantic Social Media Analytics. IEEE Intelligent Systems,
25(6):32–41, 2010.

207



“Dissertation” — 2017/8/15 — 10:53 — page 208 — #222

Bibliography

[10] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus.
C-SPARQL: SPARQL for Continuous Querying. In Proceedings of the
18th International Conference on World Wide Web, pages 1061–1062.
ACM, 2009.

[11] V. R. Basili. The Role of Experimentation in Software Engineering:
Past, Current, and Future. In Proceedings of the 18th International
Conference on Software Engineering, pages 442–449. IEEE Computer
Society, 1996.

[12] D. Batory, C. Johnson, B. MacDonald, and D. Von Heeder. Achieving
Extensibility Through Product-Lines and Domain-Specific Languages:
A Case Study. In W. B. Frakes, editor, Software Reuse: Advances in
Software Reusability. ICSR 2000, number 1844 in Lecture Notes in
Computer Science, pages 83–153, Berlin, Heidelberg, 2000. Springer.

[13] K. Beck, R. Crocker, G. Meszaros, J. Vlissides, J. O. Coplien, L. Do-
minick, and F. Paulisch. Industrial Experience with Design Patterns.
In Proceedings of the 18th International Conference on Software En-
gineering, pages 103–114. IEEE, 1996.

[14] G. Bellinger, D. Castro, and A. Mills. Data, Information, Knowledge,
and Wisdom. http://www.systems-thinking.org/dikw/dikw.htm,
accessed: 2017-04-18, 2004.

[15] T. Berners-Lee. Semantic Web on XML. Talk held at XML 2000
conference in Washington DC, slides published at http://www.w3.

org/2000/Talks/1206-xml2k-tbl/slide10-0.html, 2000.

[16] T. Berners-Lee. Linked Data. http://www.w3.org/DesignIssues/

LinkedData.html, accessed: 2017-04-18, June 2009.

[17] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Sci-
entific American, 284(5):28–37, May 2001.

[18] E. Blomqvist. Semi-automatic Ontology Construction based on Pat-
terns. PhD thesis, Linköping University, 2009.

[19] E. Blomqvist, V. K. Chaudhri, O. Corcho, V. Presutti, and K. Sand-
kuhl, editors. Proceedings of the 2nd International Workshop on On-
tology Patterns – WOP2010. CEUR Workshop Proceedings, 2010.

[20] E. Blomqvist, A. Gangemi, K. Hammar, and M. C. Suárez-Figueroa,
editors. Proceedings of the 3rd Workshop on Ontology Patterns. CEUR
Workshop Proceedings, 2012.

[21] E. Blomqvist, A. Gangemi, and V. Presutti. Experiments on Pattern-
based Ontology Design. In K-CAP ’09: Proceedings of the Fifth Inter-
national Conference on Knowledge Capture, pages 41–48. ACM, 2009.

208



“Dissertation” — 2017/8/15 — 10:53 — page 209 — #223

Bibliography

[22] E. Blomqvist, K. Hammar, and V. Presutti. Engineering Ontologies
with Patterns – The extreme Design Methodology. In P. Hitzler,
A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors,
Ontology Engineering with Ontology Design Patterns - Foundations
and Applications, volume 25 of Studies on the Semantic Web, pages
23–50. IOS Press, 2016.

[23] E. Blomqvist, P. Hitzler, A. Krisnadhi, T. Narock, and M. Solanki,
editors. Proceedings of the 6th Workshop on Ontology and Semantic
Web Patterns (WOP 2015) co-located with the 14th International Se-
mantic Web Conference (ISWC 2015). CEUR Workshop Proceedings,
2015.

[24] E. Blomqvist, V. Presutti, E. Daga, and A. Gangemi. Experimenting
with eXtreme Design. In P. Cimiano and H. S. Pinto, editors, EKAW
2010: Knowledge Engineering and Management by the Masses, pages
120–134. Springer, 2010.

[25] E. Blomqvist and K. Sandkuhl. Patterns in Ontology Engineering:
Classification of Ontology Patterns. In C.-S. Chen, J. Filipe, I. Seruca,
and J. Cordeiro:, editors, ICEIS 2005: Proceedings of the Seventh In-
ternational Conference on Enterprise Information Systems, volume 3,
pages 413–416, 2005.

[26] E. Blomqvist, K. Sandkuhl, F. Scharffe, and V. Svatek, editors. Pro-
ceedings of the Workshop on Ontology Patterns (WOP 2009). CEUR
Workshop Proceedings, 2009.

[27] D. Brickley and R. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation, W3C, February 2004.

[28] D. Brickley and R. Guha. RDF Schema 1.1. W3C Recommendation,
W3C, February 2014.

[29] J. Brooke. SUS: A ‘quick and dirty’ usability scale. In P. W. Jordan,
B. Thomas, I. L. McClelland, and B. Weerdmeester, editors, Usability
Evaluation In Industry, pages 189–194. Taylor & Francis, London,
1996.

[30] A. Budanitsky and G. Hirst. Semantic distance in WordNet: An exper-
imental, application-oriented evaluation of five measures. In Workshop
on WordNet and other lexical resources. NAACL, 2001.

[31] P. Burnard. A method of analysing interview transcripts in qualitative
research. Nurse Education Today, 11(6):461–466, 1991.

[32] G. M. Campagnolo, G. Jacucci, S. G. Johnsen, O.-W. Rahlff, K. Sand-
kuhl, H. Tellioglu, and I. Wagner. MAPPER Deliverable D3 - Frame-
work for Validation of Economic, Socio-Technical and Technical View-
points. Technical report, MAPPER Consortium, 2006.

209



“Dissertation” — 2017/8/15 — 10:53 — page 210 — #224

Bibliography

[33] H. Chen, T. Finin, and A. Joshi. An Ontology for Context-Aware Per-
vasive Computing Environments. The Knowledge Engineering Review,
18(3):197–207, September 2003.

[34] S. Chen and B. W. Morris. Using Design Patterns, Analysis Pat-
tern, and Case-Based Reasoning to Improve Information Modeling and
Method Engineering in Systems Development. International Journal
of Applied Management and Technology, 7(1):7, 2009.

[35] O. Corcho, C. Roussey, L. M. V. Blázquez, and I. Pérez. Pattern-based
OWL Ontology Debugging Guidelines. In E. Blomqvist, K. Sandkuhl,
F. Scharffe, and V. Svatek, editors, Proceedings of the Workshop on
Ontology Patterns (WOP 2009), volume 516 of CEUR Workshop Pro-
ceedings, pages 68–82, 2009.

[36] M. Courtot, F. Gibson, A. L. Lister, J. Malone, D. Schober, R. R.
Brinkman, and A. Ruttenberg. Mireot: The minimum information
to reference an external ontology term. Applied Ontology, 6(1):23–33,
2011.

[37] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 Concepts and
Abstract Syntax. W3C Recommendation, W3C, 2014.

[38] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing Cardinality-
based Feature Models and their Specialization. Software Process: Im-
provement and Practice, 10(1):7–29, 2005.

[39] R. L. Daft. Learning the Craft of Organizational Research. Academy
of Management Review, 8(4):539–546, 1983.

[40] E. Daga, E. Blomqvist, A. Gangemi, E. Montiel, N. Nikitina, V. Pre-
sutti, and B. Villazon-Terrazas. D2.5.2: Pattern based ontology de-
sign: methodology and software support. Technical report, NeOn
Consortium, 2007.

[41] M. d’Aquin. Modularizing Ontologies. In M. C. Suárez-Figueroa,
A. Gómez-Pérez, E. Motta, and A. Gangemi, editors, Ontology Engi-
neering in a Networked World, pages 213–233. Springer, Berlin, Hei-
delberg, 2012.

[42] V. de Boer, A. Gangemi, K. Janowicz, and A. Lawrynowicz, editors.
Proceedings of the 5th Workshop on Ontology and Semantic Web Pat-
terns. CEUR Workshop Proceedings, 2014.

[43] M. Doerr, J. Hunter, and C. Lagoze. Towards a Core Ontology for
Information Integration. Journal of Digital Information, 4(1), 2006.

[44] M. Dzbor, M. C. Suárez-Figueroa, E. Blomqvist, H. Lewen, M. Es-
pinoza, A. Gómez-Pérez, and R. Palma. D5.6.2 Experimentation and

210



“Dissertation” — 2017/8/15 — 10:53 — page 211 — #225

Bibliography

Evaluation of the NeOn Methodology. Technical report, NeOn Project,
2007.

[45] M. Egaña, E. Antezana, and R. Stevens. Transforming the Axiomisa-
tion of Ontologies: The Ontology Pre-Processor Language. In K. Clark
and P. F. Patel-Schneider, editors, Proceedings of the Fourth OWLED
Workshop on OWL: Experiences and Directions. CEUR Workshop
Proceedings, 2008.

[46] M. Eriksson, J. Börstler, and K. Borg. Software product line modeling
made practical. Communications of the ACM, 49(12):49–54, 2006.

[47] R. Falbo, G. Guizzardi, A. Gangemi, and V. Presutti. Ontology
Patterns: Clarifying Concepts and Terminology. In A. Gangemi,
M. Gruninger, K. Hammar, L. Lefort, V. Presutti, and A. Scherp,
editors, Proceedings of the 4th Workshop on Ontology and Semantic
Web Patterns. CEUR Workshop Proceedings, 2013.

[48] M. Fernández-López and A. Gómez-Pérez. The integration of On-
toClean in WebODE. In J. Angele and Y. Sure, editors, EON2002:
Proceedings of the OntoWeb-SIG3 Workshop at the 13th International
Conference on Knowledge Engineering and Knowledge Management
EKAW 2002, pages 38–52. CEUR Workshop Proceedings, 2002.

[49] M. Fernández-López, A. Gómez-Pérez, and N. Juristo. METHON-
TOLOGY: From Ontological Art Towards Ontological Engineering.
Technical Report SS-97-06, American Association for Artificial Intel-
ligence, March 1997.

[50] M. Fernández-López, M. C. Suárez-Figueroa, and A. Gómez-Pérez.
Ontology Development by Reuse. In M. C. Suárez-Figueroa,
A. Gómez-Pérez, E. Motta, and A. Gangemi, editors, Ontology Engi-
neering in a Networked World, pages 147–170. Springer, Berlin, Hei-
delberg, 2012.

[51] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A.
Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager, N. Schlae-
fer, and C. Welty. Building Watson: An Overview of the DeepQA
project. AI Magazine, 31(3):59–79, 2010.

[52] W. Foddy. Constructing Questions for Interviews and Questionnaires:
Theory and Practice in Social Research. Cambridge University Press,
1994.

[53] M. Fowler. Analysis Patterns: Reusable Object Models. Addison-
Wesley, 1997.

[54] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

211



“Dissertation” — 2017/8/15 — 10:53 — page 212 — #226

Bibliography

[55] A. Gangemi. Ontology Design Patterns for Semantic Web Content.
In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen, editors,
The Semantic Web – ISWC 2005, number 3729 in Lecture Notes in
Computer Science, pages 262–276. Springer, 2005.

[56] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann. Modelling
Ontology Evaluation and Validation. In Y. Sure and J. Domingue,
editors, The Semantic Web: Research and Applications. ESWC 2006,
number 4011 in Lecture Notes in Computer Science, pages 140–154,
Berlin, Heidelberg, 2006. Springer.

[57] A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann, R. Gil, F. Bol-
ici, and O. Strignano. Ontology evaluation and validation. Technical
report, Laboratory for Applied Ontology, ISTC-CNR, 2005.

[58] A. Gangemi, M. Gruninger, K. Hammar, L. Lefort, V. Presutti, and
A. Scherp, editors. Proceedings of the 4th Workshop on Ontology and
Semantic Web Patterns. CEUR Workshop Proceedings, 2014.

[59] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening
WordNet with DOLCE. AI magazine, 24(3):13, 2003.

[60] A. Gangemi and V. Presutti. Ontology Design Patterns. In S. Staab
and R. Studer, editors, Handbook on Ontologies, International Hand-
books on Information Systems, pages 221–243. Springer, 2 edition,
2009.

[61] M. Genero, G. Poels, and M. Piattini. Defining and Validating Mea-
sures for Conceptual Data Model Quality. In A. B. Pidduck, M. T.
Ozsu, J. Mylopoulos, and C. C. Woo, editors, Advanced Information
Systems Engineering. CAiSE 2002, number 2348 in Lecture Notes in
Computer Science, pages 724–727, Berlin, Heidelberg, 2002. Springer.

[62] R. L. Glass, V. Ramesh, and I. Vessey. An Analysis of Research in
Computing Disciplines. Communications of the ACM, 47(6):89–94,
2004.

[63] A. Gómez-Pérez, M. Fernandez-Lopez, and O. Corcho. Ontological En-
gineering. Advanced Information and Knowledge Processing. Springer,
London, 2004.

[64] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider,
and U. Sattler. OWL 2: The Next Step for OWL. Web Semantics,
6(4):309–322, 2008.

[65] T. R. Gruber. A translation approach to portable ontology specifica-
tions. Knowledge Acquisition, 5(2):199–220, 1993.

212



“Dissertation” — 2017/8/15 — 10:53 — page 213 — #227

Bibliography

[66] M. Gruninger and M. S. Fox. The Role of Competency Questions
in Enterprise Engineering. In A. Rolstad̊as, editor, Benchmarking —
Theory and Practice, IFIP Advances in Information and Communica-
tion Technology, pages 22–31, Boston, MA, 1995. Springer.

[67] N. Guarino, editor. Formal Ontology in Information Systems: Pro-
ceedings of the 1st International Conference June 6-8, 1998, Trento,
Italy. IOS Press, January 1998.

[68] N. Guarino and C. Welty. Evaluating Ontological Decisions with On-
toClean. Communications of the ACM, 45(2):61–65, 2002.

[69] N. Guarino and C. A. Welty. An Overview of OntoClean. In S. Staab
and R. Studer, editors, Handbook on Ontologies, International Hand-
books on Information Systems, pages 201–220. Springer, Berlin, Hei-
delberg, 2 edition, 2009.

[70] R. Guha, R. McCool, and E. Miller. Semantic Search. In Proceedings
of the 12th International Conference on World Wide Web, pages 700–
709. ACM, 2003.

[71] K. Hammar. DC Proposal: Towards an ODP Quality Model. In
L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, and
N. Noy, editors, The Semantic Web – ISWC 2011, volume 2 of Lecture
Notes in Computer Science, pages 277–284. Springer, 2011.

[72] K. Hammar. The State of Ontology Pattern Research. In L. Niedrite,
R. Strazdina, and B. Wangler, editors, Perspectives in Business In-
formatics Research: Associated Workshops and Doctoral Consortium,
pages 29–37. Riga Technical University, 2011.

[73] K. Hammar. Modular Semantic CEP for Threat Detection. In L. Villa-
Vargas, L. Sheremetov, and H.-D. Haasis, editors, ORADM 2012: Op-
erations Research and Data Mining Workshop Proceedings, Cancun,
Mexico, 2012. National Polytechnic Institute.

[74] K. Hammar. Ontology Design Patterns in Use: Lessons Learnt from
an Ontology Engineering Case. In E. Blomqvist, A. Gangemi, K. Ham-
mar, and M. C. Suárez-Figueroa, editors, Proceedings of the 3rd Work-
shop on Ontology Patterns, number 929 in CEUR Workshop Proceed-
ings, 2012.

[75] K. Hammar. Reasoning Performance Indicators for Ontology Design
Patterns. In A. Gangemi, M. Gruninger, K. Hammar, L. Lefort,
V. Presutti, and A. Scherp, editors, Proceedings of the 4th Work-
shop on Ontology and Semantic Web Patterns, number 1188 in CEUR
Workshop Proceedings, 2013.

213



“Dissertation” — 2017/8/15 — 10:53 — page 214 — #228

Bibliography

[76] K. Hammar. Towards an Ontology Design Pattern Quality Model.
Licentiate thesis, Department of Computer and Information Science,
Linköping University, 2013.

[77] K. Hammar. Ontology Design Pattern Property Specialisation Strate-
gies. In K. Janowicz, S. Schlobach, P. Lambrix, and E. Hyvönen,
editors, EKAW 2014: Knowledge Engineering and Knowledge Man-
agement, number 8876 in Lecture Notes in Computer Science, pages
165–180. Springer, 2014.

[78] K. Hammar. Ontology Design Patterns: Improving Findability and
Composition. In V. Presutti, E. Blomqvist, R. Troncy, H. Sack, I. Pa-
padakis, and A. Tordai, editors, The Semantic Web: ESWC 2014
Satellite Events, number 8798 in Lecture Notes in Computer Science,
pages 3–13. Springer, 2014.

[79] K. Hammar. Ontology Design Patterns in WebProtégé. In S. Villata,
J. Z. Pan, and M. Dragoni, editors, Proceedings of the ISWC 2015
Posters & Demonstrations Track, number 1486 in CEUR Workshop
Proceedings, 2015.

[80] K. Hammar. Quality of Content Ontology Design Patterns. In P. Hit-
zler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors,
Ontology Engineering with Ontology Design Patterns - Foundations
and Applications, volume 25 of Studies on the Semantic Web, pages
51–71. IOS Press, 2016.

[81] K. Hammar. Template-Based Content ODP Instantiation. In K. Ham-
mar, P. Hitzler, A. Krisnadhi, A. Lawrynowicz, A. G. Nuzzolese, and
M. Solanki, editors, Advances in Ontology Design and Patterns, Stud-
ies on the Semantic Web. IOS Press, Forthcoming 2017.

[82] K. Hammar, E. Blomqvist, D. Carral, M. Van Erp, A. Fokkens,
A. Gangemi, W. R. Van Hage, P. Hitzler, K. Janowicz, N. Karima,
et al. Collected Research Questions Concerning Ontology Design Pat-
terns. In P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and
V. Presutti, editors, Ontology Engineering with Ontology Design Pat-
terns - Foundations and Applications, volume 25 of Studies on the
Semantic Web, pages 189–198. IOS Press, 2016.

[83] K. Hammar, F. Lin, and V. Tarasov. Information Reuse and Interoper-
ability with Ontology Patterns and Linked Data. In W. Abramowicz,
R. Tolksdorf, and K. Wecel, editors, BIS 2010: Business Information
Systems Workshops, number 57 in Lecture Notes in Business Informa-
tion Processing, pages 168–179. Springer, 2010.

[84] K. Hammar and K. Sandkuhl. The State of Ontology Pattern Re-
search: A Systematic Review of ISWC, ESWC and ASWC 2005–
2009. In E. Blomqvist, V. K. Chaudhri, O. Corcho, V. Presutti, and

214



“Dissertation” — 2017/8/15 — 10:53 — page 215 — #229

Bibliography

K. Sandkuhl, editors, Proceedings of the 2nd International Workshop
on Ontology Patterns – WOP2010, number 671 in CEUR Workshop
Proceedings, pages 5–17, 2010.

[85] M. A. Hearst. Automatic Acquisition of Hyponyms from Large Text
Corpora. In Proceedings of the 14th Conference on Computational
Linguistics, volume 2, pages 539–545. Association for Computational
Linguistics, 1992.

[86] M. Hepp. GoodRelations: An Ontology for Describing Products and
Services Offers on the Web. In A. Gangemi and J. Euzenat, editors,
Knowledge Engineering: Practice and Patterns. EKAW 2008, number
5268 in Lecture Notes in Computer Science, pages 329–346, Berlin,
Heidelberg, 2008. Springer.

[87] G. Hermosillo, L. Seinturier, and L. Duchien. Using Complex Event
Processing for Dynamic Business Process Adaptation. In Services
Computing (SCC), 2010 IEEE International Conference on, pages
466–473. IEEE, 2010.

[88] A. Hevner and S. Chatterjee. Design Research in Information Systems:
Theory and Practice, volume 22 of Integrated Series in Information
Systems. Springer US, 2010.

[89] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in
Information Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[90] P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti,
editors. Ontology Engineering with Ontology Design Patterns: Foun-
dations and Applications. Number 25 in Studies on the Semantic Web.
IOS Press, 2016.

[91] M. Horridge, M. E. Aranguren, J. Mortensen, M. Musen, and N. F.
Noy. Ontology Design Pattern Language Expressivity Requirements.
In E. Blomqvist, A. Gangemi, K. Hammar, and M. C. Suárez-
Figueroa, editors, Proceedings of the 3rd Workshop on Ontology Pat-
terns. CEUR Workshop Proceedings, 2012.

[92] M. Horridge, H. Knublauch, A. Rector, R. Stevens, C. Wroe, S. Jupp,
G. Moulton, N. Drummond, and S. Brandt. A Practical Guide To
Building OWL Ontologies Using Protégé 4 and CO-ODE Tools Edition
1.3. Technical report, The University Of Manchester, 2011.

[93] L. Iannone, A. Rector, and R. Stevens. Embedding Knowledge Pat-
terns into OWL. In L. Aroyo, P. Traverso, F. Ciravegna, P. Cimiano,
T. Heath, E. Hyvönen, R. Mizoguchi, E. Oren, M. Sabou, and E. Sim-
perl, editors, The Semantic Web: Research and Applications. ESWC
2009, number 5554 in Lecture Notes in Computer Science, pages 218–
232. Springer, Berlin, Heidelberg, 2009.

215



“Dissertation” — 2017/8/15 — 10:53 — page 216 — #230

Bibliography

[94] ISO. Systems and software engineering – Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) – System and software
quality models. International Standard ISO/IEC 25010:2011, Interna-
tional Organization for Standardization, 2011.

[95] M. Ivarsson and T. Gorschek. Technology transfer decision support
in requirements engineering research: a systematic review of REj. Re-
quirements Engineering, 14(3):155–175, 2009.

[96] R. B. Johnson and A. J. Onwuegbuzie. Mixed Methods Research: A
Research Paradigm Whose Time Has Come. Educational Researcher,
33(7):14–26, 2004.

[97] R. B. Johnson, A. J. Onwuegbuzie, and L. A. Turner. Toward a defi-
nition of mixed methods research. Journal of mixed methods research,
1(2):112–133, 2007.

[98] Y.-B. Kang, Y.-F. Li, and S. Krishnaswamy. Predicting Reasoning
Performance Using Ontology Metrics. In P. Cudré-Mauroux, J. Heflin,
E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira,
J. Hendler, G. Schreiber, A. Bernstein, and E. Blomqvist, editors,
The Semantic Web – ISWC 2012, number 7649 in Lecture Notes in
Computer Science, pages 198–214, Berlin, Heidelberg, 2012. Springer.

[99] N. Karima, K. Hammar, and P. Hitzler. How to Document On-
tology Design Patterns. In K. Hammar, P. Hitzler, A. Krisnadhi,
A. Lawrynowicz, A. G. Nuzzolese, and M. Solanki, editors, Advances
in Ontology Design and Patterns, Studies on the Semantic Web. IOS
Press, Forthcoming 2017.

[100] C. M. Keet. Detecting and Revising Flaws in OWL Object Property
Expressions. In A. ten Teije, J. Völker, S. Handschuh, H. Stuck-
enschmidt, M. d’Acquin, A. Nikolov, N. Aussenac-Gilles, and N. Her-
nandez, editors, Knowledge Engineering and Knowledge Management.
EKAW 2012, number 7603 in Lecture Notes in Computer Science,
pages 252–266. Springer, Berlin, Heidelberg, 2012.

[101] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff. Se-
mantic Annotation, Indexing, and Retrieval. Web Semantics: Science,
Services and Agents on the World Wide Web, 2(1):49–79, December
2004.

[102] B. Kitchenham. Procedures for Performing Systematic Reviews. Tech-
nical report, Keele University, 2004.

[103] G. Klyne and J. J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation, W3C, 2004.

216



“Dissertation” — 2017/8/15 — 10:53 — page 217 — #231

Bibliography

[104] L. W. Lacy. OWL: Representing Information Using the Web Ontology
Language. Trafford Publishing, January 2005.

[105] L. Lefort, K. Taylor, and D. Ratcliffe. Towards Scalable Ontology
Engineering Patterns: Lessons Learned from an Experiment based
on W3C’s Part-whole Guidelines. In Proceedings of the Second Aus-
tralasian Workshop on Advances in Ontologies, pages 31–40. Aus-
tralian Computer Society, Inc., 2006.

[106] Y. Lei, V. Uren, and E. Motta. SemSearch: A Search Engine for the Se-
mantic Web. In S. Staab and V. Svátek, editors, Managing Knowledge
in a World of Networks: 15th International Conference, EKAW 2006,
Poděbrady, Czech Republic, October 2-6, 2006. Proceedings, volume
4248 of Lecture Notes in Computer Science, pages 238–245. Springer,
2006.

[107] P. LePendu, N. Noy, C. Jonquet, P. Alexander, N. Shah, and
M. Musen. Optimize First, Buy Later: Analyzing Metrics to Ramp-
up Very Large Knowledge Bases. In P. F. Patel-Schneider, Y. Pan,
P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, I. Horrocks, and B. Glimm,
editors, The Semantic Web – ISWC 2010, number 6496 in Lecture
Notes in Computer Science, pages 486–501, Berlin, Heidelberg, 2010.
Springer.

[108] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[109] R. Likert. A technique for the measurement of attitudes. Archives of
psychology, 22(140):5–55, 1932.

[110] O. I. Lindland, G. Sindre, and A. Solvberg. Understanding Quality in
Conceptual Modeling. IEEE Software, 11(2):42–49, 1994.

[111] S. Lodhi and Z. Ahmed. Content Ontology Design Pattern Presenta-
tion. Master’s thesis, Jönköping University, 2011.

[112] S. Lohmann, S. Negru, F. Haag, and T. Ertl. Visualizing Ontologies
with VOWL. Semantic Web – Interoperability, Usability, Applicability,
7(4):399–419, 2016.

[113] A. Lozano-Tello and A. Gómez-Pérez. ONTOMETRIC: A Method to
Choose the Appropriate Ontology. Journal of Database Management,
2(15):1–18, 2004.

[114] D. C. Luckham and B. Frasca. Complex Event Processing in Dis-
tributed Systems. Stanford University Technical Report CSL-TR-98-
754, Stanford University, August 1998.

217



“Dissertation” — 2017/8/15 — 10:53 — page 218 — #232

Bibliography

[115] A. Martin, R. Biddle, and J. Noble. When XP Met Outsourcing. In
J. Eckstein and H. Baumeister, editors, Extreme Programming and
Agile Processes in Software Engineering. XP 2004, number 3092 in
Lecture Notes in Computer Science, pages 51–59, Berlin, Heidelberg,
2004. Springer.

[116] G. Masuda, N. Sakamoto, and K. Ushijima. Applying Design Pat-
terns to Decision Tree Learning System. In ACM SIGSOFT Software
Engineering Notes, volume 23, pages 111–120. ACM, 1998.

[117] J. A. McCall, P. K. Richards, and G. F. Walters. Factors in Soft-
ware Quality. Volume I. Concepts and Definitions of Software Quality.
Technical report, General Electric Company, Sunnyvale, CA, 1977.

[118] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Lan-
guage Overview. W3C Recommendation, W3C, February 2004.

[119] G. A. Miller. WordNet: a Lexical Database for English. Communica-
tions of the ACM, 38(11):39–41, 1995.

[120] D. L. Moody and G. G. Shanks. What Makes a Good Data Model?
Evaluating the Quality of Entity Relationship Models. In P. Loucopou-
los, editor, Entity-Relationship Approach — ER ’94 Business Mod-
elling and Re-Engineering. ER 1994, number 881 in Lecture Notes in
Computer Science, pages 94–111, Berlin, Heidelberg, 1994. Springer.

[121] G. Morgan and L. Smircich. The Case for Qualitative Research.
Academy of Management Review, 5(4):491–500, 1980.

[122] A. Newell. The Knowledge Level: Presidential Address. AI Magazine,
2(2):1–20, 1981.

[123] N. F. Noy and D. L. McGuinness. Ontology Development 101. Techni-
cal report, Knowledge Systems Laboratory, Stanford University, 2001.

[124] P. Palvia, D. Leary, E. Mao, V. Midha, P. Pinjani, and A. Salam.
Research Methodologies in MIS: An Update. Communications of the
Association for Information Systems, 14:526–542, 2004.

[125] J. Z. Pan. Resource Description Framework. In S. Staab and R. Studer,
editors, Handbook on Ontologies, International Handbooks on Infor-
mation Systems, pages 71–90. Springer, 2 edition, 2009.

[126] S. Peroni. A Simplified Agile Methodology for Ontology Develop-
ment. In M. Dragoni, M. Poveda-Villalón, and E. Jimenez-Ruiz, edi-
tors, OWL: Experiences and Directions – Reasoner Evaluation, volume
10161 of Lecture Notes in Computer Science, pages 55–69. Springer,
2017.

218



“Dissertation” — 2017/8/15 — 10:53 — page 219 — #233

Bibliography

[127] A. J. Pickard. Research Methods in Information. Facet Publishing,
London, 2 edition, 2013.

[128] H. S. Pinto, S. Staab, C. Tempich, and Y. Sure. Distributed En-
gineering of Ontologies (DILIGENT). In S. Staab and H. Stucken-
schmidt, editors, Semantic Web and Peer-to-Peer: Decentralized Man-
agement and Exchange of Knowledge and Information, pages 303–322.
Springer, 2006.

[129] S. Pinto, S. Staab, Y. Sure, and C. Tempich. OntoEdit Empowering
SWAP: a Case Study in Supporting DIstributed, Loosely-Controlled
and evolvInG Engineering of oNTologies (DILIGENT). In C. J. Bus-
sler, J. Davies, D. Fensel, and R. Studer, editors, The Semantic Web:
Research and Applications. ESWS 2004, number 3053 in Lecture Notes
in Computer Science, pages 16–30. Springer, 2004.

[130] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy.
Two Controlled Experiments Assessing the Usefulness of Design Pat-
tern Documentation in Program Maintenance. IEEE Transactions on
Software Engineering, 28(6):595–606, 2002.

[131] V. Presutti, E. Blomqvist, E. Daga, and A. Gangemi. Pattern-Based
Ontology Design. In Ontology Engineering in a Networked World,
pages 35–64. Springer, 2012.

[132] V. Presutti, E. Daga, A. Gangemi, and E. Blomqvist. eXtreme Design
with Content Ontology Design Patterns. In E. Blomqvist, K. Sand-
kuhl, F. Scharffe, and V. Svatek, editors, Proceedings of the Workshop
on Ontology Patterns (WOP 2009), pages 83–97. CEUR Workshop
Proceedings, 2009.

[133] V. Presutti, A. Gangemi, S. David, G. A. de Cea, M. C. Suárez-
Figueroa, E. Montiel-Ponsoda, and M. Poveda. D2.5.1: A Library of
Ontology Design Patterns: reusable solutions for collaborative design
of networked ontologies. Technical report, NeOn Consortium, 2007.

[134] E. Prud’hommeaux, G. Carothers, D. Beckett, and T. Berners-Lee.
RDF 1.1 Turtle – Terse RDF Triple Language. W3C Recommendation,
W3C, February 2014.

[135] A. Ranganathan and R. H. Campbell. A Middleware for Context-
Aware Agents in Ubiquitous Computing Environments. In M. Endler,
editor, Proceedings of the ACM/IFIP/USENIX 2003 International
Conference on Middleware, pages 143–161. Springer-Verlag New York,
Inc., 2003.

[136] L. P. Ruddin. You Can Generalize Stupid! Social Scientists, Bent Fly-
vbjerg, and Case Study Methodology. Qualitative Inquiry, 12(4):797–
812, 2006.

219



“Dissertation” — 2017/8/15 — 10:53 — page 220 — #234

Bibliography

[137] F. B. Ruy, C. C. Reginato, V. A. Santos, R. A. Falbo, and G. Guiz-
zardi. Ontology Engineering by Combining Ontology Patterns. In
P. Johannesson, M. L. Lee, S. W. Liddle, A. L. Opdahl, and Ó. P.
López, editors, Conceptual Modeling, number 9381 in Lecture Notes
in Computer Science, pages 173–186. Springer, Cham, 2015.

[138] T. L. Saaty. A Scaling Method for Priorities in Hierarchical Structures.
Journal of Mathematical Psychology, 15(3):234–281, 1977.

[139] K. Sandkuhl, H. Tellioglu, and S. Johnsen. Orchestrating Economic,
Socio-Technical and Technical Validation using Visual Modelling. In
16th European Conference on Information Systems: ECIS 2008, 2008.

[140] L. Schatzman and A. L. Strauss. Field research: Strategies for a nat-
ural sociology. Prentice Hall, 1973.

[141] S. Schneider, R. Torkar, and T. Gorschek. Solutions in global software
engineering: A systematic literature review. International Journal of
Information Management, 33(1):119–132, 2012.

[142] C. B. Seaman. Qualitative Methods. In Guide to Advanced Empirical
Software Engineering, pages 35–62. Springer, 2008.

[143] F. Shull and R. L. Feldmann. Building Theories from Multiple Evi-
dence Sources. In F. Shull, J. Singer, and D. I. K. Sjøberg, editors,
Guide to Advanced Empirical Software Engineering, pages 337–364.
Springer, London, 2008.

[144] H. A. Simon. The Sciences of the Artificial. MIT Press, 3 edition,
1996.

[145] J. Singer, S. E. Sim, and T. C. Lethbridge. Software Engineering Data
Collection for Field Studies. In Guide to Advanced Empirical Software
Engineering, pages 9–34. Springer, 2008.

[146] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COVAMOF: A
Framework for Modeling Variability in Software Product Families. In
R. L. Nord, editor, Software Product Lines. SPLC 2004, number 3154
in Lecture Notes in Computer Science, pages 197–213, Berlin, Heidel-
berg, 2004. Springer.

[147] D. I.-K. Sjøberg, T. Dyb̊a, B. C.-D. Anda, and J. E. Hannay. Building
Theories in Software Engineering. In Guide to Advanced Empirical
Software Engineering, pages 312–336. Springer, 2008.

[148] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters,
L. J. Goldberg, K. Eilbeck, A. Ireland, C. J. Mungall, T. O. Con-
sortium, N. Leontis, P. Rocca-Serra, A. Ruttenberg, S.-A. Sansone,
R. H. Scheuermann, N. Shah, P. L. Whetzel, and S. Lewis. The OBO

220



“Dissertation” — 2017/8/15 — 10:53 — page 221 — #235

Bibliography

Foundry: coordinated evolution of ontologies to support biomedical
data integration. Nature Biotechnology, 25(11):1251–1255, 2007.

[149] P. Spyns, R. Meersman, and M. Jarrar. Data modelling versus Ontol-
ogy engineering. ACM SIGMOD Record, 31(4):12–17, 2002.

[150] R. D. Stacey. Complex Responsive Processes in Organizations: Learn-
ing and knowledge creation. Routledge, 2001.

[151] G. Stapleton, J. Howse, K. Taylor, A. Delaney, J. Burton, and
P. Chapman. Towards Diagrammatic Ontology Patterns. In
A. Gangemi, M. Gruninger, K. Hammar, L. Lefort, V. Presutti, and
A. Scherp, editors, Proceedings of the 4th Workshop on Ontology and
Semantic Web Patterns, volume 1188 of CEUR Workshop Proceedings,
2014.

[152] S. S. Stevens. On the Theory of Scales of Measurement. Science,
103(2684):677–680, 1946.

[153] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering:
Principles and methods. Data & Knowledge Engineering, 25(1–2):161–
197, 1998.

[154] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-López.
The NeOn Methodology for Ontology Engineering. In M. C. Suárez-
Figueroa, A. Gómez-Pérez, E. Motta, and A. Gangemi, editors, Ontol-
ogy Engineering in a Networked World, pages 9–34. Springer, Berlin,
Heidelberg, 2012.

[155] M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Motta, and A. Gangemi,
editors. Ontology Engineering in a Networked World. Springer, Berlin,
Heidelberg, 2012.

[156] J. Sun, H. Zhang, Y. F. Li, and H. Wang. Formal Semantics and Veri-
fication for Feature Modeling. In Proceedings of the 10th International
Conference on Engineering of Complex Computer Systems (ICECCS
2005), pages 303–312. IEEE, 2005.

[157] Y. Sure, S. Staab, and R. Studer. On-To-Knowledge Methodology
(OTKM). In S. Staab and R. Studer, editors, Handbook on Ontolo-
gies, International Handbooks on Information Systems, pages 117–132.
Springer Berlin Heidelberg, 2004.

[158] O. Šváb-Zamazal, M. Dudáš, and V. Svátek. User-Friendly Pattern-
Based Transformation of OWL Ontologies. In A. ten Teije,
J. Völker, S. Handschuh, H. Stuckenschmidt, M. d’Acquin, A. Nikolov,
N. Aussenac-Gilles, and N. Hernandez, editors, Knowledge Engineer-
ing and Knowledge Management. EKAW 2012, number 7603 in Lec-
ture Notes in Computer Science, pages 426–429, Berlin, Heidelberg,
2012. Springer.

221



“Dissertation” — 2017/8/15 — 10:53 — page 222 — #236

Bibliography

[159] O. Šváb-Zamazal, V. Svátek, and L. Iannone. Pattern-Based Ontology
Transformation Service Exploiting OPPL and OWL-API. In P. Cimi-
ano and H. S. Pinto, editors, Knowledge Engineering and Management
by the Masses. EKAW 2010, number 6317 in Lecture Notes in Com-
puter Science, pages 105–119, Berlin, Heidelberg, 2010. Springer.

[160] H. Svensson and M. Host. Introducing an Agile Process in a Software
Maintenance and Evolution Organization. In Ninth European Confer-
ence on Software Maintenance and Reengineering. CSMR 2005, pages
256–264. IEEE, 2005.

[161] C. Thörn. On the Quality of Feature Models. PhD thesis, Department
of Computer and Information Science, Linköping University, 2010.

[162] H. Tsoukas and E. Vladimirou. What is Organizational Knowledge?
Journal of Management Studies, 38(7):973–993, 2001.

[163] T. Tudorache, C. Nyulas, N. F. Noy, and M. A. Musen. Webprotégé:
A collaborative ontology editor and knowledge acquisition tool for
the web. Semantic Web – Interoperability, Usability, Applicability,
4(1):89–99, 2013.

[164] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen, and H. Bal.
OWL Reasoning with WebPIE: Calculating the Closure of 100 Bil-
lion Triples. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije,
H. Stuckenschmidt, L. Cabral, and T. Tudorache, editors, The Se-
mantic Web: Research and Applications. ESWC 2010, number 6088
in Lecture Notes in Computer Science, pages 213–227, Berlin, Heidel-
berg, 2010. Springer.

[165] J. Urbani, S. Kotoulas, E. Oren, and F. Van Harmelen. Scalable
Distributed Reasoning using MapReduce. In A. Bernstein, D. R.
Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and
K. Thirunarayan, editors, The Semantic Web – ISWC 2009, number
5823 in Lecture Notes in Computer Science, pages 634–649, Berlin,
Heidelberg, 2009. Springer.

[166] V. Uren, Y. Lei, V. Lopez, H. Liu, E. Motta, and M. Giordanino. The
usability of semantic search tools: a review. The Knowledge Engineer-
ing Review, 22(04):361–377, 2007.

[167] F. Van Harmelen, A. Ten Teije, and H. Wache. Knowledge Engineering
Rediscovered: Towards Reasoning Patterns for the Semantic Web. In
The Fifth International Conference on Knowledge Capture, pages 81–
88. ACM, 2009.

[168] W3C OWL Working Group. OWL 2 Web Ontology Language Docu-
ment Overview (Second Edition). W3C Recommendation, W3C, De-
cember 2012.

222



“Dissertation” — 2017/8/15 — 10:53 — page 223 — #237

Bibliography

[169] R. A. Watts. Measuring software quality. NCC Publications, 1987.

[170] C. Welty and N. Guarino. Supporting ontological analysis of tax-
onomic relationships. Data & Knowledge Engineering, 39(1):51–74,
2001.

[171] D. Widdows and K. Ferraro. Semantic Vectors: a Scalable Open
Source Package and Online Technology Management Application.
In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk,
S. Piperidis, and D. Tapias, editors, Proceedings of the Sixth Interna-
tional Conference on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco, 2008. European Language Resources Association
(ELRA).

[172] W. Yaoa, C.-H. Chub, and Z. Lia. Leveraging complex event process-
ing for smart hospitals using RFID. Journal of Network and Computer
Applications, 34(3):799–810, May 2011.

[173] R. K. Yin. Case Study Research: Design and Methods. SAGE Publi-
cations, Inc., 4 edition, 2009.

[174] H. Zhang, Y.-F. Li, and H. B. K. Tan. Measuring design complexity of
semantic web ontologies. Journal of Systems and Software, 83(5):803–
814, 2010.

223



“Dissertation” — 2017/8/15 — 10:53 — page 224 — #238

Bibliography

224



“Dissertation” — 2017/8/15 — 10:53 — page 225 — #239

Appendix A

ODP Quality Model
Indicators

This appendix lists the quality indicators for ODPs developed in Chapter 4,
grouped by category based on the aspects of the ODP that they concern
(see Section 4.4.3 for details). Each indicator is listed with a suggested
measurement method, a scale of measurement (per Steven’s typology [152]),
and a listing of the quality characteristics that are improved or diminished
by increases to the measured indicator (see Section 4.4.2 for the full listing
of quality characteristics). In some cases, recommendations for indicator
values and/or suggestions for ontology engineers are also included.

It should be noted that the measurement methods listed here have not
been evaluated empirically, nor are they assumed to be the only suitable
methods for measuring each indicator. Several indicators might in fact be
measurable using many different methods (e.g., Size can be measured by
number of axioms, entities, RDF triples, bytes when serialised into some
representation, etc.). The methods listed here are thus merely an initial set
of suggestions.

A.1 Documentation Indicators

DI1 Accompanying Text Description
Method: Check that the ODP OWL file is associated with a textual descrip-
tion document or webpage.
Scale: Nominal (boolean)
Recommendation: Prioritise documention fields in the following order: ODP
intent, Solution description, Implementation/design consequences. In the
Solution description, ensure that any uses of OWL 2 property chains are
documented.
Affects characteristics: Appropriateness Recognisability (positively)

225



“Dissertation” — 2017/8/15 — 10:53 — page 226 — #240

Appendix A. ODP Quality Model Indicators

DI2 Common Pitfalls Description
Method: Assert that the ODP documentation contains a description of com-
mon usage mistakes for said ODP.
Scale: Nominal (boolean)
Affects characteristics: User error protection (positively)

DI3 Competency Question Count
Method: Divide the number of competency questions expressed in the pat-
tern documentation by the size (MI19) of the ODP.
Scale: Ratio (integer count)
Affects characteristics: Appropriateness Recognisability (positively), Learn-
ability (positively)

DI4 Documentation Completeness
Method: Assert that each class or property within the ODP reusable OWL
building block is mentioned in the ODP’s accompanying textual description.
Scale: Nominal (boolean)
Affects characteristic: Usability (positively)

DI5 Documentation Minimalism
Method: Assert that the ODP documentation contains only the minimum
documentation fields required to enable use of the ODP (e.g., graphical
representation, examples, pattern intent, OWL building block link, OWL
example file, competency questions, common pitfalls, and consequences of
use).
Scale: Nominal (boolean)
Affects characteristic: Learnability (positively)

DI6 Structure illustration
Method: Assert that the ODP documentation includes at least one illustra-
tion of the classes and properties proposed by the pattern and how they
relate.
Scale: Nominal (boolean)
Affects characteristics: Appropriateness Recognissability (positively), Learn-
ability (positively)

DI7 Usage Example Count
Method: Count the number of written examples of ODP usage in the asso-
ciated description.
Scale: Ratio (integer count)
Affects characteristics: Appropriateness recognisability (positively), Learn-
ability (positively)

226



“Dissertation” — 2017/8/15 — 10:53 — page 227 — #241

A.2. Model Indicators

DI8 Usage Example Illustrations
Method: Count the number of illustrations of example ODP usage in the
associated description.
Scale: Ratio (integer count)
Affects characteristics: Learnability (positively)

DI9 Quality Approval Stamp
Method: Assert that documentation exists indicating that the ODP has been
evaluated through some structured quality assurance process and received
passing marks in that process.
Scale: Nominal (boolean)
Affects characteristics: Appropriateness recognisability (positively)

A.2 Model Indicators

MI1 Annotation Ratio
Method: Divide the cardinality of the set of OWL annotation property us-
ages in the associated OWL file with the cardinality of the union of all class,
property, and instance nodes.
Scale: Ratio (fraction)
Affects characteristics: Usability (positively), Maintainability (positively)

MI2 Average Class In-Degree
Method: Calculate the average number of incoming RDF edges that OWL
classes in the ODP have.
Scale: Ratio (fraction)
Affects characteristics: Resulting performance efficiency (negatively)

MI3 Average Class Out-Degree
Method: Calculate the average number of outgoing RDF edges OWL classes
in the ODP have.
Scale: Ratio (fraction)
Affects characteristics: Resulting performance efficiency (negatively)

MI4 Axiom/Class Ratio
Method: Divide the number of axioms in the associated OWL file by the
number of named classes.
Scale: Ratio (fraction)
Affects characteristics: Analysability (positively)

MI5 Class/Property Ratio
Method: Divide the cardinality of the set of named classes in the associated
OWL file by the cardinality of the set of properties.

227



“Dissertation” — 2017/8/15 — 10:53 — page 228 — #242

Appendix A. ODP Quality Model Indicators

Scale: Ratio (fraction)
Affects characteristics: Usability (positively)

MI6 Class Disjointness Ratio
Method: Take the ratio of the number of inferred disjointness axioms in
the ODP to the possible number of disjointness axioms given the number
of classes (if C is the number of classes in the ODP, the latter is given by
C(C−1)

2 ). If DisjointUnion axioms are used instead, take the ratio of all
classes involved in a DisjointUnion axiom to the total number of classes in
the ODP.
Scale: Ratio (fraction)
Affects characteristics: Resulting performance efficiency (positively)

MI7 Cyclomatic Complexity
Method: Calculate the cyclomatic complexity of the ODP graph, per the
following formula: CY C = e− n+ 2 ∗ cc, where e is the number of edges in
the RDF graph, n is the number of nodes, and cc is the number of strongly
connected components [98].
Scale: Ratio (integer count)
Affects characteristics: Resulting performance efficiency (negatively)

MI8 Entity Naming Structure
Method: Assert that ODP classes and properties are named and/or labelled
using a naming structure that is internally consistent and consistent with
the subsumption hierarchies, and that this structure is documented.
Scale: Nominal (boolean)
Recommendation: For optimum usability, use properties named using a
noun-verb-noun or noun-adjective-noun structure. Attempt to structure
sub-entity names such that they extend on super-entity names, which clar-
ifies the subsumption hierarchy. Avoid the use of homonyms.
Affects characteristics: Modifiability (negatively), Usability (positively)

MI9 Existential Quantification Count
Method: Count the cardinality of the set of existential quantification axioms
in the ODP.
Scale: Ratio (integer count)
Recommendation: While limiting the number of existential quantification
axioms is helpful for increasing performance, it is not recommended to do
this via translation of said axioms into semantically equivalent cardinality
axioms with a limit of one, as this may put the ODP outside of an easily
computable OWL 2 profile.
Affects characteristics: Resulting performance efficiency (negatively)

MI10 Human-Readable Entity Names
Method: Assert that local IRI fragments (i.e., those parts of of ODP entity

228



“Dissertation” — 2017/8/15 — 10:53 — page 229 — #243

A.2. Model Indicators

IRIs that extend the ODP namespace) consist of terms that exist in human
language(s).
Scale: Nominal (boolean)
Affects characteristics: Modifiability (negatively), Testability (positively)

MI11 Minimalism
Method: Compare the ODP’s axioms against its competency questions and
other design restrictions, ensuring that no extraneous axioms exist that are
not required by design requirements.
Scale: Nominal (boolean)
Affects characteristics: Usability (positively)

MI12 OWL 2 EL Adherence
Method: Assert that the ODP uses only axioms that are allowed under the
OWL 2 EL profile.
Scale: Nominal (boolean)
Recommendation: The EL profile is developed for efficient reasoning over
ontologies containing many classes or properties. If the ODP is to be ap-
plied in the construction of such an ontology, compliance with this profile is
important.
Affects characteristics: Resulting performance efficiency (positively)

MI13 OWL 2 QL Adherence
Method: Assert that the ODP uses only axioms that are allowed under the
OWL 2 QL profile.
Scale: Nominal (boolean)
Recommendation: The QL profile is developed for efficient query answering
over ontologies or knowledge bases containing large amounts of instance
data. If the ODP is to be applied in the construction of an ontology used
for such a purpose, compliance with this profile is important.
Affects characteristics: Resulting performance efficiency (positively)

MI14 OWL 2 RL Adherence
Method: Assert that the ODP uses only axioms that are allowed under the
OWL 2 RL profile.
Scale: Nominal (boolean)
Recommendation: The RL profile is developed for efficient reasoning using
traditional rule engine based technologies. If the ODP is to be applied in
the construction of an ontology for use with such technologies, compliance
with this profile is important.
Affects characteristics: Resulting performance efficiency (positively)

MI15 OWL Horst Adherence
Method: Assert that the ODP uses only axioms that are allowed under the
OWL Horst dialect of OWL.

229



“Dissertation” — 2017/8/15 — 10:53 — page 230 — #244

Appendix A. ODP Quality Model Indicators

Scale: Nominal (boolean)
Recommendation: OWL Horst can scale out over a MapReduce-based com-
putation cluster. If the ODP is to be used in the construction of an ontology
used with simpler reasoning over very large amounts of data, compliance
with OWL Horst is important.
Affects characteristics: Resulting performance efficiency (positively)

MI16 Property Domain Restrictions Ratio
Method: Divide the cardinality of the set of properties that have defined do-
main restrictions by the cardinality of the set of all properties in the ODP.
Scale: Ratio (fraction)
Recommendation: To avoid unexpected inferences, do not use multiple in-
dependently declared property domain declarations: instead, assert that a
property has as its domain exactly one anonymous class, constructed as the
union and/or intersection of the intended classes. Additionally, be aware
that the use of domain restrictions increases Average Class In-Degree, an
indicator associated with reduced performance.
Affects characteristics: Learnability (positively), Reusability (negatively),
Resulting Performance Efficiency (negatively)

MI17 Property Range Restrictions Ratio
Method: Divide the cardinality of the set of properties that have defined
range restrictions by the cardinality of the set of all properties in the ODP.
Scale: Ratio (fraction)
Recommendation: To avoid unexpected inferences, do not use multiple in-
dependently declared property range declarations: instead, assert that a
property has as its range exactly one anonymous class, constructed as the
union and/or intersection of the intended classes. Additionally, be aware
that the use of range restrictions increases Average Class In-Degree, an in-
dicator associated with reduced performance.
Affects characteristics: Learnability (positively), Reusability (negatively),
Resulting Performance Efficiency (negatively)

MI18 Property Restriction Count
Method: Count the cardinality of the set of property restrictions in the as-
sociated OWL file.
Scale: Ratio (integer count)
Recommendation: The use of property restrictions (i.e., value or cardinal-
ity constraints such as owl:someValuesFrom or owl:maxCardinality) on
classes can promote understanding of the intended usage of the restricted
property with the class in question. However, such property restrictions
also contribute to increased Average Class Out-Degree, which is known to
affect performance efficiency negatively. Developers should thus take care
to prioritise either usability or performance efficiency.

230



“Dissertation” — 2017/8/15 — 10:53 — page 231 — #245

A.2. Model Indicators

Affects characteristics: Usability (positively), Resulting Performance Effi-
ciency (negatively)

MI19 Size
Method: Add the cardinality of the set of OWL classes declared in the ODP
to the cardinality of the set of OWL properties declared in the ODP.
Scale: Ratio (integer count)
Affects characteristics: Learnability (negatively), Analysability (negatively)

MI20 Subsumption Hierarchy Breadth
Method: Define a level as the set of all classes in an ODP that have the
same number of hops via asserted subclass links to the top-level concept
owl:Thing. Define the breadth of a level as the cardinality of that level.
The average breadth of the ODP is then the sum of all breadths in an ODP
divided by the cardinality of the set of levels.
Scale: Ratio (fraction)
Affects characteristics: Usability (negatively)

MI21 Subsumption Hierarchy Depth
Method: Define an ancestor path as a path through the asserted subsumption
hierarchy linking a leaf node concept to the top-level concept owl:Thing.
Define the depth of an ancestor path as the length, that is, the number of
nodes, of that path. The average depth of the ODP is then the sum of all
depths in the ODP divided by the cardinality of the set of ancestor paths.
Scale: Ratio (fraction)
Affects characteristics: Usability (negatively), Resulting Performance Effi-
ciency (negatively)

MI22 Tangledness
Method: Divide the cardinality of the set of named classes that are asserted
to have more than one named superclass by the cardinality of the set of all
classes in the ODP.
Scale: Ratio (fraction)
Affects characteristics: Usability (negatively), Compatibility (negatively),
Resulting Performance Efficiency (negatively)

MI23 Terminological Cycle Count
Method: Execute a DL reasoner over the ODP. Then calculate the number
of occurrences of terminological cycles that occur in it, that is, concepts that
occur on both sides of a DL equivalency definition and are therefore wholly
or partially defined in terms of themselves.
Scale: Ratio (integer count)
Affects characteristics: Resulting performance efficiency (negatively)

231



“Dissertation” — 2017/8/15 — 10:53 — page 232 — #246

Appendix A. ODP Quality Model Indicators

MI24 Transitive Import Count
Method: Calculate the cardinality of the set of OWL files found through
a recursive search over the import hierarchy of the original reusable OWL
building block associated with the ODP.
Scale: Ratio (integer count)
Affects characteristics: Usability (negatively), Resulting performance effi-
ciency (negatively) , Reusability (negatively)

A.3 In-Use Indicators

Several of the indicators listed below need to be measured by way of users
performing some task or answering some survey. Consequently, the values
gathered by applying the proposed methods can only be related if they are
either gathered in the same context (i.e., using the same group of users), or
if a sufficient number of evaluations for each ODP are carried out such that
generalisability is assured through sample set size (see also Section 3.1.4).
In the latter case, it would benefit the research community if the results of
such evaluations were published as reusable standard references.

If the purpose of the measurement is explicitly to compare or rank a
limited set of ODPs per the measured indicator(s), pairwise comparison
approaches yielding ordinal scale results may be considered instead.

IUI1 Functionality Questionnaire Time
Method: Apply a questionnaire on ODP functionality and usage, and have a
set of representative users answer this questionnaire, measuring the average
time required for them to do so. In the case that the same participants
take multiple surveys for different ODPs, ensure sufficient randomisation in
survey ordering to avoid learning effects affecting the results.
Scale: Ratio (fraction)
Affects characteristics: Learnability (negatively)

IUI2 Modification Task Time
Method: Define a set of modification tasks for an ODP, and have a set of
representative users perform these tasks. Measure the average time required
to perform the modifications. In the case that the same participants perform
multiple modification tasks for different ODPs, ensure sufficient randomisa-
tion in ODP ordering to avoid learning effects affecting the results.
Scale: Ratio (fraction)
Affects characteristics: Modifiability (negatively)

IUI3 Name Appropriateness
Method: Provide a representative set of users with a set of illustrations
of ODP structure, and measure the average time users take to accurately
select which of these illustrations correctly represents the ODP with the

232



“Dissertation” — 2017/8/15 — 10:53 — page 233 — #247

A.3. In-Use Indicators

name being evaluated.
Scale: Ratio (fraction)
Affects characteristics: Appropriateness Recognisability (positively)

IUI3 OntoClean Adherence
Method: Employ the OntoClean method to tag ODP classes and properties
with OntoClean metaproperties. Assert that the taxonomic structure of the
ODP is compliant with the constraints imposed by the applied metaproper-
ties.
Scale: Nominal (boolean)
Affects characteristics: Accuracy (positively)

IUI4 Semantic Distance Consistency
Method: Using representative users of target ontology functionality (typi-
cally software developers), perform pairwise ranking of the similarity of all
sub-/superconcept pairs present in the ODP, such that the users respond
whether they consider two sub-/superconcept pairs to display equivalent se-
mantic distance, or whether one pair displays a higher degree of semantic
distance than the other. Map responses to a suitable scale of measurement
(e.g., 0 for equivalent distance, 1 for non-equivalent distance). Aggregate
and average the responses across several users to account for outliers and/or
demand characteristics-based biases.
Scale: Ratio (fraction)
Affects characteristics: Functional Suitability (positively)

IUI5 User-reported Abstraction Level
Method: Provide a representative group of ODP users with a survey over
the set of patterns for which this indicator is to be measured, querying them
for their opinion on the abstraction level of each pattern using suitable cate-
gories (e.g., “very concrete” through “very abstract”). Ensure that the users
are given sufficient time to study and apply the patterns in test scenarios
before answering the survey. Providing the users with multiple patterns
allows them to see the variation between patterns, which makes it easier
for them to answer confidently (especially if they lack prior experience of
ODPs). Map response categories to a suitable numeric scale of measurement
and average the results.
Scale: Ratio (fraction)
Affects characteristics: Usability (negatively)

233



“Dissertation” — 2017/8/15 — 10:53 — page 234 — #248

Appendix A. ODP Quality Model Indicators

234



“Dissertation” — 2017/8/15 — 10:53 — page 235 — #249

List of Figures

2.1 Ackoff’s Knowledge Hierarchy. . . . . . . . . . . . . . . . . . 14
2.2 Course ontology example. . . . . . . . . . . . . . . . . . . . . 17
2.3 Course data example . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The Semantic Web layer cake . . . . . . . . . . . . . . . . . . 19
2.5 Context Dependant Information ODP . . . . . . . . . . . . . 35
2.6 NeOn ODP typology . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Blomqvist’s ODP typology . . . . . . . . . . . . . . . . . . . 38
2.8 XD pattern selection approach . . . . . . . . . . . . . . . . . 40
2.9 XD workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.10 MAPPER validation framework metamodel . . . . . . . . . . 44

3.1 Information Systems research framework by Hevner et al. . . 62
3.2 Research question evolution and interrelations . . . . . . . . . 74
3.3 Overview of research process for answering RQ 1 . . . . . . . 76
3.4 Overview of research process for answering RQ 2 . . . . . . . 79
3.5 Overview of research process for answering RQ 3 . . . . . . . 81
3.6 Qualitative analysis coding structure used in answering RQ1 87
3.7 Qualitative analysis coding structure used in answering RQ3 87

4.1 Class in-degree and Class to property ratio distributions . . . 115
4.2 Class out-degree and Anonymous class count distributions . . 117
4.3 Subsumption depth indicator variance . . . . . . . . . . . . . 118
4.4 Ontology visualisation formats . . . . . . . . . . . . . . . . . 124
4.5 Quality Metamodel . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1 Property-oriented ODP specialisation strategy . . . . . . . . 146
5.2 Class-oriented ODP specialisation strategy . . . . . . . . . . . 147
5.3 XDP architecture diagram . . . . . . . . . . . . . . . . . . . . 162
5.4 XDP design patterns tab . . . . . . . . . . . . . . . . . . . . 163
5.5 XDP visualisation tab . . . . . . . . . . . . . . . . . . . . . . 164
5.6 System Usability Scale assessment questions . . . . . . . . . . 164

6.1 Ontology reuse approaches decision tree . . . . . . . . . . . . 191
6.2 eXtreme Design 1.1 workflow . . . . . . . . . . . . . . . . . . 192

235



“Dissertation” — 2017/8/15 — 10:53 — page 236 — #250

List of Figures

236



“Dissertation” — 2017/8/15 — 10:53 — page 237 — #251

List of Tables

2.1 ISO 25010 quality in use model . . . . . . . . . . . . . . . . . 49

2.2 ISO 25010 product quality model . . . . . . . . . . . . . . . . 50

3.1 IMSK project qualitative analysis: fragments and codes . . . 86

4.1 ILOG course study: ODPs used . . . . . . . . . . . . . . . . . 107

4.2 ILOG course study: CQ recognition ratio . . . . . . . . . . . 108

4.3 ILOG course study: class recognition ratio . . . . . . . . . . . 108

4.4 ILOG course study: time to answer questions . . . . . . . . . 108

4.5 ILOG course study: concreteness and usage difficulty . . . . . 109

4.6 ILOG course study: time required for modelling tasks . . . . 109

4.7 ILOG course study: usability and learnability effects . . . . . 109

4.8 OE survey: documentation impact on recognisability . . . . . 120

4.9 OE survey: impact of illustrations on ontology learnability . . 121

4.10 OE survey: preferences on graphical illustration style . . . . . 121

4.11 ODP survey: documentation impact on recognisability . . . . 122

4.12 ODP survey: documentation minimalism preferences . . . . . 123

4.13 ODP survey: visualisation notation preferences . . . . . . . . 125

4.14 ODP Quality Model: quality characteristics . . . . . . . . . . 130

4.15 ODP Quality Model: observed indicator effects . . . . . . . . 133

4.16 ODP Quality Model: hypothesised indicator effects . . . . . . 134

5.1 Recall improvement for ODP search . . . . . . . . . . . . . . 142

5.2 ODP specialisation mapping axioms summary . . . . . . . . . 144

5.3 ODP specialisation strategy use . . . . . . . . . . . . . . . . . 145

5.4 Ontology specialisation strategy use . . . . . . . . . . . . . . 150

5.5 Specialisation strategy reasoning performance effects . . . . . 152

5.6 Instantiation approaches ease-of-use comparison . . . . . . . . 158

5.7 User preferences on communications methods . . . . . . . . . 160

5.8 Reported use of communications methods . . . . . . . . . . . 161

5.9 SUS Evaluations of XDP 1.0 . . . . . . . . . . . . . . . . . . 166

5.10 SUS Evaluations of XDP 1.1 . . . . . . . . . . . . . . . . . . 166

5.11 XDP improvement suggestions from users . . . . . . . . . . . 167

237



“Dissertation” — 2017/8/15 — 10:53 — page 238 — #252

List of Tables

6.1 SSyncAHD workshops: Statements per developer . . . . . . . 172
6.2 VALCRI project: degree to which imported entities were used 178
6.3 XD 1.1 support artefacts . . . . . . . . . . . . . . . . . . . . . 189
6.4 Ontology reuse approaches and characteristics . . . . . . . . . 189

238



“Dissertation” — 2017/8/15 — 10:53 — page 239 — #253



“Dissertation” — 2017/8/15 — 10:53 — page 240 — #254

Department of Computer and Information Science 

Linköpings universitet 
 

Dissertations 
 

Linköping Studies in Science and Technology 

Linköping Studies in Arts and Science 
Linköping Studies in Statistics 

Linköping Studies in Information Science 

 

 

Linköping Studies in Science and Technology 

No 14 Anders Haraldsson: A Program Manipulation 

System Based  on Partial Evaluation, 1977, ISBN 91-

7372-144-1. 

No 17 Bengt Magnhagen: Probability Based  Verification of 

Time Margins in Digital Designs, 1977, ISBN 91-7372-

157-3. 

No 18 Mats Cedwall: Semantisk analys av process-

beskrivningar i naturligt språk, 1977, ISBN 91- 7372-

168-9. 

No 22 Jaak Urmi: A Machine Independent LISP Compiler 

and  its Implications for Ideal Hardware, 1978, ISBN 

91-7372-188-3. 

No 33 Tore Risch: Compilation of Multiple File Queries in 

a Meta-Database System 1978, ISBN 91- 7372-232-4. 

No 51 Erland Jungert: Synthesizing Database Structures 

from a User Oriented  Data Model, 1980, ISBN 91-

7372-387-8. 

No 54 Sture Hägglund: Contributions to the Development 

of Methods and  Tools for Interactive Design of 

Applications Software, 1980, ISBN 91-7372-404-1. 

No 55 Pär Emanuelson: Performance Enhancement in a 

Well-Structured  Pattern Matcher through Partial 

Evaluation, 1980, ISBN 91-7372-403-3. 

No 58 Bengt Johnsson, Bertil Andersson: The Human-

Computer Interface in Commercial Systems, 1981, 

ISBN 91-7372-414-9. 

No 69 H. Jan Komorowski: A Specification of an Abstract 

Prolog Machine and  its Application to Partial 

Evaluation, 1981, ISBN 91-7372-479-3. 

No 71 René Reboh: Knowledge Engineering Techniques 

and  Tools for Expert Systems, 1981, ISBN 91-7372-

489-0. 

No 77 Östen Oskarsson: Mechanisms of Modifiability in 

large Software Systems, 1982, ISBN 91- 7372-527-7. 

No 94 Hans Lunell: Code Generator Writing Systems, 1983, 

ISBN 91-7372-652-4. 

No 97 Andrzej Lingas: Ad vances in Minimum Weight 

Triangulation, 1983, ISBN 91-7372-660-5. 

No 109 Peter Fritzson: Towards a Distributed  Programming 

Environment based  on Incremental Compilation, 

1984, ISBN 91-7372-801-2. 

No 111 Erik Tengvald: The Design of Expert Planning 

Systems. An Experimental Operations Planning 

System for Turning, 1984, ISBN 91-7372- 805-5. 

No 155 Christos Levcopoulos: Heuristics for Minimum 

Decompositions of Polygons, 1987, ISBN 91-7870-

133-3. 

No 165 James W. Goodwin: A Theory and  System for Non-

Monotonic Reasoning, 1987, ISBN 91-7870-183-X. 

No 170 Zebo Peng: A Formal Methodology for Automated  

Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9. 

No 174 Johan Fagerström: A Parad igm and  System for 

Design of Distributed  Systems, 1988, ISBN 91-7870-

301-8. 

No 192 Dimiter Driankov: Towards a Many Valued  Logic of 

Quantified  Belief, 1988, ISBN 91-7870-374-3. 

No 213 Lin Padgham: Non-Monotonic Inheritance for an 

Object Oriented  Knowledge Base, 1989, ISBN 91-

7870-485-5. 

No 214 Tony Larsson: A Formal Hardware Description and 

Verification Method , 1989, ISBN 91-7870-517-7. 

No 221 Michael Reinfrank: Fundamentals and  Logical 

Foundations of Truth Maintenance, 1989, ISBN 91-

7870-546-0. 

No 239 Jonas Löwgren: Knowledge-Based  Design Support 

and  Discourse Management in User Interface 

Management Systems, 1991, ISBN 91-7870-720-X. 

No 244 Henrik Eriksson: Meta-Tool Support for Knowledge 

Acquisition, 1991, ISBN 91-7870-746-3. 

No 252 Peter Eklund: An Epistemic Approach to Interactive 

Design in Multiple Inheritance Hierarchies, 1991, 

ISBN 91-7870-784-6. 

No 258 Patrick Doherty: NML3 - A Non-Monotonic 

Formalism with Explicit Defaults, 1991, ISBN 91-

7870-816-8. 

No 260 Nahid Shahmehri: Generalized  Algorithmic 

Debugging, 1991, ISBN 91-7870-828-1. 

No 264 Nils Dahlbäck: Representation of Discourse-

Cognitive and  Computational Aspects, 1992, ISBN 

91-7870-850-8. 

No 265 Ulf Nilsson: Abstract Interpretations and  Abstract 

Machines: Contributions to a Methodology for the 

Implementation of Logic Programs, 1992, ISBN  91-

7870-858-3. 

No 270 Ralph Rönnquist: Theory and  Practice of Tense-

bound  Object References, 1992, ISBN 91-7870-873-7. 

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data 

Path Synthesis, 1992, ISBN 91-7870-880-X. 

No 276 Staffan Bonnier: A Formal Basis for Horn Clause 

Logic with External Polymorphic Functions, 1992, 

ISBN 91-7870-896-6. 

No 277 Kristian Sandahl: Developing Knowledge Manage-

ment Systems with an Active Expert Methodology, 

1992, ISBN 91-7870-897-4. 

No 281 Christer Bäckström: Computational Complexity of 

Reasoning about Plans, 1992, ISBN 91-7870-979-2. 

No 292 Mats Wirén: Stud ies in Incremental Natural 

Language Analysis, 1992, ISBN 91-7871-027-8. 

No 297 Mariam Kamkar: Interprocedural Dynamic Slicing 

with Applications to Debugging and  Testing, 1993, 

ISBN 91-7871-065-0. 

No 302 Tingting Zhang: A Study in Diagnosis Using 

Classification and  Defaults, 1993, ISBN 91-7871-078-2 

No 312 Arne Jönsson: Dialogue Management for Natural 

Language Interfaces - An Empirical Approach, 1993, 

ISBN 91-7871-110-X. 

No 338 Simin Nadjm-Tehrani: Reactive Systems in Physical 

Environments: Compositional Modelling and  Frame-

work for Verification, 1994, ISBN 91-7871-237-8. 

No 371 Bengt Savén: Business Models for Decision Support 

and  Learning. A Study of Discrete-Event 

Manufacturing Simulation at Asea/ ABB 1968-1993, 

1995, ISBN 91-7871-494-X. 



“Dissertation” — 2017/8/15 — 10:53 — page 241 — #255

 

 

No 375 Ulf Söderman: Conceptual Modelling of Mode 

Switching Physical Systems, 1995, ISBN 91-7871-516-

4. 

No 383 Andreas Kågedal: Exploiting Groundness in Logic 

Programs, 1995, ISBN 91-7871-538-5. 

No 396 George Fodor: Ontological Control, Description, 

Identification and  Recovery from Problematic 

Control Situations, 1995, ISBN 91-7871-603-9. 

No 413 Mikael Pettersson: Compiling Natural Semantics, 

1995, ISBN 91-7871-641-1. 

No 414 Xinli Gu: RT Level Testability Improvement by 

Testability Analysis and  Transformations, 1996, ISBN 

91-7871-654-3. 

No 416 Hua Shu: Distribu ted  Default Reasoning, 1996, ISBN 

91-7871-665-9. 

No 429 Jaime Villegas: Simulation Supported  Industrial 

Training from an Organisational Learning 

Perspective - Development and  Evaluation of the 

SSIT Method , 1996, ISBN 91-7871-700-0. 

No 431 Peter Jonsson: Stud ies in Action Planning: 

Algorithms and  Complexity, 1996, ISBN 91-7871-704-

3. 

No 437 Johan Boye: Directional Types in Logic 

Programming, 1996, ISBN 91-7871-725-6. 

No 439 Cecilia Sjöberg: Activities, Voices and  Arenas: 

Participatory Design in Practice, 1996, ISBN 91-7871-

728-0. 

No 448 Patrick Lambrix: Part-Whole Reasoning in 

Description Logics, 1996, ISBN 91-7871-820-1. 

No 452 Kjell Orsborn: On Extensible and  Object-Relational 

Database Technology for Finite Element Analysis 

Applications, 1996, ISBN 91-7871-827-9. 

No 459 Olof Johansson: Development Environments for 

Complex Product Models, 1996, ISBN 91-7871-855-4. 

No 461 Lena Strömbäck: User-Defined  Constructions in 

Unification-Based  Formalisms, 1997, ISBN 91-7871-

857-0. 

No 462 Lars Degerstedt: Tabulation-based  Logic Program-

ming: A Multi-Level View of Query Answering, 

1996, ISBN 91-7871-858-9. 

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning - 

En stud ie av hur ekonomiska styrsystem utformas 

och används efter företagsförvärv, 1997, ISBN 91-

7871-914-3. 

No 480 Mikael Lindvall: An Empirical Study of Require-

ments-Driven Impact Analysis in Object-Oriented 

Software Evolution, 1997, ISBN 91-7871-927-5. 

No 485 Göran Forslund: Opinion-Based  Systems: The Coop-

erative Perspective on Knowledge-Based Decision 

Support, 1997, ISBN 91-7871-938-0. 

No 494 Martin Sköld: Active Database Management 

Systems for Monitoring and  Control, 1997, ISBN 91-

7219-002-7. 

No 495 Hans Olsén: Automatic Verification of Petri Nets in 

a CLP framework, 1997, ISBN 91-7219-011-6. 

No 498 Thomas Drakengren: Algorithms and  Complexity 

for Temporal and  Spatial Formalisms, 1997, ISBN 91-

7219-019-1. 

No 502 Jakob Axelsson: Analysis and  Synthesis of Heteroge-

neous Real-Time Systems, 1997, ISBN 91-7219-035-3. 

No 503 Johan Ringström: Compiler Generation for Data-

Parallel Programming Languages from Two-Level 

Semantics Specifications, 1997, ISBN 91-7219-045-0. 

No 512 Anna Moberg: Närhet och d istans - Stud ier av kom-

munikationsmönster i satellitkontor och flexibla 

kontor, 1997, ISBN 91-7219-119-8. 

No 520 Mikael Ronström: Design and  Modelling of a 

Parallel Data Server for Telecom Applications, 1998, 

ISBN 91-7219-169-4. 

No 522 Niclas Ohlsson: Towards Effective Fault Prevention 

- An Empirical Study in Software Engineering, 1998, 

ISBN 91-7219-176-7. 

No 526 Joachim Karlsson: A Systematic Approach for 

Prioritizing Software Requirements, 1998, ISBN 91-

7219-184-8. 

No 530 Henrik Nilsson: Declarative Debugging for Lazy 

Functional Languages, 1998, ISBN 91-7219-197-x. 

No 555 Jonas Hallberg: Timing Issues in High-Level Synthe-

sis, 1998, ISBN 91-7219-369-7. 

No 561 Ling Lin: Management of 1-D Sequence Data - From 

Discrete to Continuous, 1999, ISBN 91-7219-402-2. 

No 563 Eva L Ragnemalm: Student Modelling based  on Col-

laborative Dialogue with a Learning Companion, 

1999, ISBN 91-7219-412-X. 

No 567 Jörgen Lindström: Does Distance matter? On geo-

graphical d ispersion in organisations, 1999, ISBN 91-

7219-439-1. 

No 582 Vanja Josifovski: Design, Implementation and  

Evaluation of a Distribu ted  Mediator System for 

Data Integration, 1999, ISBN 91-7219-482-0. 

No 589 Rita Kovordányi: Modeling and  Simulating 

Inhibitory Mechanisms in Mental Image 

Reinterpretation - Towards Cooperative Human-

Computer Creativity, 1999, ISBN 91-7219-506-1. 

No 592  Mikael Ericsson: Supporting the Use of Design 

Knowledge - An Assessment of Commenting 

Agents, 1999, ISBN 91-7219-532-0. 

No 593 Lars Karlsson: Actions, Interactions and  Narratives, 

1999, ISBN 91-7219-534-7. 

No 594 C. G. Mikael Johansson: Social and  Organizational 

Aspects of Requirements Engineering Methods - A 

practice-oriented  approach, 1999, ISBN 91-7219-541-

X. 

No 595 Jörgen Hansson: Value-Driven Multi-Class Overload 

Management in Real-Time Database Systems, 1999, 

ISBN 91-7219-542-8. 

No 596 Niklas Hallberg: Incorporating User Values in the 

Design of Information Systems and  Services in the 

Public Sector: A Methods Approach, 1999, ISBN 91-

7219-543-6. 

No 597 Vivian Vimarlund: An Economic Perspective on the 

Analysis of Impacts of Information Technology: 

From Case Stud ies in Health -Care towards General 

Models and  Theories, 1999, ISBN 91-7219-544-4. 

No 598 Johan Jenvald: Methods and  Tools in Computer-

Supported  Taskforce Training, 1999, ISBN 91-7219-

547-9. 

No 607 Magnus Merkel: Understanding and  enhancing 

translation by parallel text processing, 1999, ISBN 91-

7219-614-9. 

No 611 Silvia Coradeschi: Anchoring symbols to sensory 

data, 1999, ISBN 91-7219-623-8. 

No 613 Man Lin: Analysis and  Synthesis of Reactive 

Systems: A Generic Layered  Architecture 

Perspective, 1999, ISBN 91-7219-630-0. 

No 618 Jimmy Tjäder: Systemimplementering i praktiken - 

En stud ie av logiker i fyra projekt, 1999, ISBN 91-

7219-657-2. 

No 627 Vadim Engelson: Tools for Design, Interactive 

Simulation, and  Visualization  of Object-Oriented  

Models in Scientific Computing, 2000, ISBN 91-7219-

709-9. 



“Dissertation” — 2017/8/15 — 10:53 — page 242 — #256

 

 

No 637 Esa Falkenroth: Database Technology for Control 

and  Simulation, 2000, ISBN 91-7219-766-8. 

No 639 Per-Arne Persson: Bringing Power and  Knowledge 

Together: Information Systems Design for Autonomy 

and  Control in Command Work, 2000, ISBN 91-7219-

796-X. 

No 660 Erik Larsson: An Integrated  System-Level Design for 

Testability Methodology, 2000, ISBN 91-7219-890-7. 

No 688 Marcus Bjäreland: Model-based  Execution 

Monitoring, 2001, ISBN 91-7373-016-5. 

No 689 Joakim Gustafsson: Extending Temporal Action 

Logic, 2001, ISBN 91-7373-017-3. 

No 720 Carl-Johan Petri: Organizational Information Provi-

sion - Managing Mandatory and  Discretionary Use 

of Information Technology, 2001, ISBN -91-7373-126-

9. 

No 724 Paul Scerri: Designing Agents for Systems with Ad -

justable Autonomy, 2001, ISBN 91 7373 207 9. 

No 725 Tim Heyer: Semantic Inspection of Software 

Artifacts: From Theory to Practice, 2001, ISBN 91 

7373 208 7. 

No 726 Pär Carlshamre: A Usability Perspective on Require-

ments Engineering - From Methodology to Product 

Development, 2001, ISBN 91 7373 212 5. 

No 732 Juha Takkinen: From Information Management to 

Task Management in Electronic Mail, 2002, ISBN 91 

7373 258 3. 

No 745 Johan Åberg: Live Help Systems: An Approach to 

Intelligent Help for Web Information Systems, 2002, 

ISBN 91-7373-311-3. 

No 746 Rego Granlund: Monitoring Distributed  Teamwork 

Training, 2002, ISBN 91-7373-312-1. 

No 757 Henrik André-Jönsson: Indexing Strategies for Time 

Series Data, 2002, ISBN 917373-346-6. 

No 747  Anneli Hagdahl: Development of IT-supported  

Interorganisational Collaboration - A Case Study in 

the Swedish Public Sector, 2002, ISBN 91-7373-314-8. 

No 749 Sofie Pilemalm: Information Technology for Non-

Profit Organisations - Extended  Participatory Design 

of an Information System for Trade Union Shop 

Stewards, 2002, ISBN 91-7373-318-0. 

No 765 Stefan Holmlid: Adapting users: Towards a theory 

of use quality, 2002, ISBN 91-7373-397-0. 

No 771 Magnus Morin: Multimedia Representations of Dis-

tributed  Tactical Operations, 2002, ISBN 91-7373-421-

7. 

No 772 Pawel Pietrzak: A Type-Based  Framework for Locat-

ing Errors in Constraint Logic Programs, 2002, ISBN 

91-7373-422-5. 

No 758 Erik Berglund: Library Communication Among Pro-

grammers Worldwide, 2002, ISBN 91-7373-349-0. 

No 774 Choong-ho Yi: Modelling Object-Oriented  Dynamic 

Systems Using a Logic-Based  Framework, 2002, ISBN 

91-7373-424-1. 

No 779 Mathias Broxvall: A Study in the Computational 

Complexity of Temporal Reasoning, 2002, ISBN 91-

7373-440-3. 

No 793 Asmus Pandikow: A Generic Principle for Enabling 

Interoperability of Structured  and  Object-Oriented  

Analysis and  Design Tools, 2002, ISBN 91-7373-479-9. 

No 785 Lars Hult: Publika Informationstjänster. En stud ie av 

den Internetbaserade encyklopedins bruksegenska-

per, 2003, ISBN 91-7373-461-6. 

No 800 Lars Taxén: A Framework for the Coord ination of 

Complex Systems´ Development, 2003, ISBN 91-

7373-604-X 

No 808 Klas Gäre: Tre perspektiv på förväntningar och 

förändringar i samband  med införande av 

informationssystem, 2003, ISBN 91-7373-618-X. 

No 821 Mikael Kindborg: Concurrent Comics - 

programming of social agents by child ren, 2003, 

ISBN 91-7373-651-1. 

No 823 Christina Ölvingson: On Development of 

Information Systems with GIS Functionality in 

Public Health Informatics: A Requirements 

Engineering Approach, 2003, ISBN 91-7373-656-2. 

No 828 Tobias Ritzau: Memory Efficient Hard  Real-Time 

Garbage Collection, 2003, ISBN 91-7373-666-X. 

No 833 Paul Pop: Analysis and  Synthesis of 

Communication-Intensive Heterogeneous Real-Time 

Systems, 2003, ISBN 91-7373-683-X. 

No 852 Johan Moe: Observing the Dynamic Behaviour of 

Large Distributed  Systems to Improve Development 

and  Testing --- An Empirical Study in Software 

Engineering, 2003, ISBN 91-7373-779-8. 

No 867 Erik Herzog: An Approach to Systems Engineering 

Tool Data Representation and  Exchange, 2004, ISBN 

91-7373-929-4. 

No 872 Aseel Berglund: Augmenting the Remote Control: 

Stud ies in Complex Information Navigation for 

Digital TV, 2004, ISBN 91-7373-940-5. 

No 869 Jo Skåmedal: Telecommuting’s Implications on 

Travel and  Travel Patterns, 2004, ISBN 91-7373-935-9. 

No 870 Linda Askenäs: The Roles of IT - Stud ies of 

Organising when Implementing and Using 

Enterprise Systems, 2004, ISBN 91-7373-936-7. 

No 874 Annika Flycht-Eriksson: Design and  Use of Ontolo-

gies in Information-Provid ing Dialogue Systems, 

2004, ISBN 91-7373-947-2. 

No 873 Peter Bunus: Debugging Techniques for Equation-

Based  Languages, 2004, ISBN 91-7373-941-3. 

No 876 Jonas Mellin: Resource-Pred ictable and  Efficient 

Monitoring of Events, 2004, ISBN 91-7373-956-1. 

No 883 Magnus Bång: Computing at the Speed  of Paper: 

Ubiquitous Computing Environments for Healthcare 

Professionals, 2004, ISBN 91-7373-971-5 

No 882 Robert Eklund: Disfluency in Swedish human-

human and  human-machine travel booking d i-

alogues, 2004, ISBN 91-7373-966-9. 

No 887 Anders Lindström: English and  other Foreign 

Linguistic Elements in Spoken Swedish. Stud ies of 

Productive Processes and  their Mod elling using 

Finite-State Tools, 2004, ISBN 91-7373-981-2. 

No 889 Zhiping Wang: Capacity-Constrained  Production-in-

ventory systems - Modelling and  Analysis in both a 

trad itional and  an e-business context, 2004, ISBN 91-

85295-08-6. 

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interaction, 

2004, ISBN 91-85295-30-2. 

No 910 Magnus Kald: In the Borderland  between Strategy 

and  Management Control - Theoretical Framework 

and  Empirical Evidence, 2004, ISBN 91-85295-82-5. 

No 918 Jonas Lundberg: Shaping Electronic News: Genre 

Perspectives on Interaction Design, 2004, ISBN 91-

85297-14-3. 

No 900 Mattias Arvola: Shades of use: The dynamics of 

interaction design for sociable use, 2004, ISBN 91-

85295-42-6. 

No 920 Luis Alejandro Cortés: Verification and  Scheduling 

Techniques for Real-Time Embedded  Systems, 2004, 

ISBN 91-85297-21-6. 

No 929 Diana Szentivanyi: Performance Stud ies of Fault-

Tolerant Middleware, 2005, ISBN 91-85297-58-5. 



“Dissertation” — 2017/8/15 — 10:53 — page 243 — #257

 

 

No 933 Mikael Cäker: Management Accounting as 

Constructing and  Opposing Customer Focus: Three 

Case Stud ies on Management Accounting and  

Customer Relations, 2005, ISBN 91-85297-64-X. 

No 937 Jonas Kvarnström: TALplanner and  Other 

Extensions to Temporal Action Logic, 2005, ISBN 91-

85297-75-5. 

No 938  Bourhane Kadmiry: Fuzzy Gain-Scheduled  Visual 

Servoing for Unmanned  Helicopter, 2005, ISBN 91-

85297-76-3. 

No 945 Gert Jervan: Hybrid  Built-In Self-Test and  Test 

Generation Techniques for Digital Systems, 2005, 

ISBN: 91-85297-97-6. 

No 946 Anders Arpteg: Intelligent Semi-Structured  Informa-

tion Extraction, 2005, ISBN 91-85297-98-4. 

No 947  Ola Angelsmark: Constructing Algorithms for Con-

straint Satisfaction and  Related  Problems - Methods 

and  Applications, 2005, ISBN 91-85297-99-2. 

No 963 Calin Curescu: Utility-based  Optimisation of 

Resource Allocation for Wireless Networks, 2005, 

ISBN 91-85457-07-8. 

No 972 Björn Johansson: Joint Control in Dynamic 

Situations, 2005, ISBN 91-85457-31-0. 

No 974  Dan Lawesson: An Approach to Diagnosability 

Analysis for Interacting Finite State Systems, 2005, 

ISBN 91-85457-39-6. 

No 979 Claudiu Duma: Security and  Trust Mechanisms for 

Groups in Distributed  Services, 2005, ISBN 91-85457-

54-X. 

No 983 Sorin Manolache: Analysis and  Optimisation of 

Real-Time Systems with Stochastic Behaviour, 2005, 

ISBN 91-85457-60-4. 

No 986 Yuxiao Zhao: Standard s-Based  Application 

Integration for Business-to-Business 

Communications, 2005, ISBN 91-85457-66-3. 

No 1004 Patrik Haslum: Admissible Heuristics for 

Automated  Planning, 2006, ISBN 91-85497-28-2. 

No 1005 Aleksandra Tešanovic: Developing Reusable and  

Reconfigurable Real-Time Software using Aspects 

and  Components, 2006, ISBN 91-85497-29-0. 

No 1008 David Dinka: Role, Identity and  Work: Extending 

the design and  development agenda, 2006, ISBN 91-

85497-42-8. 

No 1009 Iakov Nakhimovski: Contributions to the Modeling 

and  Simulation of Mechanical Systems with Detailed  

Contact Analysis, 2006, ISBN 91-85497-43-X. 

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact 

Satisfiability Problems, 2006, ISBN 91-85523-97-6. 

No 1016 Levon Saldamli: PDEModelica - A High-Level Lan-

guage for Modeling with Partial Differential Equa-

tions, 2006, ISBN 91-85523-84-4. 

No 1017 Daniel Karlsson: Verification of Component-based  

Embedded  System Designs, 2006, ISBN 91-85523-79-8 

No 1018  Ioan Chisalita: Communication and  Networking 

Techniques for Traffic Safety Systems, 2006, ISBN 91-

85523-77-1. 

No 1019 Tarja Susi: The Puzzle of Social Activity - The 

Significance of Tools in Cognition and  Cooperation, 

2006, ISBN 91-85523-71-2. 

No 1021 Andrzej Bednarski: Integrated  Optimal Code Gener-

ation for Digital Signal Processors, 2006, ISBN 91-

85523-69-0. 

No 1022 Peter Aronsson: Automatic Parallelization of Equa-

tion-Based  Simulation Programs, 2006, ISBN 91-

85523-68-2. 

No 1030 Robert Nilsson: A Mutation-based  Framework for 

Automated  Testing of Timeliness, 2006, ISBN 91-

85523-35-6. 

No 1034 Jon Edvardsson: Techniques for Automatic 

Generation of Tests from Programs and 

Specifications, 2006, ISBN 91-85523-31-3. 

No 1035 Vaida Jakoniene: Integration of Biological Data, 

2006, ISBN 91-85523-28-3. 

No 1045 Genevieve Gorrell: Generalized  Hebbian 

Algorithms for Dimensionality Reduction in Natural 

Language Processing, 2006, ISBN 91-85643-88-2. 

No 1051 Yu-Hsing Huang: Having a New Pair of Glasses - 

Applying Systemic Accident Models on Road  Safety, 

2006, ISBN 91-85643-64-5. 

No 1054 Åsa Hedenskog: Perceive those things which cannot 

be seen - A Cognitive Systems Engineering 

perspective on requirements management, 2006, 

ISBN 91-85643-57-2. 

No 1061 Cécile Åberg: An Evaluation Platform for Semantic 

Web Technology, 2007, ISBN 91-85643-31-9. 

No 1073 Mats Grindal: Handling Combinatorial Explosion in 

Software Testing, 2007, ISBN 978-91-85715-74-9. 

No 1075 Almut Herzog: Usable Security Policies for Runtime 

Environments, 2007, ISBN 978-91-85715-65-7. 

No 1079 Magnus Wahlström: Algorithms, measures, and  

upper bounds for Satisfiability and  related  problems, 

2007, ISBN 978-91-85715-55-8. 

No 1083 Jesper Andersson: Dynamic Software Architectures, 

2007, ISBN 978-91-85715-46-6. 

No 1086  Ulf Johansson: Obtaining Accurate and  Compre-

hensible Data Mining Models - An Evolu tionary 

Approach, 2007, ISBN 978-91-85715-34-3.  

No 1089 Traian Pop: Analysis and  Optimisation of 

Distributed  Embedded  Systems with Heterogeneous 

Scheduling Policies, 2007, ISBN 978-91-85715-27-5. 

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-

related  Problems, 2007, ISBN 978-91-85715-20-6. 

No 1106 Per Ola Kristensson: Discrete and  Continuous Shape 

Writing for Text Entry and  Control, 2007, ISBN 978-

91-85831-77-7. 

No 1110 He Tan: Aligning Biomedical Ontologies, 2007, ISBN 

978-91-85831-56-2. 

No 1112 Jessica Lindblom: Minding the body - Interacting so-

cially through embodied  action, 2007, ISBN 978-91-

85831-48-7. 

No 1113 Pontus Wärnestål: Dialogue Behavior Management 

in Conversational Recommender Systems, 2007, 

ISBN 978-91-85831-47-0. 

No 1120 Thomas Gustafsson: Management of Real-Time 

Data Consistency and  Transient Overloads in 

Embedded  Systems, 2007, ISBN 978-91-85831-33-3. 

No 1127 Alexandru Andrei: Energy Efficient and  Pred ictable 

Design of Real-time Embedded  Systems, 2007, ISBN 

978-91-85831-06-7. 

No 1139 Per Wikberg: Eliciting Knowledge from Experts in 

Modeling of Complex Systems: Managing Variation 

and  Interactions, 2007, ISBN 978-91-85895-66-3. 

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data 

Services under Uncertain Workload , 2007, ISBN 978-

91-85895-49-6. 

No 1150 Sanny Syberfeldt: Optimistic Replication with For-

ward  Conflict Resolution in Distributed  Real-Time 

Databases, 2007, ISBN 978-91-85895-27-4. 

No 1155 Beatrice Alenljung: Envisioning a Future Decision 

Support System for Requirements Engineering - A 

Holistic and  Human-centred  Perspective, 2008, ISBN 

978-91-85895-11-3. 



“Dissertation” — 2017/8/15 — 10:53 — page 244 — #258

 

 

No 1156 Artur Wilk: Types for XML with Application to 

Xcerpt, 2008, ISBN 978-91-85895-08-3. 

No 1183 Adrian Pop: Integrated  Model-Driven Development 

Environments for Equation-Based  Object-Oriented  

Languages, 2008, ISBN 978-91-7393-895-2. 

No 1185 Jörgen Skågeby: Gifting Technologies - 

Ethnographic Stud ies of End -users and  Social Media 

Sharing, 2008, ISBN 978-91-7393-892-1. 

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and  

information-sharing methods supporting road  safety 

organizations, 2008, ISBN 978-91-7393-887-7. 

No 1204 H. Joe Steinhauer: A Representation Scheme for De-

scription and  Reconstruction of Object 

Configurations Based  on Qualitative Relations, 2008, 

ISBN 978-91-7393-823-5. 

No 1222 Anders Larsson: Test Optimization for Core-based  

System-on-Chip, 2008, ISBN 978-91-7393-768-9. 

No 1238 Andreas Borg: Processes and  Models for Capacity 

Requirements in Telecommunication Systems, 2009, 

ISBN 978-91-7393-700-9. 

No 1240 Fredrik Heintz: DyKnow: A Stream-Based  Know-

ledge Processing Middleware Framework, 2009, 

ISBN 978-91-7393-696-5. 

No 1241 Birgitta Lindström: Testability of Dynamic Real-

Time Systems, 2009, ISBN 978-91-7393-695-8. 

No 1244 Eva Blomqvist: Semi-automatic Ontology Construc-

tion based  on Patterns, 2009, ISBN 978-91-7393-683-5. 

No 1249 Rogier Woltjer: Functional Modeling of Constraint 

Management in Aviation Safety and  Command and  

Control, 2009, ISBN 978-91-7393-659-0. 

No 1260 Gianpaolo Conte: Vision-Based  Localization and  

Guidance for Unmanned  Aerial Vehicles, 2009, ISBN 

978-91-7393-603-3. 

No 1262 AnnMarie Ericsson: Enabling Tool Support for For-

mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-

598-2. 

No 1266 Jiri Trnka: Exploring Tactical Command and  

Control: A Role-Playing Simulation Approach, 2009, 

ISBN 978-91-7393-571-5. 

No 1268 Bahlol Rahimi: Supporting Collaborative Work 

through ICT - How End-users Think of and  Adopt 

Integrated  Health Information Systems, 2009, ISBN 

978-91-7393-550-0. 

No 1274 Fredrik Kuivinen: Algorithms and  Hardness Results 

for Some Valued  CSPs, 2009, ISBN 978-91-7393-525-8.  

No 1281 Gunnar Mathiason: Virtual Full Replication for 

Scalable Distributed  Real-Time Databases, 2009, 

ISBN 978-91-7393-503-6. 

No 1290 Viacheslav Izosimov: Scheduling and Optimization 

of Fault-Tolerant Distribu ted  Embedded  Systems, 

2009, ISBN 978-91-7393-482-4. 

No 1294 Johan Thapper: Aspects of a Constraint 

Optimisation Problem, 2010, ISBN 978-91-7393-464-0. 

No 1306 Susanna Nilsson: Augmentation in the Wild : User 

Centered  Development and  Evaluation of 

Augmented  Reality Applications, 2010, ISBN 978-91-

7393-416-9. 

No 1313 Christer Thörn: On the Quality of Feature Models, 

2010, ISBN 978-91-7393-394-0. 

No 1321 Zhiyuan He: Temperature Aware and  Defect-

Probability Driven Test Scheduling for System-on-

Chip, 2010, ISBN 978-91-7393-378-0. 

No 1333 David Broman: Meta-Languages and  Semantics for 

Equation-Based  Modeling and  Simulation, 2010, 

ISBN 978-91-7393-335-3. 

No 1337 Alexander Siemers: Contributions to Modelling and 

Visualisation of Multibody Systems Simulations with 

Detailed  Contact Analysis, 2010, ISBN 978-91-7393-

317-9. 

No 1354 Mikael Asplund: Disconnected  Discoveries: 

Availability Stud ies in Partitioned  Networks, 2010, 

ISBN 978-91-7393-278-3. 

No 1359 Jana Rambusch: Mind  Games Extended: 

Understanding Gameplay as Situated  Activity, 2010, 

ISBN 978-91-7393-252-3. 

No 1373 Sonia Sangari: Head  Movement Correlates to Focus 

Assignment in Swedish, 2011, ISBN 978-91-7393-154-

0. 

No 1374 Jan-Erik Källhammer: Using False Alarms when 

Developing Automotive Active Safety Systems, 2011, 

ISBN 978-91-7393-153-3. 

No 1375 Mattias Eriksson: Integrated  Code Generation, 2011, 

ISBN 978-91-7393-147-2. 

No 1381 Ola Leifler: Affordances and  Constraints of 

Intelligent Decision Support for Military Command 

and  Control --- Three Case Stud ies of Support 

Systems, 2011, ISBN 978-91-7393-133-5. 

No 1386 Soheil Samii: Quality-Driven Synthesis and 

Optimization of Embedded  Control Systems, 2011, 

ISBN 978-91-7393-102-1. 

No 1419 Erik Kuiper: Geographic Routing in Intermittently-

connected  Mobile Ad Hoc Networks: Algorithms 

and  Performance Models, 2012, ISBN 978-91-7519-

981-8. 

No 1451 Sara Stymne: Text Harmonization Strategies for 

Phrase-Based  Statistical Machine Translation, 2012, 

ISBN 978-91-7519-887-3. 

No 1455 Alberto Montebelli: Modeling the Role of Energy 

Management in Embodied  Cognition, 2012, ISBN 

978-91-7519-882-8. 

No 1465 Mohammad Saifullah: Biologically-Based  Interactive  

Neural Network Models for Visual Attention and  

Object Recognition, 2012, ISBN 978-91-7519-838-5. 

No 1490 Tomas Bengtsson: Testing and  Logic Optimization 

Techniques for Systems on Chip, 2012, ISBN 978-91-

7519-742-5. 

No 1481 David Byers: Improving Software Security by 

Preventing Known Vulnerabilities, 2012, ISBN 978-

91-7519-784-5. 

No 1496 Tommy Färnqvist: Exploiting Structure in CSP-

related  Problems, 2013, ISBN 978-91-7519-711-1. 

No 1503 John Wilander: Contributions to Specification, 

Implementation, and  Execution of Secure Software, 

2013, ISBN 978-91-7519-681-7. 

No 1506 Magnus Ingmarsson: Creating and  Enabling the 

Useful Service Discovery Experience, 2013, ISBN 978-

91-7519-662-6. 

No 1547 Wladimir Schamai: Model-Based  Verification of 

Dynamic System Behavior against Requirements: 

Method , Language, and  Tool, 2013, ISBN 978-91-

7519-505-6. 

No 1551 Henrik Svensson: Simulations, 2013, ISBN 978-91-

7519-491-2. 

No 1559 Sergiu Rafiliu: Stability of Adaptive Distribu ted  

Real-Time Systems with Dynamic Resource 

Management, 2013, ISBN 978-91-7519-471-4. 

No 1581 Usman Dastgeer: Performance-aware Component 

Composition for GPU-based  Systems, 2014, ISBN 

978-91-7519-383-0. 

No 1602 Cai Li: Reinforcement Learning of Locomotion based  

on Central Pattern Generators, 2014, ISBN 978-91-

7519-313-7. 

No 1652 Roland Samlaus: An Integrated  Development 

Environment with Enhanced  Domain -Specific 



“Dissertation” — 2017/8/15 — 10:53 — page 245 — #259

 

 

Interactive Model Validation, 2015, ISBN 978-91-

7519-090-7. 

No 1663 Hannes Uppman: On Some Combinatorial 

Optimization Problems: Algorithms and  Complexity, 

2015, ISBN 978-91-7519-072-3. 

No 1664 Martin Sjölund: Tools and  Methods for Analysis, 

Debugging, and Performance Improvement of 

Equation-Based  Models, 2015, ISBN 978-91-7519-071-6. 

No 1666 Kristian Stavåker: Contribu tions to Simulation of 

Modelica Models on Data-Parallel Multi-Core 

Architectures, 2015, ISBN 978-91-7519-068-6. 

No 1680 Adrian Lifa: Hardware/ Software Codesign of 

Embedded  Systems with Reconfigurable and 

Heterogeneous Platforms, 2015, ISBN 978-91-7519-040-

2. 

No 1685 Bogdan Tanasa: Timing Analysis of Distributed  

Embedded  Systems with Stochastic Workload  and  

Reliability Constraints, 2015, ISBN 978-91-7519-022-8. 

No 1691 Håkan Warnquist: Troubleshooting Trucks --- 

Automated  Planning and  Diagnosis, 2015, ISBN 978-

91-7685-993-3. 

No 1702 Nima Aghaee: Thermal Issues in Testing of 

Advanced  Systems on Chip, 2015, ISBN 978-91-7685-

949-0. 

No 1715 Maria Vasilevskaya: Security in Embedded  Systems: 

A Model-Based  Approach with Risk Metrics, 2015, 

ISBN 978-91-7685-917-9.  

No 1729 Ke Jiang: Security-Driven Design of Real-Time 

Embedded  System, 2016, ISBN 978-91-7685-884-4. 

No 1733 Victor Lagerkvist: Strong Partial Clones and  the 

Complexity of Constraint Satisfaction Problems: 

Limitations and  Applications, 2016, ISBN 978-91-7685-

856-1. 

No 1734 Chandan Roy: An Informed System Development 

Approach to Tropical Cyclone Track and  Intensity 

Forecasting, 2016, ISBN 978-91-7685-854-7. 

No 1746 Amir Aminifar: Analysis, Design, and  Optimization 

of Embedded  Control Systems, 2016, ISBN 978-91-

7685-826-4. 

No 1747 Ekhiotz Vergara: Energy Modelling and  Fairness 

for Efficient Mobile Communication , 2016, ISBN 

978-91-7685-822-6. 

No 1748 Dag Sonntag: Chain Graphs --- Interpretations, 

Expressiveness and  Learning Algorithms , 2016, 

ISBN 978-91-7685-818-9. 

No 1768 Anna Vapen: Web Authentication using Third -

Parties in Untrusted  Environments , 2016, ISBN 

978-91-7685-753-3. 

No 1778 Magnus Jandinger: On a Need  to Know Basis: A 

Conceptual and  Methodological Framework for 

Modelling and  Analysis of Information 

Demand in an Enterprise Context , 2016, ISBN 

978-91-7685-713-7. 

No 1798 Rahul Hiran: Collaborative Network Security: 

Targeting Wide-area Routing and  Edge-

network Attacks, 2016, ISBN 978-91-7685-662-8. 

No 1813 Nicolas Melot: Algorithms and  Framework for 

Energy Efficient Parallel Stream Computing on 

Many-Core Architectures, 2016, ISBN 978-91-7685-

623-9. 

No 1823 Amy Rankin: Making Sense of Adaptations: 

Resilience in High-Risk Work, 2017, ISBN 978-91-

7685-596-6. 

No 1831 Lisa Malmberg: Build ing Design Capability in 

the Public Sector: Expand ing the Horizons of 

Development, 2017, ISBN 978-91-7685-585-0. 

No 1851 Marcus Bendtsen: Gated  Bayesian Networks, 

2017, ISBN 978-91-7685-525-6. 

No 1852 Zlatan Dragisic: Completion of Ontologies and  

Ontology Networks, 2017, ISBN 978-91-7685-522-5. 

No 1854 Meysam Aghighi: Computational Complexity of 

some Optimization Problems in Planning , 2017, 

ISBN 978-91-7685-519-5. 

No 1863 Simon Ståhlberg: Methods for Detecting 

Unsolvable Planning Instances using Variable 

Projection , 2017, ISBN 978-91-7685-498-3. 

No 1879 Karl Hammar: Content Ontology Design 

Patterns: Qualities, Methods, and  Tools , 2017, 

ISBN 978-91-7685-454-9. 

 

Linköping Studies in Arts and Science 

No 504 Ing-Marie Jonsson: Social and  Emotional 

Characteristics of Speech-based  In-Vehicle 

Information Systems: Impact on Attitude and  

Driving Behaviour, 2009, ISBN 978-91-7393-478-7. 

No 586 Fabian Segelström: Stakeholder Engagement for 

Service Design: How service designers identify and 

communicate insights, 2013, ISBN 978-91-7519-554-4. 

No 618 Johan Blomkvist: Representing Future Situations of 

Service: Prototyping in Service Design, 2014, ISBN 

978-91-7519-343-4. 

No 620 Marcus Mast: Human-Robot Interaction for Semi-

Autonomous Assistive Robots, 2014, ISBN 978-91-

7519-319-9. 

No 677 Peter Berggren: Assessing Shared  Strategic 

Understanding, 2016, ISBN 978-91-7685-786-1. 

No 695 Mattias Forsblad: Distribu ted  cognition in home 

environments: The prospective memory and  

cognitive practices of older adults, 2016, ISBN 978-

91-7685-686-4. 

 

Linköping Studies in Stat ist ics 

No 9 Davood Shahsavani: Computer Experiments De-

signed  to Explore and  Approximate Complex Deter -

ministic Models, 2008, ISBN 978-91-7393-976-8. 

No 10 Karl Wahlin: Roadmap for Trend  Detection and  As-

sessment of Data Quality, 2008, ISBN 978-91-7393-

792-4. 

No 11 Oleg Sysoev: Monotonic regression for large 

multivariate datasets, 2010, ISBN  978-91-7393-412-1. 

No 13 Agné Burauskaite-Harju: Characterizing Temporal 

Change and  Inter-Site Correlations in Daily and  Sub-

daily Precipitation Extremes, 2011, ISBN 978-91-7393-

110-6. 

 

Linköping Studies in Informat ion Science 

No 1 Karin Axelsson: Metodisk systemstrukturering- att 

skapa samstämmighet mellan informationssystem-

arkitektur och verksamhet, 1998. ISBN-9172-19-296-8. 

No 2 Stefan Cronholm: Metodverktyg och användbarhet - 

en stud ie av datorstödd  metod baserad  

systemutveckling, 1998, ISBN-9172-19-299-2. 

No 3 Anders Avdic: Användare och utvecklare - om 

anveckling med kalkylprogram, 1999. ISBN-91-7219-

606-8. 

No 4 Owen Eriksson: Kommunikationskvalitet hos infor-

mationssystem och affärsprocesser, 2000, ISBN 91-

7219-811-7. 



“Dissertation” — 2017/8/15 — 10:53 — page 246 — #260

 

 

No 5 Mikael Lind: Från system till process - kriterier för 

processbestämning vid  verksamhetsanalys, 2001, 

ISBN 91-7373-067-X. 

No 6 Ulf Melin: Koord ination och informationssystem i 

företag och nätverk, 2002, ISBN 91-7373-278-8. 

No 7 Pär J. Ågerfalk: Information Systems Actability - Un-

derstanding Information Technology as a Tool for 

Business Action and  Communication, 2003, ISBN 91-

7373-628-7. 

No 8 Ulf Seigerroth: Att förstå och förändra system-

utvecklingsverksamheter - en taxonomi för 

metau tveckling, 2003, ISBN91-7373-736-4.  

 

No 9 Karin Hedström: Spår av datoriseringens värden --- 

 Effekter av IT i äld reomsorg, 2004, ISBN 91-7373-963-

4. 

No 10 Ewa Braf: Knowledge Demanded  for Action - 

Stud ies on Knowledge Mediation in Organisations, 

2004, ISBN 91-85295-47-7. 

No 11 Fredrik Karlsson: Method  Configuration  method 

and  computerized  tool support, 2005, ISBN 91-85297-

48-8. 

No 12 Malin Nordström: Styrbar systemförvaltning - Att 

organisera systemförvaltningsverksamhet med hjälp 

av effektiva förvaltningsobjekt, 2005, ISBN 91-85297-

60-7. 

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap, 

motivation, IT-system och andra förutsättningar för 

polisarbete, 2005, ISBN 91-85299-43-X. 

No 14 Benneth Christiansson, Marie-Therese 

Christiansson: Mötet mellan process och komponent 

- mot ett ramverk för en verksamhetsnära 

kravspecifikation vid  anskaffning av komponent-

baserade informationssystem, 2006, ISBN 91-85643-

22-X. 


	Abstract
	PopulŁarvetenskaplig sammanfattning
	Acknowledgements
	Contents
	Chapter 1 Introduction
	Chapter 2 Background and Related Work
	Chapter 3 Research Method
	Chapter 4 ODP Quality Model
	Chapter 5 ODP Tool Support Improvement
	Chapter 6 ODP Methodology Development
	Chapter 7 Discussion
	Chapter 8 Conclusions
	Bibliography
	Appendix A ODP Quality Model Indicators
	List of Figures
	List of Tables


 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 463.33, -2.05 Width 6.82 Height 678.96 points
     Mask co-ordinates: Horizontal, vertical offset -4.78, -2.05 Width 470.15 Height 7.51 points
     Mask co-ordinates: Horizontal, vertical offset -4.09, 2.04 Width 5.46 Height 678.27 points
     Mask co-ordinates: Horizontal, vertical offset -0.68, 675.54 Width 470.83 Height 4.78 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         101
         AllDoc
         112
              

       CurrentAVDoc
          

     463.328 -2.053 6.8237 678.9562 -4.7766 -2.053 470.1516 7.506 -4.0942 2.0413 5.4589 678.2739 -0.6824 675.5386 470.834 4.7766 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     0
     260
     259
     260
      

   1
  

    
   HistoryItem_V1
   Nup
        
     Trim unused space from sheets: no
     Allow pages to be scaled: no
     Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
     Horizontal spacing (points): 0 
     Vertical spacing (points): 0 
     Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
     Add frames around each page: no
     Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Sheet orientation: tall
     Layout: rows 0 down, columns 0 across
     Align: centre
      

        
     0.0000
     10.0001
     20.0001
     1
     Corners
     0.2999
     ToFit
     0
     0
     0.7000
     0
     0 
     1
     0.0000
     0
            
       D:20170815112249
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     589
     368
    
    
     0.0000
     C
     0
            
       CurrentAVDoc
          

     0.0000
     0
     2
     1
     0
     0 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base





